The equation of state of stellar matter

Crystallization

- so far any interaction between ions were neglected ( = ideal gas)
- not valid for high p and low T.

-if thermal kinetic energy kT becomes similar to electrostatic (potential) binding energy
(Coulomb energy) ions tend to form a rigid lattice -> minimizes their total energy

potential (Coulomb) binding energy

Def.: coupling parameter I'. = (thermal) kinetic energy
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. — (Ze) ~ 2.7 % 103 Mion —Ze ... ion charge
c = T = 4 —=0
TionkT T Tion ... Mean separation
between ions
I'. <<<1 ... ions have B-distribution
I'. >>1 ...ions try to forma crystal

that has a lower energy
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Crystallization

Critical value for transition (Shapiro & Teukolsky 1983): I'. ~ 170 .

with p = pgmynien We obtain estimate for critical (melting) temperature T,
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Such conditions are found in
cooling white dwarfs
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Neutronization

high-energy e” can combine with protons to form neutrons if total e™ energy is:
Eiot > E* = *(mp—my) .

At relatively low p the neutron will decay within 11 min to produce proton-e~ pair
with the e~ having energy I}, = K* — ..

However, for complete degeneracy Fermi energy Ercould > E};, and released
e” have not enough energy to find empty cell in phase space—-neutron cannot decay

Fermi sea of e- stabilizes neutrons if Ey; < Lp.

Using p = —(E* — mZe¢h)1/2
p
and F = Eyy + mec® = By + mec® = 1:'2(1'1'31.1 —mp) ~1.29 x 10%eV — pp

— T=pp/Mec=22 & Ne = p/pLemy = 87rmg’c3/3.’13333 & fe=2

3

— Perit = 2.4 X 107 gem™ i.e. for p > peric proton-e” gas —= neutron gas.
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Neutronization
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In stars situation is more complicated: laP Haensel, Potekhin, Yakolev (2007)
at high p, plasma contains heavy nuclei, ] i )
which capture e- (“inverse S decay") to a5 ; p
become neutron-rich isotopes — e- 1 i PN
; 1 I increase of
energy needs to be higher than E. 1 relativistice | // merease of
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A self-consistent approximate approach

Idea: find a single expression for the EOS from which all thermodynamic quantities
e.g., p, U, cp, 8, etc, are consistently derived for given P, T and X;

Ansatz:

use TD potential of free energy F(T,V,{N;}) = U - TS and find reaction equilibrium
by selecting those {N} that minimizes F (maximizes entropy S) for given T, V,
subject to condition that total numbers of free e” and any nuclei are constant.

From minimized free energy F(T,V,{N;}) all TD quantities can be derived, e.g.
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A self-consistent approximate approach

Start from canonical partition function (Zustandssumme) Z .

Consider physical system (with Hamiltonian H) confined in a box of volume V
in contact with a heat reservoir at temperature T:

Z = Tr (exp[—H/KTY])... sum over all diagonal terms of Hamilton operator, which
includes the sum over all internal excitation states j

e.g., Zl(l'lz = Z gij expFE;; /kET) of species i Y T = H A
i

int
j=0

The free energy F(T,V,{Ni}) is then obtained from:

F(T,V,{N}) = —kT'n(Z)




Statistical mechanics - thermodynamics
S=klnW =-kY pilnp
Probability
1
Pi = exp (—Ei/kT)

Partition function (canonical)

Z = Zexp (—E;/kT)

Helmholtz free energy F

F=—-kT'lnZz

Ludwig Boltzmann
(1844 - 1906)
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A self-consistent approximate approach

Partition function: 7 = Zo Zirans Zint Lrad Leonf

|

Free energy: F = Fc + Ftrans + Ent + E‘ad + Fconf

— F.: contribution from free electrons (including effects of degeneracy, as appropriate)
— Fipans: contribution from the motion of heavy particles

— Fi: contribution from the internal states in atoms and ions

— Flaq: contribution from radiation

— Feons: the ‘configuration’” contribution, resulting from the finite size

of atoms and ions, and the Coulomb interaction.
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A self-consistent approximate approach

Saha equation can be derived from minimizing free energy F(T,V {Ni})
(e.g. Déppen & Guzik (2000)).

Additional ‘corrections’, such as the electron chemical potential, A , can than

easily and consistently be added to F by AF.
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A self-consistent approximate approach

Tackling the problem of the divergent partition function Zj¢

Fi = _kBTZ Zhl Zwijkgvﬁjk: exp(_Eijk/kle)
ko J i
K ....nr. of elements
j .... nr. of ionization states of each element
i .... nr. of bound (energy) states of each element

Wik ---- Newly introduced weights describing probability that state exists
(MHD EOS; Mihalas, Hummer, Dappen 1988)
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A self-consistent approximate approach

Feont = Frv + Fpn -
Frv ... Finite volume of atoms and ions — “pressure (density) ionization”

Fpu ... Debye-Hiickel approximation for Coloumb effects
(screening effect through electrostatic potential of ions)
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Testing solar thermodynamics
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Basu, Dappen & Nayfonov (1999; ApJ 518, 985)




