
Stellar Evolution 2016 Q1

Ugeseddel 2 (week 36)
Updated 8 September

In the lectures Monday 5 September I completed stability considerations
(Kippenhahn, Weigert & Weiss, Chapter 6) and discussed convective energy
transport (Chapter 7). Thursday 8 September I shall make a few additional
comments on convection, and then Günter Houdek will take over the lectures,
dealing with the treatment of chemical evolution and mass loss (Chapters 8
and 9). On 12 September Günter provides an overview of the equations of
stellar evolution (Chapter 10) and covers boundary conditions and numerical
procedures (Chapters 11 and 12; we skip section 12.6). The following lectures
(15 and 19 September) will deal with the detailed treatment of the equation
of state (Chapters 13 – 16).

The exercise class on 14 September will consider:

i) Briefly go through the steps in the verification of energy conservation
(neglecting the kinetic energy) in Kippenhahn, Weigert & Weiss, Sec-
tion 4.5

ii) Show, for a general equation of state, that(
∂ lnP

∂ ln ρ

)
ad

=
1

α− δ∇ad

iii) Exercise U2.1 below.

Additional material:
The web page (http://astro.phys.au.dk/∼jcd/stel-struc) contains links to

additional material on convection, including extensive numerical results ob-
tained by Bob Stein. As noted in the lectures, Remo Collet is also heavily
involved in these simulations. We may get back to more details on the treat-
ment of convection in the second part of the course in Q2.

Corrections to Kippenhahn, Weigert & Weiss:

• p. 81, Eq. (8.28): This equation is not correct as it stands, even on
dimensional grounds. A correct form would be to add to the diffusion
equation the term
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• p. 108, line below Eq. (12.4): Here the text talks about ‘lin-
earization’ of the differential equations. Presumably ‘discretization’ is
intended; this constitutes the approximation to the original equations.
Linearization follows later, in the iterative solution of the nonlinear
difference equations; this can in principle be done to any specified nu-
merical accuracy (although in practice limited by round-off errors etc.).

• p. 109, Fig. 12.1: For consistency with the text, ‘i’ should have
been used as subscript on ‘A1

i ’ etc. The double use of ‘j’ in the figure
is potentially confusing.

• p. 113, l. 4: The size of the Henyey matrix is (4K − 2) × (4K − 2)
(for K = 4 as in Fig. 12.3 the matrix is 14× 14), rather than K ×K.

• p. 113, l. -4: Here the equation should be Xn+1
i = Xn

i + ∆tẊn+1
i =

Xn
i + ∆Xn+1

i and in the line below ∆Xn
i should correspondingly be

replaced by ∆Xn+1
i .

• p. 116, Eq. (12.20): It is perhaps a little confusing that ‘M ’ is used
here for the number of grid points, rather than ‘K’.

8 September 2016 Jørgen Christensen-Dalsgaard

Exercise U2.1:

Convective stability or overstable oscillations. We consider the
motion of a convective element, taking into account heat exchange char-
acterized by the time scale τadj. The goal is to analyse the conditions for
overstable oscillations of the element. The notation follows Kippenhahn,
Weigert & Weiss.

i) Show that the equation of motion of the element is

∂2∆r

∂t2
= g

(
δ
DT

T
− φH−1

P ∇µ∆r
)
. (2.1)

ii) Show that DT satisfies

1

T

∂DT

∂t
= − DT

Tτadj
−H−1

P (∇ad −∇)
∂∆r

∂t
(2.2)

(see Kippenhahn, Weigert & Weiss, equation (6.27)).
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We now assume that ∆r and DT vary with time as exp(−iωt), where the
frequency ω in general is complex.

iii) Show that ω satisfies the dispersion relation

(ω2 − φgH−1
P ∇µ)

(
1 +

i

ωτadj

)
− gδH−1

P (∇ad −∇) = 0 . (2.3)

iv) Show that when τadj →∞, the frequency is given by

ω2 = ω2
ad ≡

gδ

HP

(
∇ad −∇+

φ

δ
∇µ

)
. (2.4)

Give an interpretation of this result in terms of convective stability or
instability.

v) Assume that τ−1
adj � |ωad| and write ω = ωad + η. Find an approximate

expression for η. Discuss the result both in the case of convective
instability and convective stability. Show in particular that overstable
oscillations result when ∇ad < ∇ < ∇ad + (φ/δ)∇µ.
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