
Stellar Evolution 2016 Q2

Ugeseddel 10 (week 48)

In the lectures on 1 December Günter finishes the discussion of asymptotic
giant branch, including shell-source instabilities, thermal pulses and slow
neutron-capture nucleosynthesis (Kippenhahn, Weigert & Weiss, Chapter
34), and the final stages of the evolution of massive stars. He then consid-
ers supernova explosions (Kippenhahn, Weigert & Weiss, Chapters 35 and
36). On 5 and 8 December he presents the compact objects that are the
products of stellar evolution, i.e., white dwarfs and neutron stars (Kippen-
hahn, Weigert & Weiss, Chapters 37 and 38). On 12 December Amalie and
Andreas will talk about the evolution of binary stars.

In the exercise class on 30 November we apply MESA to the limit of very low-
mass stars, as discussed in Lecture Notes on Stellar Structure and Evolution,
Exercise 10.1.

i) Consider the early evolution of a few stars of masses close to (both
below and above) the claimed limiting mass of 0.08M�. Consider the
evolution of the central temperature with age, to locate the cases where
this reaches a maximum and starts decreasing before proper nuclear
burning starts. This can be defined as where 99% of the star’s surface
luminosity is obtained from nuclear reactions.

ii) Make your own determination of the minimum mass where a protostar
develops stable nuclear burning. Investigate whether this depends on
the abundance of heavy elements.

In addition, I suggest that you consider

iii) Exercise U10.1, below. This discusses in more detail the properties of
the shell-burning instability.

29 November 2016 Jørgen Christensen-Dalsgaard
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Exercise U10.1 Stability of a nuclear-burning
shell

This exercise considers the stability of a shell source. The treatment is a little
more detailed, and realistic, than presented in Kippenhahn, Weigert & Weiss
(KWW), although some of the basic ideas are the same. It is based on the
paper by Schwarzschild & Härm (1965), supplemented by ideas from Henyey
& Ulrich (1972). A more realistic and complex (and hence less transparent)
analysis, which included the case of two shell sources, was given by Defouw
(1973). The notation follows KWW, except where otherwise noted.

We consider the behaviour of the shell. Conditions at the bottom of the
shell are denoted by subscript “0” and are assumed to be fixed. Conditions
at the top of the shell are denoted by subscript “1”. “∆” is used to denote
differences between the bottom and the top of the shell (chosen so as to be
positive), and “δ” denotes changes caused by the perturbation. The mass of
the shell ∆m = m1 −m0 is taken to be fixed. It is assumed that the shell is
so thin that for some purposes variations across it can be neglected.

1) Show from the condition that the mass is unchanged that the average
density perturbation δρ/ρ is related to the change in radius δr1/r1 at
the top of the shell by

δρ

ρ
≈ −

(
2 +

r1
∆r

)
δr1
r1
, (1)

where ∆r = r1 − r0 is the thickness of the shell. For a thin shell 2 can
be neglected compared with r1/∆r and we recover the expression from
KWW:

δρ

ρ
≈ − r1

∆r

δr

r
, (2)

where we dropped the subscripts “1” in δr/r (note that homology cor-
responds to taking ∆r/r1 = 1 in equation (1), and hence to replacing
r1/∆r by 3 in equation (2); see KWW). In the following we use equation
(2).

2) Show that the pressure change over the shell is (again assuming the
shell to be thin)

∆P = P0 − P1 =
G∆mm1

4πr4
, (3)

and that therefore the pressure perturbation is given by

δP

P
= −4

∆P

P

δr

r
. (4)
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This relation reduces to the usual homology relation if ∆P/P = 1.
Given that it is not precisely clear at what level the reference P is
measured, this is probably the most reasonable approximation if the
shell is not very thin.

To simplify the notation we introduce

∆P =
∆P

P
; ∆r =

∆r

r
; ∆T =

∆T

T
. (5)

We assume that the equation of state gives, as usual,

δρ

ρ
= α

δP

P
− δ δT

T
, (6)

with α = δ = 1 for the ideal-gas case.

3) Show that
δr

r
≈ − δ

4α∆P −∆r
−1

δT

T
, (7)

δP

P
≈ 4∆P δ

4α∆P −∆r
−1

δT

T
, (8)

δρ

ρ
≈ ∆r

−1δ

4α∆P −∆r
−1

δT

T
. (9)

Hence show from the first law of thermodynamics that the heat per-
turbation per unit mass is

δq = cPT

(
1−∇ad

4∆P δ

4α∆P −∆r
−1

)
δT

T
. (10)

As in KWW, this equation defines an effective specific heat, taking into
account the hydrostatic reaction of the layer; for a thin layer, the pressure
readjustment is small, and the layer behaves like a normal gas, getting warmer
when heated up. The converse is true if the layer is sufficiently thick. Thus,
broadly speaking, a thin layer is unstable and a thick layer is stable, given
the rapid increase in nuclear reaction rates with increasing temperature.

To get a more secure estimate of the stability of the layer, however, the en-
ergetics of the perturbation must be taken into account, particularly the heat
loss. We use the idealized temperature profile in the unperturbed shell illus-
trated in Figure 1a, and the particular form of the temperature perturbation
shown in Figure 1b; note that δT is a measure of the average temperature
perturbation over the shell, and hence the preceding relations for δP , δq,
etc., must be supposed to hold in an average sense.
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Figure 1: Schematic unperturbed temperature profile (a) and temperature
perturbation (b). Adopted from Schwarzschild & Härm (1965).

4) Show that the unperturbed luminosity at the top of the shell is

l = 2(4πr2)2
4ac

3

T 3

κ

∆T

∆m
. (11)

Hence argue that the luminosity perturbations at the top and the bot-
tom of the layer are approximately

l+ = 2l
T

∆T

δT

T
, l− = −2l

T

∆T

δT

T
. (12)

5) Show from these relations, and the condition that the unperturbed shell
is in equilibrium, that the heat perturbation per unit mass and time is

dδq

dt
= ε

(
δε

ε
− 4∆T

−1 δT

T

)
. (13)

6) We neglect the dependence of ε on ρ (argue that this is reasonable).
Show that the energy equation may be written as

d

dt

(
δT

T

)
= (t∗)−1 δT

T
, (14)

where

t∗ = tKH

1−∇ad
4∆P δ

4α∆P −∆r
−1

εT − 4∆T
−1 , (15)

εT = (∂ ln ε/∂ lnT )ρ, and tKH = cPT∆m/l is the Kelvin-Helmholz time
for the shell.
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7) Taking for simplicity ∆P = 1, and assuming the ideal gas law, discuss
the behaviour of t∗ and hence the stability of the shell as its thickness
is varied. What is the physical mechanism stabilizing a very thin shell?

8) Try to estimate what effect strong radiation pressure has on the sta-
bility of the shell, by evaluating t∗ in the limit β → 0, assuming again
∆P = 1. (Note that β enters into α, δ and cP .)
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