Stellar Evolution 2016 Q1

Ugeseddel 5 (week 39)

In the lecture on Thursday September 29 Giinter will discuss zero-age main
sequences (Kippenhahn, Weigert & Weiss, Chapters 22 and 23), and main-
sequence evolution. In the following week Giinter is fully occupied by a
workshop on convection. Fortunately Steve Kawaler, who is a visitor from
Iowa State University, has very kindly agreed to take over the lectures, cover-
ing remaining issues of main-sequence evolution and evolution after the main
sequence (Kippenhahn, Weigert € Weiss, Chapters 31 — 34). The lectures
10 October are cancelled owing to the visit of a committee evaluating the
Stellar Astrophysics Centre. Instead we plan to use the exercise class on 12
October for lectures, dealing with the evolution and properties of the Sun
(Kippenhahn, Weigert €& Weiss, Chapter 29). The final lecture of Q1, 13
October, will deal briefly with supernovae (Kippenhahn, Weigert € Weiss,
Chapters 35 and 36).

The exercise class on 5 October will consider:

i) Finish the analysis of the properties of polytropic models, based on
Lecture Notes on Stellar Structure and Evolution, Section 4.6. Specif-
ically, consider Exercises 4.8, 4.9 4.11 and 4.12. (Exercise 4.10 is fun
and challenging, so you might take a look at that also.)

ii) Solve the Lane-Emden equation numerically for some representative
cases of the polytropic index n. This is discussed in Lecture Notes
on Stellar Structure and FEvolution, Exercise 9.1. You can use any
programming language and algorithms that you are familiar with to
integrate ordinary differential equations. Note that the singularity at
the centre requires the use of an expansion around the centre; it would
not hurt to derive this expansion. Use the analytical solution for n =
1.0 to test the code.

iii) The properties of predominantly convective stars are important in early
and late phases of stellar evolution. Go through the analysis in Lec-
ture Notes on Stellar Structure and Evolution, Section 7.2, including
Exercise 7.3.

iv) In the unlikely event that you have time to spare, Exercise 1 from the
Winter Exam 1987-88 in Astronomi A (see below)



Corrections to Kippenhahn, Weigert € Weiss:

e p. 345, Fig. 30.4: There are problems with the labelling of the
ordinate axis: the top three labels (1.0 x 10%, 1.5 x 10* and 2.0 x 10?)
should be changed to 1.0 x 104, 1.5 x 10* and 2.0 x 10%. Also, in 1. -4
of the caption ‘about 10* times larger’ should be changed to ‘about 103
times larger’.

e p. 370, first paragraph: Here there is a mistake in the Kelvin-
Helmholz time quoted for the passage from C to D in Fig. 31.2; as is
clear from the figure the appropriate time is more like 3 x 106 yr.

e p. 380, 1. 3 from bottom: replace ‘its maximum h = 1’ by ‘its
minimum A = 1.

e p. 388, Fig.32.2: It may be a little confusing that the figure shows
results for two different evolutionary stages. The lines marked ‘X’ show
the hydrogen profile in models at the end of central hydrogen burning,
with the characteristic steep slope left behind by a retreating convec-
tive core. The lines marked ‘Y’ show the helium profile in a model
roughly half-way through central helium burning. Here the growing
convective core causes the discontinuous increase around m/M = 0.1,
while the very thin hydrogen-burning shell corresponds to the decrease
near m/M = 0.2.

e p. 401, bottom, p. 402, top: Here the timescale of the helium flash
is underestimated. A more reasonable version of this sentence would be:
‘The local luminosity [ at maximum exceeds 10'° L, comparable with
that of a whole galaxy, but only for about a day’. (However, compared
with the overall evolution time scales, the expression “helium flash”
remains quite appropriate.)

e p. 404, caption to Fig. 33.8: In fact, the letters A — C bear no
relation to the labelling in Figs 33.3 and 33.4. (It is only fair to point
out that Thomas (1967) did not make this mistake.)

28 September 2016 Jorgen Christensen-Dalsgaard



ASTRONOMY A WINTER 1987-88

EXERCISE 1

We consider the contraction of a star before the main sequence. The star is
assumed to be in hydrostatic equilibrium and to be on the Hayashi track,
so that the energy transport is by convection everywhere. The star is thus
approximated by a polytrope of index 3/2.

a) Show that the surface luminosity of the star is
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where M and R are the surface mass and radius of the star and G is the
gravitational constant. You may use that the gravitational potential
energy of a polytrope of index 3/2 is
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We assume that the effective temperature of the star is constant during the
contraction on the Hayashi track.

b) Show that the radius R at time ¢ is given by
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where Ly and Ry are the surface luminosity and radius of the star at
the start of the contraction, at t = t.

We assume that the release of gravitational potential energy takes place
uniformly through the star, such that L(r)/m(r) is constant; here L(r) is
the flow of energy through a spherical surface of radius r and m(r) is the
mass within this sphere. Matter in the star is completely ionized and satisfies
the ideal gas law; radiation pressure can be neglected. The opacity k is given
by the Kramers approximation,

K = ropT >,

where p is density, 7' is temperature and k¢ is a constant.
The condition that the star is on the Hayashi track is that it is everywhere
convective.



c) Show that this condition can be written as
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where T,g is the effective temperature. You do not need to find the

value of the constant.

By inserting the relevant basic constants and the constant x( in the expression
for the opacity it can be shown that the above expression becomes
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where X and Z are the abundances by mass of hydrogen and heavy elements,
and p is the mean molecular weight.

d) Find the minimum luminosity on the Hayashi track for a 1M, star,
with the chemical composition X = 0.73, Z = 0.02, and T, = 4500 K.

e) Calculate the duration of the contraction on the Hayashi track for a
1 My, star, using the results of questions b) and d). We assume an
initial luminosity of Lso = 100 L.



