

Neutrino energy losses

Nuclear energy production

Hydrogen burning (energy loss due to escaping neutrinos):

$^{1}\text{H} + ^{1}\text{H} \rightarrow ^{2}\text{H} + e^{+} + \nu$	(pp1, 2, 3)	$Q_{\nu} = 0.263 \text{MeV}$
$^{7}\text{Be} + e^{-} \rightarrow ^{7}\text{Li} + \nu$	(pp2)	0.80 MeV
$^{8}B \rightarrow ^{8}Be + e^{+} + \nu$	(pp3)	7.2 MeV
$^{13}N \rightarrow ^{13}C + e^+ + \nu$	(CNO)	0.71 MeV
$^{15}\mathrm{O} \rightarrow ~^{15}\mathrm{N} + e^+ + \nu$	(CNO)	1.0 MeV

With ~ $4x10^{-5}$ erg/cycle Sun produces ~ $2x10^{38}$ (electron) neutrinos every second!

Neutrino losses

Involving nuclear processes

Urca process at extreme densities (no nuclear reactions necessary):

e⁻ capture: Nucleus with charge Z and atomic weight A $(Z A) + e^{-}$

and atomic weight A degenerate $(Z, A) + e^- \rightarrow (Z - 1, A) + \nu$, $(Z - 1, A) \rightarrow (Z, A) + e^- + \overline{\nu}$.

Example:

³⁵Cl $(e^-, \nu)^{35}$ S ³⁵S $(e^-\bar{\nu})^{35}$ Cl

