
Consistent approximate equations of state

A realistic equation of state for stellar interiors involves a number of different features, such as
partial ionization from temperature and ‘pressure’ effects, Coulomb interactions, volume effects,
etc. These must be included in the calculation of the thermodynamical quantities, such as density,
internal energy and thermodynamical derivatives such as specific heats and adiabatic exponents,
for a given pressure P , temperature T and composition, or other choices of the basic variables used
to describe the thermodynamical state. Apart from the difficulties in characterizing these different
components, a major concern is to ensure that they are included consistently everywhere in the
thermodynamical description, so that the full set of quantities are derivable from a single equation
of state. This will often not be the case if one simply adds bits to the expressions for, for example,
the pressure and internal energy of the gas. The result will unavoidably be inconsistencies in the
resulting models. For general reviews of these issues, see for example Christensen-Dalsgaard &
Däppen (1992) and Däppen & Guzik (2000).

A specific issue, discussed by Kippenhahn & Weigert (1990), is the recombination that occurs
in the inner parts of the star if the simple Saha equation is used. Kippenhahn & Weigert discuss
this in a qualitative way based essentially on the perturbation of the atomic energy levels by
neighbouring atoms, which is assumed eventually to ensure full ionization in stellar interiors, which
is then generally assumed. This clearly glosses over some very complex processes in the interactions
between atoms, ions and electrons in the plasma, and almost certainly does not satisfy constraints
of thermodynamic consistency. A closely related problem is the obvious divergence of the partition
function (Kippenhahn & Weigert, Eq. 14.3) if the full infinity of atomic states is included in he
sum. This is sometimes avoided by making the opposite approximation, which in practice often
works reasonably well, that all the atoms and ions are in their ground state.

In older stellar evolution codes, which generally form the basis for Kippenhahn & Weigert,
some of these problems were suppressed by dealing separately with the stellar envelope and the
stellar interior, as implied by the discussion of the boundary conditions in their Chapter 10. In this
case the equation of state would be treated in detail in the envelope, while the interior would be
assumed to be fully ionized. A significant argument in these early calculations was that this reduced
the computing time. However, it obviously leads to potential subtle discontinuities at the matching
point. Thus more modern codes probably in general make a full treatment of the equation of state
in the entire model; this is certainly the case in the Aarhus code (ASTEC; Christensen-Dalsgaard
2008).

One way to avoid the problems with the equation of state is by considering the system as a
combination of nuclei and electrons, interacting through their Coulomb potential, but with no a
priori assumption about the presence of atoms and ions in the gas. Formally, the state of the gas is
obtained by solving the Schrödinger equation for this combination. In practice, this is done through
cluster analysis which then naturally leads to the formation of atoms and ions, but includes their
interaction with other constituents in the gas. This has been called the physical picture.

Here I discuss a more intuitive ‘cook-book’ approach, known as the chemical picture. As in
the straightforward, and likely inconsistent, procedures one proceeds from a collection of atoms,
ions, etc., and include various physical effects in a largely heuristic fashion. The trick that ensures
consistency is to do so in terms of the free energy F (e.g., Graboske, Harwood & Rogers 1969;
Däppen 1980), related to the entropy S and the internal energy U by

F = U − TS . (1)

F is traditionally expressed as a function F (T, V, {Nν}) of temperature T , volume V and the
number Nν of the different constituents of the gas, a constituent being for example an ion in a given
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ionization state and a given excitation state. For given T, V the equilibrium thermodynamic state is
defined by the resulting set {Nν}, for example giving the degrees of ionization. This equilibrium is
obtained as that configuration {Nν} that minimizes F , under the so-called stochiometric constraints,
e.g., the constraints that the total number of free electrons and the total number of any given nucleus
is constant. As discussed, e.g., by Däppen & Guzik (2000) this in simple cases leads to the familiar
form of the Saha equation.

Given this equilibrium F as a function of T and V , other thermodynamic quantities can be
obtained by differentiation:
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Similarly, other thermodynamic quantities are determined by higher derivatives, e.g. specific heat
at constant volume:
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V

. (3)

The physics of the equation of state is defined by the specification of F (T, V, {Nν}); given that,
thermodynamic consistency is ensured if the remaining thermodynamic quantities are obtained
through differentiation of F , as indicated.

An additional advantage of this formalism is that F can be expressed as a sum over individual
contributions, each corresponding to a physical effect:

F = Fe + Ftrans + Fint + Frad + Fconf . (4)

Here

– Fe: contribution from free electrons (including effects of degeneracy, as appropriate)
– Ftrans: contribution from the motion of heavy particles
– Fint: contribution from the internal states in atoms and ions
– Frad: contribution from radiation
– Fconf : the ‘configuration’ contribution, resulting from the finite size of atoms and ions, and

the Coulomb interaction.

Other effects may be included, as they are found to be required; the influence on P , U , etc.
of such a change ∆F to F can be obtained from equations (2). From the minimization of the free
energy it is obvious that such a correction may also affect the ionization balance. It may be shown
that the result is to modify the Saha equation to

nr+1
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ur
2
(2πmekBT )3/2

h3
e−χr/kBT+∆µ (5)

(kB being Boltzmann’s constant), including the correction ∆µ to the electron chemical potential
given by

∆µ = − 1
kBT

(
∂∆F
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)
T,V

. (6)

This correction is often forgotten in ad hoc modifications of the equation of state.
A detailed discussion of the various components of F is clearly beyond the scope of these notes;

some details are discussed by Graboske et al. (1969), Däppen (1980), Däppen et al. (1988), and
references therein. However, a few points might be mentioned.
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For a ‘classical’ gas the contribution from the internal states can be written as

Fint = −kBT
∑

k

∑
j

ln

[∑
i

gijk exp(−Eijk/kBT )

]
, (7)

where k sums over elements and j sums over the ionization states of each element, whereas i sums
over the bound states of that particular ionization state. As usual, gijk is the statistical weight and
Eijk is the excitation energy. This is clearly closely related to the partition functions and share with
them the problem of divergence when the sum extend over the infinite number of bound states in an
isolated atom or ion. As suggested by Hummer & Mihalas (1988) (see also Däppen & Guzik 2000)
this can be avoided by introducing into equation (7) a set of weights wijk giving the probability
that the given state still exists, despite the perturbations from neighbouring constituents of the
gas. Thus equation (7) is replaced by
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]
. (8)

The weights obviously depend on the detailed physical description of the interactions, and they are
functions of T, V and {Nν}; however, it is still possible to obtain the thermodynamic state through
the minimization of F . This is the main ingredient of the so-called MHD (for Mihalas, Hummer
and Däppen) equation of state (see Däppen et al. 1988).

The configuration term Fconf contains a part FFV from the finite volume of the atoms and ions
in the gas which clearly prohibits compression to arbitrary densities unless the gas is fully ionized.
This term effectively takes care of the ‘pressure ionization’. The second contribution arises from
the Coulomb effect, often described in the Debye-Hückel approximation,

FDH = −kBTV

12πr3
D

, (9)

where rD is the Debye length. This is approximately given by

rD '
[

kBT

4π(nee2 + nie2)

]1/2

, (10)

where ne and ni are number densities of electrons and ions. (For further details, see Kippenhahn
& Weigert 1990, §18.4.) Obviously, this term causes changes to the pressure, internal energy and
the ionization balance, the latter being the dominant effect of the Coulomb interaction e.g. in the
solar envelope.

As a final example I note that Eggleton, Faulkner & Flannery (1973) proposed a simple, but
thermodynamically consistent equation of state which achieved full ionization in stellar interiors
through the inclusion of a correction ∆FEFF to F , with a corresponding change ∆µEFF in the Saha
equation (cf. eq. 6). Again, the corresponding changes to P , U , etc. are obtained as derivatives
of ∆FEFF. (Note that in contrast simply imposing full ionization, without other modifications
to the equation of state, would not be thermodynamically consistent.) The formulation used for
∆FEFF probably has little physical meaning but has the advantage that the equation of state can be
expressed in simple analytical form. The resulting EFF equation of state has seen widespread use
in stellar modelling; a version which in addition includes the Coulomb effect, the CEFF equation
of state (cf. Christensen-Dalsgaard & Däppen 1992) is also in use.

3



References

Christensen-Dalsgaard, J., 2008. [ASTEC—the Aarhus STellar Evolution Code]. Astrophys. Space
Sci., 316, 13 – 24.
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