From the initial to the present Sun

Known solar data

- Sun is very ordinary star of average mass and in H-MS since about 4.6 Gy.

Solar properties

	Quantity	Value	Method
_	Mass	$(1.9891 \pm 0.0004) \times 10^{33} \text{ g}$	Kepler's 3 rd law
	Radius	$695,508 \pm 26 \text{ km}$	angular diameter plus distance
	Luminosity	$(3.846 \pm 0.01) \times 10^{33} \text{ erg s}^{-1}$	solar constant
	Effective temp.	$5779 \pm 2 \text{ K}$	Stefan-Boltzmann law
	Z/X	0.0245 ± 0.001	meteorites and solar spectrum
		0.0165	(new determination)
	Age	$4.57 \pm 0.02 \; \mathrm{Gyr}$	radioactive decay in meteorites
Base	Depth of conv. env.	$0.713 \pm 0.001 R_{\odot}$	helioseismology
	Env. helium content	0.246 ± 0.002	helioseismology

- One of the current hottest topics in solar physics: solar abundance Z.

From the initial to the present Sun

Known solar data

Element	GN93	AGS05	meteorites
H	12.00	12.00	8.25
C	8.55	8.39	7.40
N	7.97	7.78	6.25
O	8.87	8.66	8.39
Ne	8.08	7.84	-1.06
Na	6.33	6.17	6.27
Mg	7.58	7.53	7.53
Al	6.47	6.37	6.43
Si	7.55	7.51	7.51
S	7.21	7.14	7.16
Cl	5.50	5.50	5.23
Ar	6.52	6.18	-0.45
Ca	6.36	6.31	6.29
Ti	5.02	4.90	4.89
Cr	5.67	5.64	5.63
Mn	5.39	5.39	5.47
Fe	7.50	7.45	7.45
Ni	6.25	6.23	6.19
Z/X	0.0245	0.0165	

- One of the current hottest topics in solar physics: solar abundance Z.

From the initial to the present Sun

Known solar data

Asplund et al. (2009) solar composition \longrightarrow Z_{sun} = 0.0134

		$Z_{ m s}$	$Z_{ m S}/X_{ m S}$
ſ	Caffau et al. (2009)	0.0156 ± 0.0011	0.0213
Į	Houdek & Gough (2011)	0.0142 ± 0.0005	0.0186
revised:	Asplund et al. (2009)	0.0134	0.0181
(
[Grevesse & Noels (1993)	0.0179	0.0244
old:	Grevesse & Sauval (1998)	0.0169	0.0231
· ·		0.0.00	0.020.

- One of the current hottest topics in solar physics: solar abundance Z.

From the initial to the present Sun

Choosing the initial solar model

 $\begin{array}{c} \text{mixing-length} \\ \text{parameter} \ \alpha \end{array}$

- With M, R, L, T_{eff} and "Z" known (measured) we have to assume values for Y and $\ell_{\text{m}}/H_{\text{p}}$, ℓ_{p} , $\ell_$

- Finding a solar model for given Z/X, M_{\odot} , R_{\odot} , L_{\odot} , $T_{eff,\odot}$ and age t_{\odot} : start solving (numerically) stellar equations in complete equilibrium for trial values of Y and α , evolve model until "given" solar age t_{\odot} , repeat evolution run with new values for Y and α until model $@t_{\odot}$ matches R_{\odot} and L_{\odot} ,

i.e. until finding a ZAMS model B such that after t_{\odot} (= model C) will match the observed Sun (D);

changing α leads to a (small) change of R (almost only); changing Y changes μ and consequently $L\sim\mu^4$.

From the initial to the present Sun

Choosing the initial solar model

mixing-length parameter α

- With M, R, L, T_{eff} and "Z" known (measured) we have to assume values for Y and $\ell_{\text{m}}/H_{\text{p}}$

2 free parameters

- Finding a solar model for given Z/X, M_{\odot} , R_{\odot} , L_{\odot} , $T_{\rm eff,\odot}$ and age t_{\odot} : start solving (numerically) stellar equations in complete equilibrium for trial values of Y and α , evolve model until "given" solar age t_{\odot} , repeat evolution run with new values for Y and α until model $@t_{\odot}$ matches R_{\odot} and L_{\odot} ,

Partial derivatives for a present (•	initial v et=0	alues
ℓ_1	$_{\rm m}/H_P$	$Y_{\rm i}$	$Z_{\rm i}$	

	$\ell_{\rm m}/H_P$ $Y_{\rm i}$ $Z_{\rm i}$
L/L_{\odot}	0.038 8.515 -38.60
R/R_{\odot}	-0.129 2.019 -7.05
$(Z/X)/(Z/X)_{\odot}$	0.043 0.523 56.0

Neutrinos

Neutrinos, they are very small.
They have no charge and have no mass
And do not interact at all. near
The earth is just a silly ball
To them, through which they simply pass,
Like dustmaids down a drafty hall.

... ...

At night, they enter at Nepal And pierce the lover and his lass From underneath the bed—you call It wonderful; I call it crass. —John Updike

From TELEPHONE POLES AND OTHER POEMS (Knopf) © 1960, 1988 John Updike.
Originally in *The New Yorker*. All rights reserved.

Solar neutrinos (Super-Kamiokande detector)

Uses scattering of neutrinos on electrons in WATER

in a tank of 50 000 tons of water!

Solar neutrinos (Super-Kamiokande detector)

Uses scattering of neutrinos on electrons in WATER

in a tank of 50 000 tons of water!

Experiment sensitive to neutrinos with energies > 6.5 MeV, i.e. mostly ⁸B neutrinos

Neutrino-oscillations

$$\nu_{\rm e} \leftrightarrow \nu_{\mu} \leftrightarrow \nu_{\tau}$$

Produced neutrinos: $\nu_{\rm e}$

Detected neutrinos:

- 37 CI, 71 Ga : ν_{e}
- H₂O: ν_e

Solar neutrinos (neutrino oscillations)

Mikheyev-Smirnov-Wolfenstein (MSW) effect

Sudbury Neutrino Observatory (SNO, Canada)

measures high-energy neutrinos (8B) through reactions with deuterium (2H) in heavy water.

Two relevant reactions with ²H:

- (1) sensitive only to v_e (charged-current reactions)
- (2) sensitive to all three types (neutral-current react.)

Comparison of (1) with (2) provides measure of flavour change between $\nu_{\rm e},\,\nu_{\tau}$ and $\nu_{\rm u}.$

Measurements agree with solar-model predictions within error bars (Ahmad et al. 2002).

