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Preface

The present notes grew out of an introductory course in stellar evolution which I have
given for several years to third-year undergraduate students in physics at the University
of Aarhus. The goal of the course and the notes is to show how many aspects of stellar
evolution can be understood relatively simply in terms of basic physics. Apart from the
intrinsic interest of the topic, the value of such a course is that it provides an illustration
(within the syllabus in Aarhus, almost the first illustration) of the application of physics
to “the real world” outside the laboratory.

I am grateful to the students who have followed the course over the years, and to
my colleague J. Madsen who has taken part in giving it, for their comments and advice;
indeed, their insistent urging that I replace by a more coherent set of notes the textbook,
supplemented by extensive commentary and additional notes, which was originally used
in the course, is directly responsible for the existence of these notes. Additional input was
provided by the students who suffered through the first edition of the notes in the Autumn
of 1990. I hope that this will be a continuing process; further comments, corrections and
suggestions for improvements are most welcome. I thank N. Grevesse for providing the
data in Figure 14.1, and P. E. Nissen for helpful suggestions for other figures, as well as
for reading and commenting on an early version of the manuscript. I also thank Bent
Christensen-Dalsgaard and T. M. Brown for their assistance in locating the Bradbury
reference in Chapter 2. The High Altitude Observatory, Boulder, Colorado is thanked for
hospitality during the Summer of 1990, where a substantial part of the notes were written.

Aarhus, August 1991

Jørgen Christensen-Dalsgaard

Preface to 4th edition

Relative to earlier editions a number of mistakes have been corrected and some of the
figures have been revised. I am grateful to all of those who have provided comments and
corrections, in particular N. H. Andersen and H. Jørgensen, who provided extensive lists of
errors and suggestions for improvements. A revised description of the origin of the “hook”
in the evolution tracks for moderate- and large-mass stars at the end of central hydrogen
burning resulted from work by E. Michel, and I am very grateful to him for discussions and
computations leading to this correction. The computations on which some of the figures
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are based were supported by the Danish Natural Science Research Council. Once again I
thank the High Altitude Observatory for Summer hospitality during the revisions.

Boulder, August 23, 1995

Jørgen Christensen-Dalsgaard

Preface to 5th edition

The notes have been significantly revised and updated in this edition, including new re-
sults on the solar neutrino problem and from helioseismology, as well as an update of
the discussion of supernova explosions and nucleosynthesis. In addition, Chapter 16 on
compact objects is new; I am very grateful to Jes Madsen for his permission to include it,
and to Karlheinz Langanke for translating it from the Danish original (‘Stjerneudviklin-
gens slutstadier’). I also thank Langanke for very substantial contributions to the revised
Chapters 14 and 15. Discussions with A. V. Sweigart and J. Lattanzio were very helpful
in bringing my ideas about late stellar evolution more up to date, and I thank the former
for providing the data used in Figure 12.7. Further corrections and suggestions received
from the students who have followed the course are also gratefully acknowledged.

Aarhus, September 6, 2000

Jørgen Christensen-Dalsgaard

Preface to 6th edition

The only substantial change in this edition is an update of Section 11.5.3, including the
spectacular results on neutrino oscillations from the Sudbury Neutrino Observatory. In
addition, a number of minor corrections have been incorporated.

Second printing : In this reprinting a few minor changes have been made, including a
replacement of Figure 2.6 and an update of a few references.

Third printing : In this reprinting some generally minor changes have been made, partic-
ularly in Chapter 14, and a few references have been added.

Fourth printing : This reprinting is essentially identical in content to the third printing,
but the text has been reset in LATEX, and the figures have been included in the output file.
Thus this version is being made available on the internet.

Aarhus, 9 March, 2008

Jørgen Christensen-Dalsgaard
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Chapter 1

Introduction

The purpose of the present notes is to provide an introduction to the structure and evo-
lution of stars, as we have come to understand it in terms of their physical properties.
The goal has been to keep the description as simple as possible, while maintaining the
principal ingredients, and presenting the most important results. It has not been a goal
to provide a “cookery book” for prospective stellar model builders; there already exist
a substantial number of such books, some of which are described in the bibliography in
section 1.5. Thus, after going through the notes the reader will not be able to sit down
and write yet another computer programme for calculating stellar models. But it is hoped
that the notes will provide a basic understanding about what “makes a star tick”, and
how the ticking relates to the underlying physics.

Figure 1.1: The role of the star in astrophysics. Almost every subject in astrophysics
is influenced by our ideas about the structure and evolution of the stars. (From
Clayton 1968).

The study of stellar structure and evolution plays a central role in modern astro-
physics1. This is illustrated graphically in Figure 1.1. For example, the study of distances

1A very useful phrase when writing grant applications.

1



2 CHAPTER 1. INTRODUCTION

and ages of stars, which are crucial to our understanding of the structure and history of
our Galaxy, depends on stellar evolution calculations. Furthermore, since the synthesis of
almost all chemical elements is supposed to take place inside stars, an understanding of the
chemical history of the Universe (and of our own origins) requires that one understands
stellar evolution. However, there is another side to the importance of stellar evolution
calculations, to which we return in section 1.4: the calculations depend on knowledge of
the physical properties of the matter in the stars; hence by testing the computed models
against observations we are effectively testing the physics that was used to compute the
models, often under conditions where it is impossible to carry out tests in the laboratory.

This chapter provides an introduction to some of the terminology and concepts which
will be discussed later. Also it gives a sketch of the life histories of typical stars. In this
way it is hoped to establish a framework for organizing the details which follow in the
subsequent chapters.

1.1 Stellar timescales

1.1.1 The dynamical timescale

Changes in a star may occur on a range of different timescales. The shortest relevant
timescale is the dynamical timescale tdyn. Consider a star of mass M and radius R. The
gravitational acceleration at the surface of the star is

gs =
GM

R2
, (1.1)

where G is the gravitational constant. Hence the time required for a particle to fall the
distance ` in the gravitational field of the star is

t =
(

2`
gs

)1/2

=

(
2`R2

GM

)1/2

.

If we take ` to be R/2 we obtain a timescale that is characteristic for motions over stellar
scales in the gravitational field:

tdyn =

(
R3

GM

)1/2

. (1.2)

It is obvious that there is a great deal of arbitrariness in this definition; after all, we could
have chosen a distance of R, or R/10, instead of R/2. However, the point of arguments
like this is not to obtain precise values for the quantities that are being estimated; rather,
the purpose is to get a feel for the magnitude of the quantity, and its dependence on
basic stellar parameters. Hence we shall use equation (1.2) as a reasonable estimate for
dynamical changes to a star. Using the solar values M� and R� for M and R, we may
write the equation as2

tdyn = 30min
(
R

R�

)3/2 ( M

M�

)−1/2

. (1.3)

2The precise value of tdyn, as defined in equation (1.2), for the Sun is 26.5642min; however, given
the philosophy behind the estimate it is clearly meaningless to give the result with that many significant
figures.



1.1. STELLAR TIMESCALES 3

Stellar radii vary over a range from roughly 0.01R� to roughly 1000R�, whereas the mass
ranges from 0.1M� to 100M�. Hence the dynamical timescale ranges from seconds to
years. However, in most cases we see no evidence for motion with such timescales on the
stars. This indicates that the forces on the star are very nearly balanced; we describe this
situation by saying that the star is in hydrostatic equilibrium.

1.1.2 The timescale for release of gravitational energy (or the thermal
timescale)

If a star has no internal sources of energy, it can still radiate energy by contracting. In this
way it gets gravitationally more tightly bound; its gravitational potential energy decreases
(i.e., becomes of larger negative magnitude), and the star has to get rid of the excess energy
somehow. As discussed in section 4.4, half of the energy released goes to heat up the star,
and the other half is radiated away.

An estimate for the timescale of this process can be obtained by calculating the time a
star could radiate at a given rate on the energy released through gravitational contraction
to a given radius. Let Ls be the surface luminosity of the star, i.e., the amount of energy it
radiates per unit time. The gravitational potential on the surface of the star is −GM/R,
and so an estimate of the gravitational binding energy is

Ω = −GM
2

R
, (1.4)

calculated as the gravitational potential energy of the stellar mass in the surface gravita-
tional potential. Hence the relevant timescale, known as the Kelvin-Helmholtz timescale,
is

tKH =
GM2

RLs
. (1.5)

In terms of solar values, the result is

tKH = 30million years
(
M

M�

)2 ( R

R�

)−1 ( Ls

L�

)−1

. (1.6)

This value gave rise to some controversy in the 19th century, at a time when the origin
of the solar energy output was unknown. Gravitational contraction was considered as a
viable hypothesis, but this clearly limited the age of the Sun, and hence presumably of
the Earth, to be of order tKH. On the other hand it was becoming clear from geological
evidence, and from the time required for the evolution of the species, that the Earth had to
be much older. An interesting description of this discussion was given by Badash (1989).
As we now know the resolution of the problem came with the realization that the solar
energy derives from nuclear reactions in the solar core.

It will be shown in section 4.4 that the gravitational binding energy and the total
thermal energy of a star have the same magnitude. Hence tKH also gives the time it
would take for a star to radiate its thermal energy at a given luminosity, whence the name
thermal timescale.

1.1.3 The nuclear timescale

During most of the life of a star the energy it radiates comes from the fusion of hydrogen
into helium. The total amount of energy that is available from this reaction may be
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estimated as ∆E = ∆m c̃2, where ∆m is the difference in mass between the original
hydrogen and the resulting helium, and c̃ is the speed of light. In the fusion of hydrogen
to helium about 0.7 per cent of the mass is lost. The reaction occurs only in the inner
about 10 per cent of the mass of the star. Hence the total amount of energy available is
approximately 7× 10−4Mc̃2, and the corresponding timescale is

tnuc = 7× 10−4Mc̃2

Ls
, (1.7)

or

tnuc = 1010 years
(
M

M�

)(
Ls

L�

)−1

. (1.8)

Since a star spends by far the largest part of its life in the hydrogen burning phase,
tnuc provides a measure of the total lifetime of a star. It is shown in Chapter 7 that the
luminosity is a steeply increasing function of stellar mass. Hence, the dependence on Ls

is dominant in equation (1.8), and the nuclear timescale decreases rapidly with increasing
mass. For a 30M� star the entire evolution, from birth to death, only lasts about 5 million
years, whereas a star of 0.5M� has barely had time to begin evolving over the age of the
Universe.

1.2 The life of stars

The evolution of a star is largely a fight between gravity and nuclear reactions. In addition
to providing the energy output of stars, the nuclear reactions also cause the build-up of
gradually heavier elements, starting from hydrogen and helium. In fact, essentially all
other elements than hydrogen and helium are believed to have been formed in stellar
interiors. The details of the fight depends critically on the mass of the star. Gravity is
nearly always victorious in the end: when all the accessible nuclear fuel has been used up,
the star ends as a tightly bound body, gradually cooling down. However, in the course of
evolution parts of the star are often ejected; this enriches the interstellar gas with material
that has undergone nuclear reactions and hence has an increased abundance of elements
heavier than hydrogen and helium.

It is instructive to illustrate the evolution of stars in terms of observable properties.
These are discussed in more detail in Chapter 2. Here it is enough to note that one can
determine the luminosity Ls of a star if the amount of energy reaching Earth, as given by
the apparent brightness of the star, and its distance are measured. Also, the temperature
of the stellar atmosphere can be estimated from the distribution of energy in the spectrum
of the star; it is often specified in terms of the effective temperature Teff , defined such that

Ls = 4πσT 4
effR

2 , (1.9)

where σ is the Stefan-Boltzmann constant3. The evolution of a star can then be illustrated
in a diagram plotting luminosity against effective temperature, a so-called Hertzsprung-
Russell (or HR) diagram, as shown in Figure 1.2; it is a convention that Teff increases

3Teff is the temperature that the star would have if it were radiating as a black body; although the
stellar spectrum is in general rather different from a black-body spectrum, Teff is nonetheless representative
of the temperature in the surface layers of the star.
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Figure 1.2: Schematic illustration of the evolution of a moderate-mass star. The ef-
fective temperature Teff is in K, and the luminosity Ls is measured in units of the solar
luminosity L�. The dashed line indicates the zero-age main sequence, corresponding
to the onset of hydrogen burning.

towards the left. The schematic evolution track in this diagram has been roughly modelled
on the results of detailed calculations for a 5M� star.

Stars are born from a contracting cloud of interstellar matter. As the cloud contracts,
gravitational potential energy is released. Part of this energy is used to heat up the gas;
in this way the cloud becomes hotter than its surroundings and starts to radiate energy
away4. As long as there are no other sources of energy in the cloud, the energy that is
lost through radiation must be compensated by further release of gravitational potential
energy, i.e., through further contraction. The rate of contraction is determined by the rate
of energy loss. It is obvious that this phase occurs on something like the Kelvin-Helmholtz
timescale discussed above. Due to the contraction the surface radius of the star decreases;
since the luminosity is roughly constant during this phase, it follows from equation (1.9)
that Teff must increase, i.e., the star moves to the left in the HR diagram.

This contraction continues up to the point where the temperature in the core of the
star gets sufficiently high that nuclear reactions can take place, at a rate where the energy
generated balances the radiation from the stellar surface. The temperature required is
determined by the energy needed to penetrate the potential barrier established by the
Coulomb repulsion between different nuclei. Hence the first nuclei to react are those with
the lowest charge, i.e., hydrogen, starting when the temperature reaches a few million
degrees. At this point a number of reactions set in, the net effect of which is to fuse

4It is shown in section 4.4 that approximately half the energy liberated in the contraction goes to
heating the gas, the remainder being radiated away.
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hydrogen into helium,
4 1H→ 4He + 2e+ + 2νe . (1.10)

It is worthwhile to consider this reaction in a little more detail. Because of charge
conservation, two of the four protons on the left-hand side have to be converted into
neutrons and positrons; the positrons are immediately annihilated by two electrons, so
that the reaction can be thought of as a reaction where four hydrogen atoms fuse into
one helium atom (although at the temperature in the stellar core the atoms are fully
ionized, i.e., separated into nuclei and free electrons). The reaction furthermore has to
conserve the number of leptons, i.e., light elementary particles; since two anti-leptons (the
positrons) are created, this must be balanced by the creation of two leptons, the neutrinos.
Thus, regardless of the path the reactions take, the fusion of four hydrogen atoms into one
helium atom leads to the production of two neutrinos.

Once hydrogen burning in the core has been established, the contraction of the stars
stops. Stars in this phase of their evolution are said to be on the main sequence. The
duration of the phase is given by the nuclear timescale determined above; since this is the
longest active phase of the life of the star, most of the “normal” stars that we observe
within a given volume of space are main-sequence stars5. During main-sequence evolution
the structure of a star gradually changes as hydrogen is used up in the core. The result is
a contraction of the core and an expansion of the outer layers, accompanied by an increase
in the luminosity. For example, the luminosity of the Sun has increased by about 30 per
cent since it started the core hydrogen burning phase6.

The onset of nuclear burning puts a temporary halt on the tendency of gravity to make
the star contract; but it is obvious that this is only effective until the time when hydrogen
is exhausted in the core. At that point hydrogen burning stops in the core, although it
continues in a shell around it. The core contracts, again releasing gravitational energy
and heating up, while the outer parts of the star expand drastically and cool, until the
star becomes a red giant, with a radius that may be as large as the distance between the
Sun and the Earth. As in the case of the initial contraction, the contraction of the core
may be halted when its temperature becomes high enough for helium to react, to produce
carbon:

3 4He→ 12C , (1.11)

possibly followed by
4He + 12C→ 16O . (1.12)

The result of this is to revert the previous evolution: the core expands somewhat, the
outer layers contract and heat up, and the star settles down on the helium-burning main
sequence, while still maintaining a hydrogen-burning shell.

When helium is exhausted in the core, the history to some extent repeats itself: gravity
again gets the upper hand, and the core, which now consists mainly of carbon and oxygen,
contracts and heats up, surrounded by a helium-burning shell and, further out, possibly
still a hydrogen-burning shell. The subsequent evolution depends crucially on the mass of
the star. If the mass is less than about 10M�, the core never becomes hot enough for the
next nuclear reaction (between two carbon nuclei) to start; this is the case illustrated in

5After the end of nuclear burning most stars survive essentially forever as cooling white dwarfs; see
below.

6A fact which has caused some embarrassment for modellers of the Earth’s climate; see section 11.4.3.
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Figure 1.3: Evolution of a massive star is a steadily accelerating process toward
higher temperature and density in the core. For the most of the star’s lifetime the
primary energy source is the fusion of hydrogen nuclei to form helium. When the
hydrogen in the core is exhausted, the core contracts, which heats it enough to ignite
the fusion of helium into carbon. This cycle then repeats, at a steadily increasing
pace, through the burning of carbon, neon, oxygen and silicon. The final stage of
silicon fusion yields a core of iron, from which no further energy can be extracted by
nuclear reactions. Hence the iron core cannot resist gravitational collapse, leading to a
supernova explosion. The sequence shown is for a 25M� star. (From Bethe & Brown
1985).

Figure 1.2. The core continues to contract and the outer layers expand until the star enters
a second red giant phase. At this point an instability develops between the hydrogen- and
helium-burning shells. It is thought that this instability leads to the loss of large amounts of
mass from the star, undoubtedly aided by the large luminosity and radius of the star. The
mass that is lost ends up as a planetary nebula and is later dispersed into the interstellar
medium; this leaves behind the carbon-oxygen core which at that point has contracted
to a radius comparable with the radius of the Earth, but is still extremely hot; such an
object is observed as a white dwarf. It continues to radiate by losing its internal thermal
energy, a process that lasts essentially forever. The oldest observed “white” dwarfs (which
in fact have effective temperatures of about 4600 K and hence appear quite red) have ages
of about 1010 years, roughly corresponding to the age of the Galaxy.

For more massive stars, the carbon-oxygen core heats up sufficiently to start the next
type of nuclear reactions. The star continues through a sequence of nuclear burning
phases of gradually heavier elements, interspersed by phases of gravitational contraction.
The evolution of a 25M� star is summarized in Figure 1.3; it is particularly striking that
the phases of the evolution following carbon burning last only about a year.
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The burning of heavier and heavier elements has to end when the material of the core
has been transformed into elements in the iron group: the nuclear binding energy per
nucleon is at its largest for these elements, and hence fusion into even heavier elements
requires energy instead of releasing it. At that point gravity has won in the core; the
core continues to contract and heat up, until the temperature gets so high that the iron
nuclei are dissociated into protons and neutrons. The drastic increase in density forces
the electrons and protons in the gas to recombine to neutrons, and the density gets so
high that the neutrons essentially touch each other. At that point the core can contract
no further; the result is a bounce which propagates out through the outer parts of the star
as a shock-wave, expelling them in a supernova explosion, in which the star for a few days
becomes as luminous as all the stars in a normal galaxy combined. The energy derives
from the gravitational energy released by the collapse of the core. In the reactions taking
place during the explosion many neutron-rich nuclei are formed.

The fate of the core depends on its mass. If the core mass is less than about 2M�
a stable configuration is formed consisting almost entirely of neutrons; this has a radius
of only about 10 km. Observational evidence for such neutron stars has been found in
the pulsars which are rapidly spinning neutron stars emitting radio pulses with a very
precisely defined period. If the core mass is greater, even the pressure of neutrons cannot
withstand gravity, and the core collapses into a black hole, where matter is essentially
crushed out of existence. The ultimate victory of gravity!

An excellent and somewhat more detailed description of stellar evolution, with special
emphasis on supernova explosions, was given by Woosley & Weaver (1989).

The overall theme of this picture of stellar evolution is the fusion of lighter elements
into heavier. If there had been no loss of mass from the stars the creation of heavy elements
would have had no further consequences: the elements formed would remain locked into
the stellar interiors. However, this is evidently not the case: mass-loss in less massive stars,
or supernova explosions of massive stars, enrich the interstellar matter by material that
has undergone nuclear burning. This adds elements heavier than hydrogen and helium
to the gas out of which new stars are formed. It is believed that essentially all elements
other than hydrogen and helium have been created and distributed in this way. There is
in fact observational evidence that the abundance of heavy elements has increased during
the evolution of our Galaxy.

1.3 The physics of stellar interiors

The evolution sketched in the previous section is based on a large number of very complex
numerical calculations. These, in turn, depend on knowledge and assumptions about the
properties of stellar interiors.

To make the computations even possible, drastic simplifications are required, relative
to the complex phenomena that might occur in real stars. The stars are assumed to be
spherically symmetric; thus effects of rotation, which probably takes place in all stars at
some level and which must lead to departures from spherical symmetry, are neglected.
The same is true for large-scale magnetic fields, which could also have an effect on the
structure of the stars. Convective motions (to be discussed below), which probably take
place in almost all stars, are treated very crudely. Other instabilities which may develop in
the star and which could cause mixing between the core, where nuclear burning is taking
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place, and the outer parts of the star, are generally ignored. Mass-loss from the star is
normally either ignored or treated very approximately.

These complicating effects have been studied under other simplifying assumptions, but
in most calculations of stellar evolution, including those described in these notes, they are
ignored. One reason for this is that to include them all would make the computations
completely intractable. A more fundamental difficulty is that we simply do not know how
to handle them consistently; these problems are still very much at the frontier of current
work on stellar evolution. And finally, it is probably wise to try to understand simplified
stellar evolution theory, and to test it against observations, before trying to incorporate
the complications.

Given these simplifications, the main features which determine the structure and evolu-
tion of stars are the microscopic properties of stellar matter, more specifically its equation
of state, the transport of radiation through it and the nuclear reactions. The equation
of state determines the relations between the various thermodynamic properties, such as
the temperature, density and pressure, of the gas that stars are made of. At the most
elementary level (which is adequate for much of these notes) this is very simple: due to
the high temperature the gas is fully ionized and behaves essentially as an ideal gas. To
carry out realistic calculations of stellar models, however, complicating effects have to be
included. Near the stellar surface the gas is only partially ionized, and hence its properties
depend on the degree of ionization, which in turn is determined by the interaction between
the various components in the gas. At even lower temperature, in the atmospheres of cool
stars, the formation of molecules also affects the equation of state. On the other hand,
in the cores of massive stars in advanced stages of evolution the temperature may get so
high that the formation of electron-positron pairs has to be taken into account, as well as
processes involving the production of, and energy loss through, neutrinos. Also, at high
densities quantum-mechanical effects set in, leading to the properties of the gas being
dominated by degenerate electrons.

The energy transport is carried out by radiation under many circumstances, and hence
is determined by the interaction between radiation and matter, as specified by the absorp-
tion coefficient or opacity of the matter. This depends on the detailed distribution of the
atoms in the gas on energy levels, and hence on the equation of state of the gas, on the
cross-section for absorption in each level in the atoms, and on the interaction between the
atoms. Thus the calculation of opacities is a major undertaking. As an example it may
be mentioned that for some years a large number of scientists in several countries have
been engaged in collecting the atomic data and recomputing the equation of state with
the goal of setting up new tables of opacities; even so, the resulting tables are restricted
to relatively low densities where the interactions between the atoms can be ignored (for
a recent overview of issues related to the equation of state and opacity see, for example,
Däppen & Guzik 2000).

When the opacity or the amount of energy to be transported gets too high, energy
transport by radiation can no longer be achieved in a stable manner. It is replaced by
transport through motions in the gas, the so-called convection, which is quite similar to
the motions in a pot of water being heated. Even convection in a pot of water gives rise
to complex hydrodynamical phenomena which are far from understood; hence it is not
surprising that convection in stars is still an area of considerable uncertainty in studies
of stellar structure. Besides its effect on the energy transport, convection also affects the
evolution of a star by mixing material; in stars with convective cores, for example, the
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composition is homogenized in regions of nuclear burning, with visible consequences on
the evolution of the stars7.

The rates of nuclear reactions are determined by the speed with which the nuclei move
relative to each other which in turn depends on the temperature, and by the cross-sections
for the reactions which again are functions of the relative energy of the nuclei. The cross-
sections can in principle be measured experimentally; a problem is, however, that reactions
under stellar conditions often occur at such low energies that the corresponding rate of
reactions under laboratory conditions is almost unmeasurably small. Hence a considerable
amount of theoretical extrapolation is required to determine the stellar rates. Furthermore,
the reactions are also affected by the presence of other particles in the gas, which may
partly shield the charges of the nuclei and hence increase the reaction rates; this again
depends on the thermodynamic state of the gas.

It is obvious that the description of the physical state of stellar interiors gives rise
to a number of difficult problems, which are still being investigated. Fortunately, it is
possible to obtain a basic understanding of the evolution of stars without going into such
detail. Thus, in the following we shall consider only the simplest possible physics, while
occasionally hinting at some of the complications.

1.4 Tests of stellar evolution calculations

Except for the Sun and a few other stars, it is difficult to observe detailed properties of
individual stars. Hence much of the testing of the results of stellar evolution calculations
is of a statistical nature, from observation of the properties of stars in stellar clusters.
Stars in a given cluster can be assumed to have the same age and chemical composition
and hence, at least within the framework of the simplified description discussed in the
previous section, differ only in their mass. From comparisons between the observations
and the properties of stellar models of different masses evolved to the same age it is possible
to identify many of the phases of stellar evolution found in the calculations.

Information about the structure of individual stars can be obtained in the cases where
the stars are observed to pulsate, since the pulsation periods depend on the structure of
the star. If only a single period of pulsation is observed, this essentially provides a measure
of the dynamical timescale tdyn of the star (cf. equation (1.2)). For example, some red
giants are observed to pulsate with periods of more than a year, thus confirming their very
large radii. The amount of information increases with the number of individual pulsation
periods observed. In the case of the Sun many thousands of periods have been determined,
and this has made it possible to measure properties of the solar interior in considerable
detail, thus providing a very good test of calculations of solar structure and evolution.

Finally, the neutrinos produced in nuclear reactions (such as the fusion of hydrogen
to helium; cf. equation (1.10)) escape from the star essentially without being absorbed,
because of the extremely small cross-sections of neutrino reactions. Hence, by observing
the flux of neutrinos from the Sun we may get a direct measure of the rate of reactions
in the solar core. A complication is that the so-called electron neutrinos produced in the
Sun may be changed, through interaction with matter in the Sun, into other types of neu-
trinos; this interaction depends on the detailed properties of the neutrinos. Observations

7As discussed in Chapter 12, the small leftward excursion, or “hook”, visible in Figure 1.2 at the end
of hydrogen burning is a result of the presence of a convective core.
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Figure 1.4: Schematic illustration of the relation between physics, stellar models
and observations. The physics is used as input to stellar model calculations. The
stellar models can be used to predict observable quantities, such as properties of stellar
clusters, pulsation periods or the flux of neutrinos from the Sun; the latter prediction
requires additional physical information about the properties of the neutrino. When
these predictions are compared with the observations, corrections may be required
to the input physics, the description of the neutrino or (in the case of programming
errors) to the numerical techniques. One may hope that this iteration process will
eventually converge!

of these neutrino types have recently become possible; when combined with the informa-
tion obtained from the analysis of the observed oscillation periods of the Sun stringent
constraints on the neutrino interactions have been obtained.

The computed stellar models evidently depend on the assumed physical properties of
matter, and on the assumptions about stellar structure, that went into the calculations.
Thus by comparing the results of the calculations with the different kinds of observations
we are effectively testing the underlying physics. Among many examples may be mentioned
that the observed solar pulsation periods are very sensitive to the details of the equation
of state and opacities used in the computation of solar models and hence offer a way of
inferring properties of plasmas under quite extreme conditions; and that the interaction
of neutrinos with matter can probably only be studied experimentally by comparing the
observed number of neutrinos with the number of neutrinos generated in the solar core,
assuming that conditions in the core can be determined from the pulsation periods. From
the point of view of basic physics this is probably the most important aspect of stellar
evolution theory; it is illustrated schematically in Figure 1.4.
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1.5 Bibliographical notes

There are four “classical” books in the theory of stellar structure and evolution. The first
comprehensive description of the properties of stars, on the basis of thermodynamics and
hydrostatic equilibrium, was given by Emden (1907). A much more detailed treatment
was given by Eddington (1930), who included discussions of quantum mechanical effects
in the transfer of radiation, and showed how one could predict the luminosities of stars
on this basis. In terms of physical insight, and certainly in terms of sheer quality of
writing, this book has hardly been surpassed. However, at the time when it was written
the sources of stellar energy production had not been identified. Chandrasekhar (1939)
goes into considerably more mathematical detail, and presents a comprehensive treatment
of the thermodynamics of stellar matter, including one of the first discussions of electron
degeneracy. Finally, the book by Schwarzschild (1958) summarizes the physics of stellar
interiors, including the nuclear reactions, and discusses results of numerical calculations
which up to that point had been done with simple calculators. It is interesting that in
all these cases a great deal of emphasis is put on understanding the properties of stars
in simple terms. This is of course partly a result of necessity, given that large-scale
computations were not feasible; the result, however, is to convey a level of insight which
has to some extent been lost in later work.

Schwarzschild’s book came at the time when electronic computers were just beginning
to be used for stellar evolution calculations. Over the next decade this completely revo-
lutionized the field, resulting in large-scale calculations of realistic stellar models to late
stages of evolution, and including very detailed physics. A substantial number of books
have been written based on these efforts. A general trend, however, has been to describe
the physics of the calculations, and the computational techniques, in a great deal of de-
tail, whereas the results of the calculations have been dealt with relatively briefly, and
little attempt has been made to understand them. Among these books may be mentioned
Clayton (1968), who in particular gives a good introduction to the treatment of nuclear
reactions and the synthesis of elements in stars; and the two-volume work by Cox & Giuli
(1968), who treat the physics in almost overwhelming detail.

Kippenhahn & Weigert (1990) give a good combination of treatment of the physics,
although not in great detail, with descriptions of the numerical models including attempts
to understand them in terms of simple approximations. This marks a tendency away
from the fascination with numerical details and towards an understanding of the broader
principles, in the tradition of the earlier works.

The technical literature on stellar structure and evolution is very extensive, and I make
no attempt to give reasonably comprehensive references to it. However, in the following I
quite often refer to articles in Scientific American which expand on some of the subjects
treated here. While these articles are at a considerably lower technical level than the
present notes, they very often provide good overviews of particular subjects, usually with
suggestions for further reading. Detailed reviews of the subjects treated here, as well as
all other branches of astrophysics, can be found in the series Annual Review of Astronomy
and Astrophysics.



Chapter 2

Observable properties of stars

2.1 Introduction

No theoretical investigation is of much interest if its results cannot be compared with
experiments or observations. The same is certainly true for calculations of stellar evolution.
Thus it is important to consider the data that may be used to test the results of the
calculations.

It is obvious that we cannot perform experiments on stars, or take surface samples
from them1. Thus we are restricted to studying them through the radiation they emit, or
possibly through the effect of their gravitational field. The radiation that we can detect
is, with a few exceptions discussed below, electromagnetic. A further restriction is that
almost all stars can be observed only as points of light. The most obvious exception is the
Sun, where very detailed observations are possible. This enables us to investigate in detail
phenomena on the Sun that can be inferred only indirectly in other stars; furthermore it
has allowed us to obtain seismic measurements of the structure and motions of the solar
interior. However, the Sun is only one star, caught at a particular moment in its evolution.
It has been possible to measure the diameter directly for some stars, and in a few cases
also to observe very large-scale features on the stellar surface, although the interpretation
of these observations is somewhat questionable. In all other cases we have determinations
only of the position of the star in the sky, and of the properties of the emitted radiation,
integrated over the surface of the star. As we shall see, even these limited data allow us
to learn a great deal about the stars, and hence to test computations of stellar evolution.

2.2 Stellar positions and distances

Stellar positions have been measured since antiquity. The most basic quantity is the angu-
lar distance between two stars, i.e., the angle between the lines-of-sight to the stars. This
is traditionally measured in degrees (◦) or its subdivisions arcminutes ('� ) or arcseconds
(''� ), defined by

1◦ = 60'� = 3600''� (2.1)

(note also that 1 radian = 206265''� ). Under the best conditions an optical telescope on the
surface of the Earth can separate two stars that are at a distance of about 0.3''� , although

1However, in a nice combination of the Icaros and Prometheus myths, Bradbury (1953) wrote a short
story about a mission to return a sample of the Sun.

13
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Figure 2.1: Parallax p of a star at a distance d from the Earth.

with care angular separations can be measured with somewhat better precision2.
From the point of view of investigating stellar structure and evolution, the positions of

stars are in themselves of little interest; however, measurements of the change in apparent
position as the Earth moves in its orbit around the Sun provide our only direct determi-
nations of distances to stars other than the Sun3. The change in direction to the star, as
measured relative to very distant stars, as the Earth moves from a point in its orbit to
the opposite point is defined to be 2p, where p is the parallax of the star. Hence p is the
angle subtended by the radius of the Earth’s orbit as seen from the star (cf. Figure 2.1),
so that

tan p =
1 A.U.
d

, (2.2)

where d is the distance to the star, and 1 A.U. = 1.496 × 1013 cm is the radius of the
Earth’s orbit. Since p is a very small angle equation (2.2) gives

d ' 1 A.U.
p (radian)

=
1 pc
p''�

, (2.3)

where p''� is the parallax measured in arcsec, and we have introduced the distance measure
parsec (or pc), where 1 pc = 206265 A.U. = 3.086× 1018 cm.

The closest star other than the Sun has a parallax of 0.76''� , and hence a distance of
1.32 pc. The best terrestrial observations yield parallaxes with a precision of about 0.002−
0.01''� , although the best results are typically only available for a limited number of stars
(e.g. Harrington et al. 1993). This allows determination of distances of a few thousand
stars in the solar neighbourhood. Much better observations and more extensive results

2The magnitude of 1''� is illustrated by the fact that it corresponds to the angular extent of a Danish
25 øre (roughly corresponding in size to a British or US penny) seen at a distance of 3.4 km.

3Distances within the solar system are known very accurately from radar measurements and from the
motion of space-probes. This allows a determination of the distance from the Earth to the Sun.
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have been obtained from the satellite Hipparcos, which was launched by the European
Space Agency (ESA) in 1989. Hipparcos has determined parallaxes for about 105 stars
with a precision of better than 0.001''� in some cases. An extensive overview of the mission
was provided by van Leeuwen (1997), while summaries of the observations and applications
of the results to a variety of astrophysical problems have been given by Kovalevsky (1998),
Reid (1999) and Lebreton (2000). Additional astrometric space missions are being build or
are under consideration. These include the GAIA mission, which is being studied by ESA
for possible launch around 2010; this would increase the precision and the number of stars
observed by several orders of magnitude compared with Hipparcos, allowing determination
of parallaxes essentially throughout the Galaxy.

2.3 Stellar brightness

In early star catalogues stars were classified according to their magnitude, the brightest
stars having magnitude 0 and the faintest stars visible to the naked eye having magnitude
6. This scheme for describing the brightness of stars has essentially been maintained, but
has been made precise.

What is measured on the Earth is the apparent luminosity of a star, characterized by
the local flux l, i.e., the energy from the star that passes through a unit area (orthogonal
to the direction to the star) in unit time. Hence the unit for l is erg cm−2 sec−1. It was
found that this precisely defined quantity could be related to the loosely defined magnitude
scale by defining the apparent magnitude m of a star as

m = −2.5 log l +K1 , (2.4)

where K1 is a constant which is determined by specifying the magnitude of a given star,
say; also “log” is the logarithm to base 10. The reason for the “–” in the definition of
m is evidently that the magnitude of stars, according to the old definition, increases as
the stars get fainter4. Since the magnitude is defined only to within a constant, a more
convenient form of equation (2.4) is

m1 −m2 = −2.5 log
(
l1
l2

)
, (2.5)

where l1 and l2 are the apparent luminosities of two stars, and m1 and m2 are the corre-
sponding magnitudes.

For the purpose of comparing with stellar evolution calculations a much more interest-
ing quantity is the absolute luminosity Ls, i.e., the total amount of energy radiated by the
star per unit time. If we assume that the radiation is emitted isotropically5, that there is
no absorption between the star and us, and that all the energy reaching the detector is
measured, then

l =
Ls

4πd2
, (2.6)

where d is the distance to the star. Corresponding to the apparent magnitude m we
introduce the absolute magnitude M , by

M = −2.5 logLs +K2 , (2.7)
4For a discussion of the origins of the magnitude scale, see Hearnshaw (1992).
5i.e., equally in all directions.
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where K2 is another constant. From equations (2.4), (2.6) and (2.7) we then obtain a
relation between m and M . It is conventional to choose the constant K2 such that this
relation has the form

m = M + 5 log d− 5 , (2.8)

when d is measured in parsec. Thus M corresponds to the apparent magnitude the star
would have had if it had been at a distance of 10 pc.

Exercise 2.1:

Show that one can obtain a relation of the form (2.8) by suitable choice of K2.

It is obvious that the description of a star’s brightness in terms of its magnitude is
entirely conventional, and for the uninitiated somewhat awkward. However, it does reflect
one important feature of observations of stellar brightness, namely that it is quite difficult
to determine the amount of energy received from a given star, since this requires an
absolute calibration of the measuring device. It is far easier to measure the ratio between
the luminosities of two stars, and hence their magnitude difference. Once the zero-point
of the magnitude scale has been established by arbitrarily assigning a given magnitude to
a given star, one can then determine the magnitudes of other stars.

In equation (2.6) it was assumed that all the energy emitted by the star in the direction
of the detector was measured. In fact, we must take into account absorption of the light
from the star, not only in interstellar space but also through the Earth’s atmosphere and
in the instrument used to measure the light. Also, the absorption and the sensitivity of
the detector depend on the wavelength of the light. Finally, we are interested in measuring
not only the total amount of energy coming from the star, but also its distribution with
wavelength. Thus the description of stellar magnitudes given above has to be generalized.

We can characterize the distribution of energy with the wavelength λ or frequency ν of
the radiation by the apparent specific luminosity lλ or lν defined such that, in the absence
of atmospheric and instrumental absorption, the energy per unit area and time received
in the wavelength interval dλ (or the frequency interval dν) is lλdλ (or lνdν). The total
apparent luminosity (also called the bolometric luminosity) is

lbol =
∫ ∞

0
lλdλ =

∫ ∞

0
lνdν ; (2.9)

in the absence of interstellar absorption lbol is related to the absolute luminosity of the
star through equation (2.6).

Exercise 2.2:

Find the relation between lλ and lν , by using λν = c̃, where c̃ is the speed of light.

The measured luminosity can now be characterized by a sensitivity function Sλ which
depends on the absorption in the atmosphere and instrument and on the sensitivity of the
detector. For a given Sλ we measure the luminosity

lS =
∫ ∞

0
Sλlλdλ , (2.10)
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and hence the magnitude
mS = −2.5 log lS +KS . (2.11)

Note in particular that the constant depends on Sλ and hence on the particular instrument
which is being used. As before, KS is determined by assigning a given magnitude to a
given star. To mS corresponds the absolute magnitude MS , given as in equation (2.8) by

mS = MS + 5 log d− 5 . (2.12)

Some indication of the distribution of luminosity with wavelength can be obtained by
observing the star through differently-coloured filters. To enable comparisons between
results obtained at different observatories, standard sets of filters are used. A commonly
used system is the so-called UBV system. This is characterized by sensitivity functions
SU,λ, SB,λ and SV,λ, where the ranges in sensitivity are roughly

Ultraviolet (U) 3000 – 4000 Å
Blue (B) 3500 – 5500 Å
Visual (V ) 4800 – 6500 Å

Here U , B and V are used to denote the apparent magnitudes corresponding to these
filters, and the corresponding apparent luminosities and absolute magnitudes are denoted
lU , lB and lV , and MU , MB and MV .

To characterize the distribution of energy with wavelength, one introduces the colour
indices U −B and B − V , so that, for example,

U −B = 2.5 log
(
lB
lU

)
+KU −KB , (2.13)

where KU and KB are the constants in the definition of the U and B magnitudes. In the
UBV system the constants are chosen such that U −B = B−V = 0 for a particular type
of star (the so-called A0 dwarf stars; see section 2.5.2). For the Sun the colour indices are
then

U −B = 0.13 , B − V = 0.65 . (2.14)

Since the filters defining the UBV magnitudes let through light over fairly broad
wavelength ranges, the magnitudes and colour indices can be measured even for very faint
stars or galaxies. Furthermore, in the absence of interstellar absorption the colour indices
are independent of the distance to the star, which is most often not known. Hence they
can be used to characterize the intrinsic properties of a star.

Exercise 2.3:

Show that the colour indices are independent of distance.

The colour index is predominantly determined by the surface temperature of the star.
Hotter stars radiate more of the energy at short wavelengths; hence their U magnitude
tends to be low (recall that the magnitude decreases as the luminosity increases), relative
to their B magnitude, and so they have a low colour index U −B, relative to cooler stars;
the same is true for the index B − V . To describe the relation between temperature and
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colour indices more precisely we assume, as a first rough approximation, that the star
radiates as a black body with a temperature T . Then the emission from the stellar surface
is given by the Planck function, and it may be shown that the apparent luminosity of the
star is

lλ =
2πhc̃2

λ5

1

exp
(

hc̃

λkBT

)
− 1

(
R

d

)2

; (2.15)

here h is Planck’s constant, kB is Boltzmann’s constant, and R is the radius of the star.
A convenient approximation to this expression (the so-called Wien’s approximation) is
obtained for relatively short wavelengths where the exponential term dominates in the
denominator in equation (2.15):

lλ =
2πhc̃2

λ5
exp

(
− hc̃

λkBT

)(
R

d

)2

. (2.16)

Exercise 2.4:

Show that the location λmax of the maximum of lλ as a function of λ satisfies

λmaxT = constant . (2.17)

Find the value of the constant for Wien’s approximation (easy) and for the full expres-
sion (more difficult). The answer to the last question is

λmax =
2.8978× 107 Å K

T
. (2.18)

Exercise 2.5:

Show that total apparent luminosity of the star, integrated over wavelength, may be
written as

lbol = σT 4
(
R

d

)2

, (2.19)

where σ is a constant (σ is the so-called Stefan-Boltzmann constant).

Even though real stars do not radiate as black bodies, it is conventional to describe their
total energy emission by means of equation (2.19), by defining the effective temperature
Teff of the star such that

Ls = 4πσT 4
effR

2 , (2.20)
and

lbol = σT 4
eff

(
R

d

)2

, (2.21)
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are exactly satisfied.
We can now use the black-body approximation to find the relation between stellar

temperature and colour indices. In principle this requires that we know the sensitivity
functions SU,λ, SB,λ and SV,λ. To simplify the problem, we approximate the sensitivity
functions by delta-functions, so that the colour indices correspond to the luminosity at a
single wavelength; this case is discussed in the following exercise.

Exercise 2.6:

Assume that the luminosity can be described by Wien’s approximation, equation
(2.16). Assume furthermore that the sensitivity functions can be approximated by
delta-functions,

Si,λ = δ(λ− λi) ,

where i = U,B and V , and where

λU = 3700 Å , λB = 4450 Å , λV = 5500 Å .

Finally use the solar colour indices given in equation (2.14) and take the surface tem-
perature of the Sun to be 5778 K. Under these assumptions find and plot

i) U −B and B − V as functions of T .

ii) U −B as a function of B − V .

From the results of this exercise it follows that the measurement of colour indices can
be used to obtain an estimate of the surface temperature of a star, the so-called colour
temperature. Since stars do not radiate like black bodies, the colour temperature is in
general different from the effective temperature, although they are normally quite similar.

To get a measure of the total luminosity one introduces the apparent bolometric mag-
nitude

mbol = −2.5 log lbol +Kbol . (2.22)

This is related to the corresponding absolute bolometric magnitude Mbol by

mbol = Mbol + 5 log d− 5 ; (2.23)

Mbol is evidently directly determined by the total luminosity Ls of the star. Given the
absorption in the atmosphere and instrument we obviously cannot measure the total ap-
parent luminosity lbol of a star directly6. Instead one introduces the bolometric correction
B.C. such that

mbol = V + B.C. . (2.24)

The bolometric correction depends on the sensitivity function SV,λ as well as on the dis-
tribution of luminosity with wavelength for the star, and hence on the stellar type. The
constant in the definition of mbol is chosen such that the maximum of B.C. over all stars
is 0.

6The only exception is the case of the Sun, where it has been possible to measure the wavelength-
integrated luminosity by means of a radiometer, which captures essentially all the radiant energy that falls
on it. It was flown on the Solar Maximum Mission (SMM) satellite.
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2.4 Interstellar absorption

The interstellar space contains matter, in the form of gas and dust, which affects the light
on the way from a star to the observer. Thus, except for the nearest stars, we cannot
immediately measure the intrinsic properties of the stars.

The interstellar absorption depends on the wavelength of the light, being strongest at
short wavelengths7. Thus it changes not only the luminosity, and hence the magnitude
of the star, but also its colour index. As a result of interstellar absorption, the relation
between, for example, the apparent and absolute V -magnitude becomes

V = MV + 5 log d− 5 +AV , (2.25)

rather than equation (2.12), where AV is the contribution from interstellar absorption
(note that as absorption reduces the luminosity, it increases the magnitude; hence AV is
a positive quantity). Similarly the observed colour index B − V , for example, is related
to the intrinsic colour index (B − V )0 of the star by

B − V = (B − V )0 + E(B − V ) , (2.26)

where E(B−V ) ≡ AB−AV is the so-called colour excess, which determines the interstellar
reddening of the star.

The absorption AV , AB and AU , and hence the colour excesses E(B−V ) and E(U−B),
obviously depend on the distance to the star and on the properties of the intervening stellar
material. Since this is not known a priori, correcting for interstellar absorption may seem
an impossible task. However, it has been found that although the amount of matter along
the line of sight to the stars varies widely, the absorption per unit mass of the matter, and
the variation of absorption with wavelength, are approximately independent of direction.
As a result it may be shown that ratios between the absorption at different wavelength,
and hence between the absorption and the colour excess, are largely independent of which
star is observed. Typical values are

AV

E(B − V )
' 3 ,

E(U −B)
E(B − V )

' 0.72 . (2.27)

Hence, if we observe a star whose intrinsic colour index (B − V )0 is known (e.g. because
we have determined its spectral type, cf. section 2.5.2), we may use equation (2.26)
to determine the colour excess. Then the interstellar absorption can be obtained from
equation (2.27) as AV ' 3E(B − V ). In this way it is possible to correct observed
apparent magnitudes for interstellar absorption.

2.5 Spectral analysis

Luminosity measurements through coloured filters give only a rough indication of the
distribution of energy with wavelength. To make a more detailed investigation the light
of the star is dispersed according to wavelength in a spectrograph, to allow measurement
of the intensity of the light as a function of wavelength. For the Sun, or observing bright
stars with a large telescope, this can be done with a resolution of a small fraction of an
Ångstrom. The resulting spectra contain a wealth of information about the star.

7The same is the case of scattering in the Earth’s atmosphere; scattering of blue light is stronger than
scattering of red light. This explains why the Sun looks red when it is about to set.
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Figure 2.2: Representative high-resolution spectrum of a solar-type star, HR35.
The plot shows specific luminosity lλ plotted against wavelength; most of the lines in
the spectrum are labelled with the corresponding element.

2.5.1 Spectral lines

Figure 2.2 shows a small segment of a typical stellar spectrum. It is dominated by spectral
lines where the intensity is lower than in the surrounding continuum. The lines correspond
to absorption in the stellar atmosphere, caused by excitation from one bound state to
another, higher-lying state in one of the types of atoms which make up the atmosphere.
In the line the absorption of radiation is stronger than in the surrounding continuum, and
hence the stellar atmosphere is more opaque; as a result the light comes from a higher
level in the atmosphere. Since the temperature normally decreases with increasing height
in a stellar atmosphere, the emission of radiation is weaker in the line, which therefore
appears dark compared with the continuum8.

As seen on the star, the wavelength λ12 where the absorption takes place is determined
by the difference between the energies E1 and E2 of the two levels in the atom responsible
for the line:

λ−1
12 =

E2 − E1

hc̃
. (2.28)

Thus, apart from possible line shifts (which are discussed in section 2.5.4 – 2.5.6 below),
measurement of λ12 can be used to identify the element which causes the absorption, by
comparison with tables of energy levels. In this way it has been possible to identify many,
but not all, of the lines observed in stellar spectra; the identification is complicated by
the fact that the atoms may be in states of ionization or excitation which are difficult to
reproduce in the laboratory.

8This is obviously a very rough sketch of the line-forming process. Also it should be noticed that
there are cases where the temperature, or at least the emission of radiation, increases with height in the
atmosphere; in such cases the line may appear as an emission line, which is brighter than the continuum,
or as an emission feature in the centre of an absorption line.
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Box 2.1
Stellar spectral types

The strength of a line obviously depends on the number of atoms in the lower state from
which the absorption takes place, as well as on the probability of absorption of a photon.
The latter quantity can be measured, although often with difficulty. The number of atoms
depends both on the total abundance of the given element in the stellar atmosphere, and
on the fraction of the atoms which are in the right state. This fraction in turn depends
on conditions in the stellar atmosphere, in particular the temperature; with increasing
temperature the atoms are excited to higher states, or ionized. Thus lines corresponding
to weakly bound electrons, which are typical of metals, disappear. Finally, it is possible
to measure the width of the lines. This contains a contribution from the natural width of
the line (corresponding to the quantum-mechanical indeterminacy of the energy levels);
but the dominant contribution to the width comes from Doppler shift due to the motion
of the atoms (cf. section 2.5.4) and from the disturbances of the atom from neighbouring
atoms. The strength of the disturbances, and hence the linewidths, depend on the density
of atoms in the stellar atmosphere; as discussed in Chapter 5, the density increases with
increasing surface gravity

g =
GM

R2
, (2.29)

where G is the gravitational constant, and M is the mass of the star9. Hence the width
of spectral lines provides some measure of the surface gravity.

9It is unfortunate that the same symbol is traditionally used for absolute magnitude and stellar mass.
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Figure 2.3: Schematic illustration of the relative strengths of spectral lines, as a
function of spectral type. (From Abell 1964).

2.5.2 Spectral classification

It is obvious that the interpretation of stellar spectra is a complicated problem. However,
it is simplified by the fact that for many stars the chemical composition is roughly the
same. Hence the spectrum is predominantly determined by the temperature and surface
gravity of the stellar atmosphere. This justifies the spectral classification of stars, based
on the appearance of their spectra. The temperature has the dominant effect on the
spectrum; this is used to order the stars in a sequence of decreasing temperature, on the
basis of which lines are found in the spectrum. The classification is described in Box 2.1,
and illustrated schematically in Figure 2.3. For historical reason the different classes have
been assigned the letters O, B, A, F, G, K and M10. Each of these classes are subdivided
into 10 sub-groups, labelled, for example, A0, A1, · · ·, A9. The first classes in the sequence
(O and B) are referred to as early spectral types, whereas the last classes are referred to
as late spectral types.

On the basis of the width of the lines the star is also assigned to one of five luminosity
classes, labelled I – V. The classes are I (supergiants); II (bright giants); III (giants);
IV (subgiants); and V (main sequence, or dwarf, stars). This sequence corresponds to
increasing linewidth and hence increasing surface gravity. The reason that the classes
are called luminosity classes (rather than gravity classes) is that stellar masses fall into a
fairly narrow range, such that the dominant variation in g is caused by the variation in
the stellar radius R; from equation (2.19) it follows that at a given temperature stars with
large radius, and hence small g, have a high luminosity. Thus the star is given a combined
labelling, called the spectral type, as e.g. an A0III star. The Sun is of spectral type G2V.

Spectral classification is normally carried out by visual inspection of relatively low-
resolution photographic spectra. It provides a quick and convenient way of determining
the overall properties of a large number of stars, and is commonly used to characterize a
star; on the other hand it is essentially qualitative in nature. For more precise analyses it

10This sequence is obviously difficult to remember; it helps to use the following attractive, if somewhat
sexist, mnemonic:

Oh, Be A Fine Girl, Kiss Me .
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Figure 2.4: Observations (solid line) and numerical calculations (dots) for a very
small segment of the solar spectrum. The abundance of gold in the calculations was
adjusted to match the weak spectral line marked “Au 3122.796”. This required a
gold/hydrogen ratio of 9.0× 10−12. (From Youssef 1986).

has been supplemented by accurate measurements of carefully chosen colour indices and
spectral line strengths.

2.5.3 Stellar abundances

If conditions in the stellar atmosphere are known, the observed strengths of spectral lines
can be used to determine the abundances of the elements in the atmosphere. In practice
this requires the construction of a detailed theoretical model of the atmosphere, and the
computation of the distribution of radiated intensity as a function of wavelength; the
assumed abundances are varied until a satisfactory fit to the observations is achieved.
Figure 2.4 shows an example of such a fit.

For almost all stars it is found that the composition is predominantly made up of
hydrogen and helium, with all other elements making only a minor contribution. This
motivates characterizing the composition by the abundances by mass X of hydrogen, Y
of helium, and Z of all other (often, a little misleading, called heavy) elements. Obviously

X + Y + Z = 1 . (2.30)
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Furthermore, for most “normal” stars X appears to be in the range 0.70− 0.7311. On the
other hand the total abundance of heavy elements varies widely, from Z = 10−6 to about
Z = 0.04.

This fact has important consequences for our understanding of the chemical evolution
of the Universe. It is believed that hydrogen and helium, but essentially no other elements,
were formed in the initial “Big Bang”. This would account for the relative constancy
of the hydrogen and helium abundances. All the heavy elements have been formed by
nuclear reactions in stellar interiors; when the stars have lost large fractions of their mass,
possibly through supernova explosions, the interstellar matter has been enriched by the
heavy elements, which have therefore been incorporated into stars formed later. Thus the
wide range of observed heavy element abundance can be interpreted as a result of widely
differing stellar ages, the stars with very low Z having been formed before there had been
a significant production of heavy elements.

The relative composition amongst the heavy elements is as a first rough approximation
the same for all stars, which justifies that it is characterized by a single parameter; however,
a more careful analysis reveals a systematic dependence of the relative composition on the
total heavy element abundance. This must reveal properties of the processes that formed
the heavy elements and mixed them into the interstellar medium; the details are still far
from understood, however.

In some cases the observed abundances differ drastically from what is observed in most
stars, with certain elements (for example rare earths) being enhanced by large factors
relative to the remaining heavy elements. In some stars this can be understood in terms
of diffusion, which selectively pushes certain elements towards the surface of the star, while
other elements sink. In highly evolved stars it is also possible that elements produced by
nuclear reactions can be mixed to the surface. A particularly important example is the
detection of the radioactively unstable element technetium in the atmospheres of some red
giants. Such observations provide direct evidence for the occurrence of nuclear reactions in
the stars, and are therefore of very great importance for our understanding of the synthesis
of elements.

Stars in the Galaxy are divided into populations according to their heavy element
abundance and their location and motion in the Galaxy. Population I stars are relatively
rich in heavy elements; they are concentrated towards the disk of the Galaxy, and their
motion is dominated by the common rotation of the Galaxy. Population II stars, on the
other hand, are very poor in heavy elements; they are found at large distances from the
disk of the Galaxy and have large random velocities. The interpretation of this division
is that Population II stars were formed before the matter in the Galaxy collapsed into a
disk, and that the Population I stars were formed in this disk. The detailed evolution of
the Galaxy is still a matter of debate, however.

2.5.4 The Doppler shift

If the star moves relative to the observer in the direction of the line of sight the stellar
spectral lines are shifted relative to the positions expected on the basis of the laboratory

11In fact, helium lines are only observed in the spectra of hot stars (cf. Box 2.1), and in some interstellar
nebulae. Therefore the hydrogen and helium abundances of most stars, including the Sun, are somewhat
uncertain.
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energy levels. The shift ∆λD is approximately given by

∆λD

λ
=
vr
c̃
, (2.31)

where vr is the radial velocity, i.e., the velocity in the direction of the line of sight, measured
positive in the direction away from the observer. This effect allows the measurement of
the motion of the star as a whole, or of the stellar surface as in the case of a pulsating star.
Furthermore, the Doppler shift due to the random motion of atoms in a stellar atmosphere
(caused by thermal motion, and possibly by large-scale motion due to convection; cf.
Chapter 6) contributes to the width of the spectral lines. A further contribution from
the Doppler shift may come from stellar rotation: since one side of a rotating star is
moving towards the observer and the other away from the observer, the result is again
a contribution to the line width which, in the case of rapidly rotating stars, may be
dominant.

Exercise 2.7:

The average kinetic energy of an atom in a gas of temperature T is 3/2 kBT . Find
the root-mean-square velocity of a hydrogen atom and an iron atom in a gas of tem-
perature 5778 K (the effective temperature for the solar atmosphere). What are the
corresponding Doppler shifts, for a spectral line at 5000 Å?

2.5.5 The gravitational redshift

It follows from the theory of General Relativity that photons undergo a redshift when they
move out through a gravitational field; naively this can be thought of as a decrease in the
energy of the photon, corresponding to the work required to escape from the gravitational
field. The result is a change in wavelength ∆λG, given by

∆λG

λ
=
GM

Rc̃2
. (2.32)

This effect has been measured on the Sun, and for a few very compact stars, the so-called
white dwarfs.

Exercise 2.8:

What is ∆λG for the Sun, at a wavelength of 5000 Å? Which radial velocity is required
to cause a corresponding Doppler shift? (Since wavelength shifts are often quite small,
it is common to give them in Doppler units, by measuring them in terms of the speed
required to produce the corresponding Doppler shift).
Answer the same questions for a white dwarf with a mass of 0.6M� and a radius of
109 cm.
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2.5.6 The Zeeman effect

When the atom is in a magnetic field, the energy levels are shifted by the Zeeman effect.
As a result the spectral lines are shifted or split. The shift ∆λB is given by

∆λB

λ
=

e

4πc̃2me
g12λB , (2.33)

where e and me are the charge and mass of an electron, g12 is the so-called Landé factor
of the transition, and B is the magnetic field strength. If λ is measured in Ångstrom, and
B is measured in gauss, this may also be written

∆λB

λ
= 4.67× 10−13g12λB . (2.34)

Exercise 2.9:

What is the Zeeman splitting for a spectral line with a wavelength of 5000 Å, in a
magnetic field of 3000 gauss (a typical value for a sunspot)? Assume that g12 = 1.
What is the splitting in Doppler units?

The results of exercise 2.7 and 2.9 indicate that the Zeeman splitting, in the solar case,
is comparable with the broadening of the spectral lines caused by the thermal motion of
the atoms, and hence quite difficult to measure. However, more sensitive measurements
of stellar magnetic fields can be obtained on the basis of observation of the polarization
of the light in spectral lines. In this way it is possible to measure magnetic fields on the
Sun with a precision of a few gauss.

2.6 Colour-magnitude diagrams

Given measurements of the brightness and surface temperature of a group of stars, as
determined by their magnitudes and colour indices or spectral types, it is natural to plot
these quantities against each other, to look for systematic correlations. This was first done
independently by the Danish astronomer E. Hertzsprung and the American astronomer
H. N. Russell. Hence such diagrams are collectively known as Hertzsprung-Russell, or
HR, diagrams; the term colour-magnitude diagrams is also commonly used. Figure 2.5
shows an example of such a plot, for stars that are near enough to make possible a
determination of their distance, and hence their absolute magnitude12. It is obvious that
the distribution of stars is far from random. Most of the stars are concentrated in the
main sequence, a fairly narrow band of stars with steeply increasing luminosities with
increasing temperature13. These stars correspond to luminosity class V. In addition there
is a number of stars concentrated in the giant branch, of luminosity class III, and far fewer
stars with even higher luminosities. Below the main sequence there is a small number of

12The magnitude shown is the photographic magnitude Mpg, based on measurements on photographic
plates.

13It is an unfortunate historical accident that such diagrams are always plotted with the temperature
increasing to the left.
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Figure 2.5: Hertzsprung-Russell diagram for stars in the solar vicinity, showing
absolute photographic magnitude versus spectral type. Solid lines indicate the ap-
proximate definition of the luminosity classes.

very faint and relatively hot stars, the white dwarfs. The appropriateness of this name
follows immediately from equation (2.20): if hot stars are very faint, compared with main-
sequence stars of the same temperature, their radii must be very small. The understanding
of the distribution of stars in this diagram, and its relation to stellar evolution, is a major
goal of these notes. We return to this in Chapter 13.

In view of the wide range of stellar distances, HR diagrams based on apparent mag-
nitudes of stars are clearly in general meaningless. A very important exception is when
groups of stars can be found which are at approximately the same distance. This is the
case for stellar clusters, which are concentrations of stars in the sky which are so close
together that they can be identified as being physically related. There are two basic types
of stellar clusters: One class, the galactic or open clusters, consists of Population I stars
and are concentrated to the disk of the Galaxy; they typically contain a few hundred
stars. The second class are the globular clusters, consisting of Population II stars, which
are found at large distances from the Galactic plane; they may contain millions of stars. In
a given cluster all stars can be assumed to be at approximately the same distance; hence
the difference between absolute and apparent magnitude is the same (cf. equation (2.8)),
and a plot of apparent magnitude versus colour should show the same structure as a plot
of absolute magnitude versus colour.

Figure 2.6 shows typical colour-magnitude diagrams for a globular and an open cluster.
In both cases the main sequence can be clearly identified, although for the globular cluster
it is quite short and concentrated at relatively late spectral types. Furthermore, Figure 2.7
shows schematic representations of the colour-magnitude diagrams for several open clus-
ters. These have been shifted to a common scale of absolute magnitude by superposing
their main sequences. It is evident that these diagrams show a great deal of regularity;
as discussed in Chapter 13 this can be understood in detail on the basis of calculations of
stellar evolution. Indeed, this agreement between observations and theory constitutes one
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(a)

(b)

Figure 2.6: Colour-magnitude diagrams for (a): a typical globular cluster, M3 in the
constellation Canes Venatici, consisting of Population II stars (cf. Grundahl 1999);
and (b) a typical galactic cluster, h + χ Persei (consisting of Population I stars). In
panel a) the larger symbols mark the positions of the so-called RR Lyrae stars, a
special class of pulsating stars.
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Figure 2.7: A schematic composite colour-magnitude diagram for several galactic
clusters. As discussed in Chapter 13, the age scale on the right hand side of the
diagram is based on stellar evolution calculations and indicates the age of a cluster
for which the curve turns away from the main sequence at this luminosity. Thus, for
example, the cluster M67 is estimated to have an age of about 5 × 109 years on the
basis of this diagram (adapted from Sandage 1957).

of the best tests of stellar evolution theory.
The results of stellar evolution calculations are most conveniently shown in a

(log Teff , logLs) diagram. Several examples of such diagrams are presented in Chapters 10
– 12. To compare with the observations, we must be able to relate the observed quantities,
for example V and B − V to the computed quantities. This requires a determination of
the bolometric correction (cf. equation (2.24)) and of the relation between colour index
and effective temperature; these are non-trivial problems, which introduce elements of
uncertainty into detailed quantitative comparisons.

It is also of interest to consider colour-colour diagrams where two colour indices are
plotted against each other. As an example, Figure 2.8 shows a schematic diagram of
(reddening-corrected) U − B against B − V , for main-sequence stars. Also shown with
an arrow is the direction in which stars are moved by interstellar reddening (cf. equation
(2.27)) and the relation between U − B and B − V that would result if the stars were
radiating as black bodies (cf. exercise 2.6).

Exercise 2.10:

Discuss possible reasons for the deviation of the colour-colour curve from the black-
body line.
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Figure 2.8: Colour-colour diagram for main-sequence stars. On the left side of
the curve are indicated the spectral types of the stars, on the right hand side their
absolute magnitudes. Also shown is the black-body curve (dashed) which marks the
approximate location of the white dwarfs; the arrow indicates the direction in which
the colour indices are shifted by interstellar absorption.

A summary of some properties of various types of stars is given in Table 2.1. In
view of the calibration uncertainties discussed above it should be taken only as indicative.
Also, precise masses are difficult to assign, in particular for the stars away from the main
sequence. Nevertheless, the table gives an idea about the typical parameters for the stars.

2.7 Stellar masses

The mass of a star is extremely important for its structure and evolution. Unfortunately
direct determination of stellar masses has been possible only in a limited number of cases.

In the case of the Sun the product GM is known with extreme (about 10−9) precision
from the motion of planets and space probes. Hence the limiting factor is the accuracy
of the gravitational constant, which is comparatively poorly known. For other stars the
situation is far worse. A relatively small number of stars are members of well-observed
binary systems, where two stars orbit around each other14. When the orbit of the binary

14On the other hand it is estimated that a very large fraction of all stars, perhaps as many as half, are
members of binary systems; but detailed observation of such systems is very difficult.
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Table 2.1

system can be observed, the masses of the stars can be determined from Kepler’s third
law, which may be written

M1 +M2 =
a3

P 2
, (2.35)

where M1 and M2 are the masses of the stars, measured in units of the solar mass, a is
the semi-major axis of the orbit in astronomical units and P is the period in years. To
determine a from measurements of the angular separation of the stars one clearly has to
know the distance, and hence the parallax, of the stars. The periods of binary stars are
often many years; hence a very extended observing program, in some cases spanning more
than a century, is required to determine an accurate orbit.

2.8 Stellar pulsations

A number of different types of stars are observed to pulsate with one or more periods. The
oscillation periods are determined by the structure of the stellar interior, and hence the
periods, which can be determined observationally with very high precision, offer additional
information about stellar structure.
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The “classical” pulsating stars were discovered as a result of the variation in their
brightness which is often about 1 magnitude, and may exceed 5 magnitudes (in V ; the
variation in bolometric magnitude is considerably smaller). A very important class of
pulsating stars are the Cepheids, which occupy a narrow region in the HR diagram. For
these stars there is a well-defined relation between the period and the absolute luminosity;
hence from measurements of the period it is possible to determine the absolute magnitude,
and, given the apparent magnitude, the distance can be found from equation (2.8). This
is the most important method for determining the distances of nearby galaxies.

The oscillations of these stars can be measured both in brightness and in radial ve-
locity. The variations are caused by radial pulsations, where the star alternately expands
and contracts. The periods of such oscillation are approximately given by the dynamical
timescale of the star,

tdyn =
(
R3/GM

)1/2
=
(

4
3
πGρ

)−1/2

, (2.36)

where ρ = M/(4/3πR3) is the mean density of the star (cf. equation (1.2)). Hence
measurement of their period gives information about the mean density of the star.

Exercise 2.11:

Some red giants have periods of a year. Estimate their mean density and compare it
with the mean density in the Earth’s atmosphere. Assuming that their mass is 1M�,
estimate their radius.

Much more interesting are stars where several periods of oscillation are observed si-
multaneously, since this gives more information about their structure. An extreme case
of this is the Sun, which is known to pulsate with tens of thousands of individual periods,
many of which have been determined with very high precision. The oscillations have been
observed both in radial velocity, by measuring the Doppler shift, and in intensity. To
isolate the individual periods the observations are Fourier analyzed. Figure 2.9 shows a
typical oscillation spectrum resulting from such an analysis. It is found that the solar
oscillations have periods in the vicinity of five minutes; the amplitudes for each oscillation
are less than 20 cm/sec for the Doppler velocity and less than a few times 10−6 in relative
brightness. They range in scale on the solar surface from radial oscillations to oscillations
with a wavelength of a few thousand kilometers.

The interpretation of these oscillations has led to the development of helioseismology
which is in many ways analogous to seismic investigations of the Earth. It has been
possible from the observed periods to determine the variation of sound speed and density
throughout most of the Sun; such measurements are evidently very valuable as a test of
stellar model computations. Furthermore, the observed periods may be used to determine
the variation of rotation in the solar interior. Overviews of helioseismology were given by,
for example, Leibacher et al. (1985), Libbrecht & Woodard (1991), Christensen-Dalsgaard
et al. (2000) and Christensen-Dalsgaard (2002).

Several white dwarfs have also been observed to pulsate in several periods simultane-
ously. Particularly interesting are a few cases where it has been possible to measure the
change in oscillation period with time, as a result of the evolution of the stars.
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Figure 2.9: Observed spectrum of solar oscillations. The abscissa is oscillation
frequency ν = 1/P , where P is the oscillation period; a frequency of 3000 µHz cor-
responds to a period of about five minutes. The ordinate shows oscillation power
at each frequency; each of the narrow lines corresponds to an individual oscillation.
Only oscillations of very large horizontal scale were included in these observations.
(See Elsworth et al. 1995.)

Oscillations of various kinds are found in other types of stars as well; furthermore, it is
likely that many more stars oscillate, although with amplitudes that are so low that they
have not yet been detected. Systematic searches for such oscillations are just beginning.
It seems reasonable to hope that the resulting data will allow tests of stellar models over
a wide range of parameters.

2.9 Stellar activity

A wide range of phenomena are observed on the solar surface. The dominant ones are
the sunspots; these are areas of concentrated magnetic field, somewhat cooler than the
surrounding solar surface, which therefore appear darker. In connection with sunspots
violent explosions are sometimes observed in the solar atmosphere, the so-called flares.
Furthermore the Sun is observed to have a very hot (more than 106 K) and extended
outer atmosphere, the corona; this extends into the solar wind which streams out through
the solar system. A striking feature of these phenomena is their time-dependence: the
number of sunspots varies roughly periodically with an 11-year period, in the so-called
solar cycle15.

Although similarly detailed observations cannot be made for other stars, there are
15It might be noted that the polarity of the solar magnetic solar field changes sign between each maximum

in the number of sunspots; thus, strictly speaking, the period of the solar cycle is 22 years.
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strong indications that the same phenomena occur, often on a much larger scale. The
presence of starspots is indicated by periodic variations in stellar brightness with periods
of days (and hence, for main-sequence stars, much longer than the plausible pulsation
periods); these are probably caused by the rotation of dark areas over the stellar surface.
Furthermore, the presence of features in certain spectral lines has been correlated with the
solar magnetically active regions, and similar features are found in other stellar spectra; in
some cases it has even been possible to find cycles of activity similar to the solar cycle (see
Wilson, Vaughan & Mihalas 1981). Some late-type stars show sudden sharp increases in
brightness which are interpreted as the results of very large flares. Finally the presence of
hot coronae has been inferred for a variety of stars from X-ray observations. These various
indices of activity appear to be systematically correlated with the overall properties of the
stars, such as their luminosity, effective temperature and rotation rate.

The mechanisms responsible for this solar and stellar activity are so far not understood,
although it is generally thought that the generation of the solar magnetic field is somehow
related to an interaction between rotation and the motions in the solar convection zone
(cf. Chapter 6). Hence it is not possible to use observations of activity to get information
about basic stellar structure. On the other hand, there is little doubt that our quest for
an understanding of solar activity will be helped greatly by the observation of similar
phenomena in other stars.

2.10 Other types of emission

All the observational data discussed so far have been based on observation of electromag-
netic radiation. However, there are a few other types of data which may be used to study
stars, namely the neutrinos, and the solar wind particles16.

2.10.1 Observations of neutrinos

Many of the nuclear reactions in stellar interiors generate neutrinos. Because neutrinos
have very small cross-sections for interaction with matter, they escape from the stars
essentially unhindered. Hence if detected they may provide information about the nuclear
processes.

Because of the small cross-section detection of the neutrinos is very difficult. However,
it has been possible in the case of the neutrinos produced by the fusion of hydrogen to
helium in the solar core. So far two separate experiments have been successfully made. In
one, the neutrinos are detected through the reaction

νe + 37Cl→ e− + 37Ar . (2.37)

The detector consists of a tank containing about 380 000 liter of C2Cl4 (which is a common
cleaning fluid). Even with this large amount of detector material a solar neutrino event
is recorded on average only every second day. This is substantially lower than the rate
predicted by solar models. This discrepancy constitutes the solar neutrino problem and
was for a long time regarded as a potentially serious concern for stellar modelling.

16There are other types of particles coming from space in the cosmic rays. However, since these particles
are electrically charged, they are deflected by the interstellar magnetic fields. Hence they cannot be directly
associated with any given star, or other object.
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A second experiment measured the scattering of neutrinos on electrons, in a tank con-
taining 50,000 tons of water. Unlike the Cl experiment, the electron scattering experiment
records the direction of the neutrinos, confirming that they do indeed come from the Sun.
As is the case in the Cl experiment, the observed rate of neutrino events is substantially
lower than theoretical predictions.

The Cl and electron scattering experiments are sensitive only to a small fraction of
high-energy neutrinos, out of the total neutrino production of the Sun. Two independent
experiments, sensitive to most of the neutrinos produced in the Sun, which use a reaction
between the neutrino and 71Ga have yielded results closer to the model prediction, thus
supporting the assumption that most of the Sun’s energy output derives from nuclear
reactions.

More recently an experiment utilizing heavy water has shown that the origin of the
original neutrino discrepancy arose from the fact that the earlier experiments were sen-
sitive only, or predominantly, to the electron neutrinos. In contrast, the heavy-water
experiment is also sensitive to the so-called muon and tau neutrinos. The results show
that the combined flux of neutrinos is essentially consistent with solar models; however, a
substantial fraction of the electron neutrinos generated in the solar core are converted to
other types of neutrinos before reaching the detectors.

Observations of solar neutrinos and their interpretation are discussed in more detail in
Chapter 11, section 11.5.3. An exhaustive treatment of early neutrino observations and
the perceived solar neutrino problem was given by Bahcall (1989).

Given the difficulty in detecting the neutrinos from the Sun, it is obvious that we cannot
hope to detect neutrinos from other ordinary stars. On the other hand, a very intense flux
of neutrinos is produced in supernova explosions. Such events are rare. However, about 20
neutrinos were recorded from the supernova (referred to as SN1987A) which was observed
in the Large Magellanic Cloud in February 1987. This provides an extremely important
test of the complex and uncertain computations of the last phases of stellar evolution.
It is remarkable that there is in fact good agreement between the observed number and
energy of the neutrinos and the predictions of the models.

2.10.2 Solar wind particles

It was stated in the introduction that it is not possible directly to sample the material that
stars are made of. The solar wind provides an interesting exception. Solar wind particles
were trapped in foil which was hung on the Moon during the Apollo lunar landings. By
analyzing these foils it has been possible to determine the relative abundances of a few
isotopes in the solar wind (see Geiss et al. 1970). Unfortunately, the acceleration of par-
ticles in the solar wind is not the same from element to element, so that the composition
of the solar wind is not directly representative of the solar surface composition. Neverthe-
less, this provides an interesting supplement to spectroscopic measurements of the solar
abundances.

2.10.3 Meteoritic abundances

Meteorites constitute another example of stellar material that may, at least in principle,
be investigated on Earth, by providing information about the composition of the matter
from which the solar system was formed. In most cases the material in the meteorites
has been melted and reprocessed, thus locally changing the initial relative abundances
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of elements and isotopes, just as is the case of rocks on Earth. However, in the so-called
primitive meteorites grains are found, including very small diamonds (e.g., Andersen et al.
1998), which apparently have originated in the atmospheres of red-giant stars and hence
provide direct information about their composition. These therefore allow investigations
of the processes leading to nucleosynthesis in stellar interiors. An interesting example,
discussed by Nittler (2004), is the detection of decay products of the radioactive element
technetium which is formed by neutron capture in the so-called asymptotic giant stars
(see also Chapter 15).



38 CHAPTER 2. OBSERVABLE PROPERTIES OF STARS



Chapter 3

The equation of state

3.1 Introduction

The description of stellar structure requires knowledge about the properties of the matter
in the stars. The present chapter deals with the thermodynamic properties of the gas.
As is generally true in these notes, the level of detail is essentially kept to the bare min-
imum of what is required to understand how stars evolve. A complete description of the
thermodynamic state of stellar matter is a very complex undertaking, which is still at the
frontier of current research.

A fundamental assumption is that at any given point in the star the gas is in thermo-
dynamic equilibrium. No better description of this assumption can be found than in the
quote from Eddington’s book The Internal Constitution of the Stars which is given in Box
3.1. The outcome is that we do not have to consider the detailed reactions between the
particles (atoms, electrons, ions, photons) which make up the gas. Instead, the average
properties of the gas can be described in terms of local state variables, and the relations
between them. For example, given the values of the temperature T , the density ρ and
the chemical composition it is possible to calculate all other state variables, including the
pressure P and the internal energy per unit volume u. The specification of these relations
constitutes the definition of the equation of state satisfied by the gas.

Implicit in the assumption of equilibrium is that the conditions in the gas change
negligibly with distance over the mean-free-path of a particle in the gas, and negligibly
with time over the mean time between collisions between the particles; in this condition
“particle” must be taken to mean not only material particles such as atoms or electrons, but
also photons. This condition is abundantly satisfied in stellar interiors, where the density
is high; however, in the upper parts of stellar atmospheres it becomes questionable. Here
a more detailed description of the statistical properties of the gas is required.

A considerable simplification results from the high temperature in stellar interiors,
which means that in most of the star the gas can be assumed to be fully ionized, i.e.,
decomposed into bare nuclei and free electrons. Therefore the gas consists of particles
with no internal degrees of freedom. Also, as a first approximation one can neglect the
interactions between the particles. Such a gas is described as being an ideal gas. As
described in the following exercise it is possible to derive general relations between the
pressure and internal energy for such a gas, with very few restrictions.

39
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Exercise 3.1:

Relations between the pressure and internal energy of a gas. We consider a very simple
model of the gas: assume that the gas consists of particles all with the same kinetic
energy and with no internal degrees of freedom; assume that the direction of motion
of the particles is isotropically distributed. The pressure in the gas is given by the
normal component of the momentum transport through a plane in the gas, and the
internal energy is the sum over the kinetic energies of the particles.
Show under these assumptions that the internal energy u per unit volume, in the case
when the motion of the particles is nonrelativistic, is related to the pressure P by

u =
3
2
P , nonrelativistic . (3.1)

Show that the corresponding relation in the extremely relativistic case is

u = 3P , extremely relativistic . (3.2)

Relax the assumption that the kinetic energy is the same for all particles and show
that equations (3.1) and (3.2) still apply.

3.2 The ideal gas

3.2.1 Simple gas

We first consider an ideal gas consisting of a single type of non-relativistic particles. The
ideal-gas law for the gas contained in a volume V is commonly written

PV = NkBT , (3.3)

where N is the number of particles in V and kB is Boltzmann’s constant.
In the stellar case we are not concerned with a given volume of gas, and hence it is

more convenient to write equation (3.3) as

P = nkBT , (3.4)

where n = N/V is the number of particles per unit volume. Introducing the mass density
ρ and the (dimensionless) atomic mass µ of the particles, we have

n =
ρ

µmu
, (3.5)

where mu is the atomic mass unit, and hence

P =
ρkBT

µmu
. (3.6)

Equation (3.6), with a small extension discussed in section 3.2.2 below, is the most com-
monly used form of the ideal gas law.
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(Eddington 1930, pp. 19 – 20).

The mean internal energy per particle is 3/2 kBT (see also section 3.3 below). Thus the
internal energy per unit volume is

u =
3
2
nkBT =

3
2
ρkBT

µmu
=

3
2
P , (3.7)

in agreement with equation (3.1).
The energetics of the gas as the star evolves or the gas moves plays a very important

role for stellar evolution. The basic equation describing the changes in the properties of
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the gas is the first law of thermodynamics,

d-Q = dU + PdV , (3.8)

valid for a fixed amount of matter, where U is the internal energy of the matter, and V
is the volume it occupies. Here d-Q is an amount of heat added to the matter, which, as
expressed on the right hand side, goes partly into changing the internal energy and partly
into work to change the volume of the gas. We let V be the volume corresponding to unit
mass, so that

V =
1
ρ
. (3.9)

Then U = u/ρ is the specific internal energy, i.e., the internal energy per unit mass; from
equation (3.7) it follows that

U =
3
2
kBT

µmu
. (3.10)

We now consider a process where the volume does not change. We introduce the specific
heat at constant volume, cV , as the amount of heat that has to be added, per unit mass,
to raise the temperature one degree. It follows from equations (3.8) and (3.10) that

d-Q =
3
2
kB

µmu
dT ,

and hence
cV =

3
2
kB

µmu
. (3.11)

It is also of interest to consider a process where the pressure is constant. To do so, we
use the ideal gas law on the form (3.3), where in the present case N = 1/(µmu). For the
changes we then obtain

PdV + V dP =
kB

µmu
dT , (3.12)

and hence from equation (3.8)

d-Q = dU − V dP +
kB

µmu
dT =

5
2
kB

µmu
dT − V dP ,

by using equation (3.10). From this equation it follows that the specific heat at constant
pressure is

cP =
5
2
kB

µmu
. (3.13)

A particularly important type of process are the adiabatic processes, which occur with-
out any exchange of heat, i.e., with d-Q = 0. For such a process, from equations (3.8),
(3.10) and (3.11) we obtain

cV dT = −PdV .

To obtain a relation between the changes in P and V (or ρ) for an adiabatic process, we
use the ideal gas law on the form (3.12) to write this equation as

cV

(
dP
P

+
dV
V

)
= − kB

µmu

dV
V

= (cV − cP )
dV
V

,
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and hence
dP
P

= −cP
cV

dV
V

= −γdV
V

= γ
dρ
ρ
, (3.14)

where we introduced γ ≡ cP /cV and used equation (3.9). For the ideal gas which we are
considering it follows from equation (3.11) and (3.13) that γ = 5/3. We may also write
equation (3.14) as (

∂ lnP
∂ ln ρ

)
s

= γ , (3.15)

where the subscript “s” indicates that the partial derivative is taken at constant specific
entropy, i.e., without any heat exchange.

From equation (3.15), and using the ideal gas law, one can derive relations between
the changes in other thermodynamic variables under adiabatic changes. In particular, one
finds that (

∂ lnP
∂ lnT

)
s

=
γ

γ − 1
, (3.16)

and (
∂ lnT
∂ ln ρ

)
s

= γ − 1 . (3.17)

Exercise 3.2:

Verify these relations.

This derivation assumed that the motion of the particles provides the only contribution
to the internal energy. This is the case for a fully ionized ideal gas, or for a gas consist-
ing of unionized atoms1. Under more general circumstances the relations derived above,
particularly equations (3.15) – (3.17), are not valid. Nevertheless, it is still convenient
to describe adiabatic changes by means of similar equations. This motivates defining the
adiabatic exponents Γ1, Γ2 and Γ3 by

Γ1 ≡
(
∂ lnP
∂ ln ρ

)
s

, (3.18)

Γ2

Γ2 − 1
≡

(
∂ lnP
∂ lnT

)
s
, (3.19)

Γ3 − 1 ≡
(
∂ lnT
∂ ln ρ

)
s

. (3.20)

These three quantities are not independent. In fact, from the chain rule of differentiation
it follows that, for example,

Γ2

Γ2 − 1
=
(
∂ lnP
∂ lnT

)
s

=
(
∂ lnP
∂ ln ρ

)
s

(
∂ ln ρ
∂ lnT

)
s

=
Γ1

Γ3 − 1
, (3.21)

without any assumptions about the equation of state. It is obvious that for a fully ionized
ideal gas (which is the case with which we shall almost exclusively be concerned), Γ1 =
Γ2 = Γ3 = 5/3.

1If the gas consists of molecules, additional contributions to the energy comes from the rotation, and
possibly the internal vibrations, of the molecules.
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3.2.2 Fully ionized gas consisting of a mixture of elements

In practice, stellar matter consists of a mixture of different elements, the atoms of which
are largely or fully ionized. Thus the description in the previous section, which assumed
only one kind of particles, is too simple. However, it is straightforward to generalize it.

If the gas consists of different types of particles each behaving like an ideal gas, with
number densities ni, the total pressure in the gas is obtained as the sum of the partial
pressures Pi = nikBT , i.e.,

P =
∑

i

Pi =
∑

i

nikBT , (3.22)

and similarly the internal energy of the gas is given by

u =
∑

i

ui =
3
2

∑
i

nikBT . (3.23)

Note that it follows from the assumption of thermodynamic equilibrium that with the same
number density electrons make the same contribution to the pressure as nuclei, despite
their smaller mass.

To be more specific we consider a mixture of atoms of different elements, all of which are
assumed to be fully ionized. We denote the atomic number and atomic mass of element j
by (Zj ,Aj), and its mass fraction by Xj . When fully ionized, each atom contributes
Zj + 1 particles (Zj electrons and one nucleus). The number of atoms of element j per
unit volume is ρXj/(Ajmu), and hence the total number of particles per unit volume from
element j is ρXj(Zj + 1)/(Ajmu). Thus, from equation (3.22) it follows that the pressure
is

P =
∑
j

ρXj
Zj + 1
Ajmu

kBT ≡
ρkBT

µmu
, (3.24)

where we introduced the mean molecular weight by

µ−1 =
∑
j

Xj
Zj + 1
Aj

. (3.25)

Therefore, with this definition of µ we recover equation (3.6) for P . Similarly, it is easy
to verify that equation (3.7) for u is also valid, as is the discussion in section 3.2.1 of the
energetics of the gas.

Exercise 3.3:

Verify this.

As discussed in section 2.5.3 it is conventional to denote the mass fractions of H and He
byX and Y , respectively, and the mass fraction of the remaining, so-called heavy, elements
by Z. This separation is useful because Z � X,Y in most stellar compositions. Note that
the normalization X + Y + Z = 1 must hold. To obtain an approximate expression for µ
we take A1 ' 1 (for hydrogen), A2 ' 4 (for helium), and we approximate (Zj + 1)/Aj by
1/2 for the heavy elements. Then

µ−1 ' 2X +
3
4
Y +

1
2
Z , (3.26)
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or
µ ' 4

3 + 5X − Z
. (3.27)

The electron number density ne plays a considerable role for the properties of the gas.
It is convenient to introduce the mean molecular weight per electron, µe, such that

ne =
ρ

µemu
. (3.28)

Exercise 3.4:

Show that, under the same approximations as were made in deriving equation (3.26),

µe '
2

1 +X
. (3.29)

3.2.3 Partial ionization

Because of the assumption of complete ionization, the number of particles is independent
of T and ρ. In realistic calculations of stellar structure the dependence of the degree of
ionization on T and ρ must be taken into account. It is still possible to use equation (3.6)
for P , but the mean molecular weight µ must be defined by counting the actual number of
free particles in the gas. Also, in the internal energy account must be taken of the energy
required to ionize the atoms, and hence the simple relation (3.1) is no longer valid. The
zero-point of the internal energy is essentially arbitrary. If the fully ionized state is taken
as the zero-point of the internal energy of the atoms, atoms with bound electrons make a
negative contribution to the internal energy of the gas.

In a simplified treatment of the ionization processes, the fraction of a given atom that is
ionized is given by the Saha equation2; if, as a further simplification, we assume all atoms
to be in the ground state, the number densities nI and nII of atoms in two successive
states of ionization satisfy

nenII

nI
=

2gII

gI

(2πmekBT )3/2

h3
exp

(
− χI

kBT

)
; (3.30)

here gI and gII are the statistical weights of the two ionization levels, me is the electron
mass, h is Planck’s constant and χI is the ionization potential of state I. Equation (3.30)
clearly predicts that the degree of ionization increases with increasing temperature, as
expected. It should also be noted that the ionization decreases with increasing electron
density; with an increasing number of free electrons, it is energetically less favourable to
add free electrons to the gas. This effect leads to paradoxical effects in the cores of stars,
as discussed in the following exercise.

2known in chemistry as the Law of Mass Action.
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Exercise 3.5:

The ionization of hydrogen in the solar core. We normally assume that matter is fully
ionized in stellar interiors. To test whether this assumption is consistent with the Saha
equation we make the following assumptions about conditions at the solar centre: The
temperature is T = 15× 106 K, the density is ρ = 150 g cm−3, the hydrogen and heavy
element abundances are X = 0.35, Z = 0.02. The statistical weights of unionized
and ionized hydrogen are gI = 2, gII = 1, and the ionization potential of hydrogen is
χI = 13.6 eV. The electron number density is assumed to be given by equations (3.28)
and (3.29), valid for full ionization.

i) What is the ratio nII/nI for hydrogen?

The answer is clearly inconsistent with the assumption of full ionization. To find the
reason for this, consider the following additional questions:

ii) What is the number density of unionized hydrogen atoms?

iii) Estimate the average separation between unionized hydrogen atoms.

Compare the answer to question iii) with the radius, 0.53 Å, of a hydrogen atom.

Exercise 3.5 indicates that a naive application of the Saha equation may result in a
prediction of less than complete ionization in deep stellar interiors. However, we also
found that the separation between neutral hydrogen atoms was less than their size; this
is obviously an unphysical result. The reason for this paradox is that the Saha equation
neglects the interaction between the atoms. Such interaction must certainly take place
when the density is so high that the atoms essentially touch. To describe the resulting
changes in the ionization balance and the equation of state is a complex problem, which
has not yet found a definite solution. As a result it is not even known with complete
certainty whether matter is in fact fully ionized in the cores of all stars. For simplicity we
shall always assume full ionization under these conditions, however.

Since the internal energy of an ionizing gas is not given by the simple expression (3.7),
it also follows that the adiabatic exponents Γ1, Γ2 and Γ3 are in general different, and
differ from 5/3. If a gas undergoing partial ionization is compressed adiabatically, there is
a tendency for the gas to heat up; but since part of the work performed on the gas goes
to increasing the degree of ionization, the temperature and pressure increases are smaller
than would have been the case for a fully ionized gas. This simple argument explains
why for partially ionized gasses Γ1, Γ2 and Γ3 are less than 5/3; in the ionization zone of
hydrogen close to the surface of solar-like stars the Γ-s may get close to 1.
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3.3 The distribution function for a classical gas

The distribution of the speed v in a gas consisting of “classical” particles3 is given by the
Maxwell distribution:

f(v) = 4π
(

m

2πkBT

)3/2

exp

(
− mv2

2kBT

)
v2 , (3.31)

where m is the mass of the particle. This distribution function is defined such that f(v)dv
gives the probability of finding the particle in the range of speed between v and v + dv.
Accordingly f is normalized such that∫ ∞

0
f(v)dv = 1 . (3.32)

The maximum of the distribution, i.e., the most probable speed, is given by

vmps =
(

2kBT

m

)1/2

, (3.33)

the mean speed is

〈v〉 =
∫ ∞

0
vf(v)dv =

(
8kBT

πm

)1/2

, (3.34)

and the root mean square speed 〈v2〉1/2 is given by

〈v2〉 =
∫ ∞

0
v2f(v)dv =

3kBT

m
. (3.35)

Equation (3.35) may also be written

〈v2〉1/2 ' 1.579× 104
(
T

A

)1/2

cm sec−1 , (3.36)

where A is the atomic weight of the particle, and T is measured in K. Note from equation
(3.35) that the mean kinetic energy of the particles is 3/2kBT , as was already used in
deriving equation (3.7).

Exercise 3.6:

Verify equations (3.32) – (3.36).

3.4 The radiation pressure

Due to the high temperatures in stellar interiors, the photons make a significant contri-
bution to the pressure and internal energy of the gas. It may be shown that the radiation
pressure, i.e., the pressure from the photons, is

Pr =
1
3
aT 4 , (3.37)

3Quantum-mechanical effects on the distribution function are discussed in section 3.5.
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and that the energy density is
uR = aT 4 , (3.38)

where a is the radiation density constant. Note that equations (3.37) and (3.38) show that
the relation (3.2) is satisfied for the photon gas; this is obvious, in view of the fact that
photons are definitely relativistic particles.

If the system consists of a mixture of particles behaving like an ideal gas and radiation,
the total pressure and internal energy are the sum of the particle and radiation parts, so
that

P =
ρkBT

µmu
+

1
3
aT 4 , (3.39)

and
u =

3
2
ρkBT

µmu
+ aT 4 . (3.40)

It is conventional to define β = Pg/P as the fraction of the total pressure which is con-
tributed by the particle, or gas, pressure.

As for the ideal gas, it is of interest to consider the energetics of the system, in particular
its response to adiabatic changes. If the system is dominated by extremely relativistic
particles, such as photons, so that equation (3.2) is satisfied, we have U = 3PV , and
hence, for an adiabatic change

0 = 3d(PV ) + PdV = 3V dP + 4PdV ,

so that
dP
P

= −4
3

dV
V

=
4
3

dρ
ρ
. (3.41)

Thus in this case
Γ1 =

4
3

(3.42)

(cf. see equation (3.18)). It should be noted that this relation is valid for any gas that is
dominated by extremely relativistic particles.

It may be shown that a gravitationally bound system (such as a star) for which the av-
erage value of Γ1 is less than 4/3 is dynamically unstable. Roughly speaking, the argument
is as follows:4 If the star is compressed adiabatically, the pressure increases according to
equation (3.18); the pressure increase will give rise to a force which tends to expand the
star again. However, the gravitational attraction between the particles also increases. If
Γ1 is too small, the pressure increase is not sufficiently strong to overcome the increase in
gravitational attraction, and the star collapses. Evidently, the opposite happens if the star
is expanded slightly, leading it to explode. Thus, stars that are dominated by radiation
pressure are on the verge of instability. As discussed in section 4.2, this provides a natural
explanation for the fact that no stars are found with masses exceeding about 100M�: in
such stars radiation pressure dominates, and the stars are unstable.

To determine the two other adiabatic exponents we specialize to a system dominated
by radiation. To calculate Γ3 we use that U = aT 4V , and equation (3.37), to get

0 = d(aT 4V ) +
1
3
aT 4dV = 4aT 3V dT +

4
3
aT 4dV ,

4A more precise argument is given in section 4.4.
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or
dT
T

= −1
3

dV
V

=
1
3

dρ
ρ
. (3.43)

Hence
Γ3 =

4
3
. (3.44)

Finally it follows from equation (3.21) that

Γ2 =
4
3
. (3.45)

The adiabatic exponents in the general case, where equations (3.39) and (3.40) must
be used, can be found through a similar although rather more cumbersome analysis. The
results are

Γ1 =
32− 24β − 3β2

24− 21β
, (3.46)

Γ2 =
32− 24β − 3β2

24− 18β − 3β2
, (3.47)

Γ3 =
32− 27β
24− 21β

, (3.48)

where β is the ratio between gas and total pressure introduced above. Note that these
expressions have the correct values in the limits β → 1 (pure gas pressure) and β → 0
(pure radiation pressure).

Exercise 3.7:

Verify these limits.

3.5 Degenerate matter

At low temperature and high density, quantum-mechanical effects must be taken into
account in the description of the gas. According to Pauli’s exclusion principle, at most
two fermions can occupy a given state. At low temperature the particles will tend to fill
up the states with low energy. If the density is sufficiently high, the number of such states
is inadequate, and the particles are forced into states of higher energy. This increases
the internal energy, and hence the pressure, of the gas beyond the value that would be
obtained if the gas satisfied the ideal gas law. In particular, the pressure and internal
energy tend to finite limits for T → 0.

To give a more precise description of this effect, we use that the distribution of fermions
in momentum is given by the Fermi-Dirac statistics; thus, if p is the length of the momen-
tum vector, the number density of particles in the interval p to p+ dp is

n(p)dp =
2
h3

4πp2dpF (p) , (3.49)
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where
F (p) =

1
exp(E/kBT − ψ) + 1

(3.50)

is the occupation number for the Fermi gas. In equation (3.49) the factor 2 accounts
for the two possible spin states of “normal” fermions (i.e., electrons or nucleons), and
the factor h−3 gives the density of states in the 6-dimensional space of positions and
momenta. Finally in equation (3.50) E is the energy of a particle with momentum p, and
ψ is a parameter, related to the chemical potential of the fermions, which determines the
degree of degeneracy.

Exercise 3.8:

What is the relation between the density h−3 of states and the Heisenberg uncertainty
principle?

If ψ is large and positive, F (p) ' 1 for all “reasonable” energies; this limit corresponds
to all available quantum states being filled up, i.e., to strong degeneracy. If, on the other
hand, ψ is large and negative, the term +1 in the denominator in equation (3.50) may
be ignored. Then the distribution function corresponds to the distribution of classical
particles. In particular, if the particles are assumed to be non-relativistic so that E =
p2/(2m) the distribution function reduces to the Maxwell distribution discussed in section
3.3.

Exercise 3.9:

Verify that the distribution in equation (3.49) is equivalent to equation (3.31) in the
limit of large negative ψ.

From equation (3.49) we obtain the total number density of particles as

n =
∫ ∞

0
n(p)dp =

2
h3

4π
∫ ∞

0

p2dp
exp(E/kBT − ψ) + 1

. (3.51)

For a given number density of particles, this equation can be used to determine ψ. Then
the contribution to the internal energy of the gas from the particles is obtained as

u =
∫ ∞

0
En(p)dp =

2
h3

4π
∫ ∞

0

Ep2dp
exp(E/kBT − ψ) + 1

. (3.52)

Finally the pressure can be obtained as in exercise 3.1; in particular, for the limiting cases
of non-relativistic or extremely relativistic particles equations (3.1) or (3.2) may be used.

In the general case the integrals in equations (3.51) and (3.52) cannot be evaluated
analytically. In the non-relativistic and the extremely relativistic limits the integrals can
be expressed in terms of the Fermi-Dirac functions

Fν(z) ≡
∫ ∞

0

uν

exp(u− z) + 1
du , (3.53)
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for which extensive tables are available. There are also analytical approximations to
the integrals valid in suitable cases. Here we only consider the limit of T → 0, where the
integrals are drastically simplified. In this limit, known as the limit of complete degeneracy,

F (p) =
{

1 for E < EF

0 for E > EF ,
(3.54)

where we introduced the Fermi energy EF as the limit of ψkBT for T → 0. We also
introduce the Fermi momentum pF corresponding to EF.

Exercise 3.10:

Verify equation (3.54).

In this case the integral in equation (3.51) is trivial and leads to

n =
8πp3

F

3h3
, (3.55)

which establishes the relation between the number density and the Fermi momentum.
To determine the internal energy we must specify the relation between p and E. For
nonrelativistic particles, E = p2/(2m), and hence we obtain from equation (3.52)

u =
3
5
nEF nonrelativistic degeneracy , (3.56)

where in this case EF = p2
F/(2m). From equation (3.1) it then follows that

P =
2
5
nEF nonrelativistic degeneracy . (3.57)

In the limit of extremely relativistic particles, on the other hand, E = pc̃, where c̃ is the
speed of light, and we obtain

u =
3
4
nEF extremely relativistic degeneracy , (3.58)

with EF = c̃pF, and, from equation (3.2),

P =
1
4
nEF extremely relativistic degeneracy . (3.59)

Exercise 3.11:

Verify equations (3.55), (3.56) and (3.58).

It is of interest to consider the case of nonrelativistic, completely degenerate electrons
in a little more detail. We also assume that the gas is fully ionized. In this case the
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electron number density is given by equations (3.28) and (3.29), and hence, from equation
(3.55), the Fermi momentum is

pF =

(
3h3ρ

8πµemu

)1/3

. (3.60)

Hence the pressure corresponding to completely degenerate electrons is

P (deg)
e =

1
5

(
3
8π

)2/3 h2

mem
5/3
u

(
ρ

µe

)5/3

= 1.0036× 1013
(
ρ

µe

)5/3

, (3.61)

in cgs units. Thus for a gas where the pressure is dominated by the pressure from degener-
ate electrons P ∝ ρ5/3. This is a particularly simple form of the equation of state, since it
is independent of the temperature. As we shall see later, this allows a simple description
of the structure of stars dominated by degenerate electrons.

We may use equation (3.61) to estimate the parameter range for which degeneracy
becomes important. This may be defined by the condition P

(deg)
e > P

(g)
e , where P (g)

e is
the electron pressure if the electrons are assumed to behave as classical particles; from
equations (3.24), replacing µ by µe, and equation (3.61) this condition may be written as

ρ

µe
> 2.4× 10−8T 3/2 . (3.62)

Exercise 3.12:

In the centre of the Sun the temperature is T = 15 × 106 K, the density is ρ =
150 g cm−3, and the hydrogen and heavy-element abundances are X = 0.35, Z = 0.02.
What is the ratio P (deg)

e /P
(g)
e ?



Chapter 4

Hydrostatic equilibrium

4.1 Introduction

As argued in Chapter 1, the absence of changes in most stars over timescales of hours or
days indicates that the forces acting on the matter in the stars are essentially perfectly
balanced. Here we analyze this constraint in more detail.

We consider a cylindrical slab in the star, of area dA and extending from the distance
r to the distance r + dr from the centre of the star (cf. Figure 4.1). To obtain the
equation of motion for the shell we must evaluate the forces acting on the slab. One force
is gravity. It is well known that the gravitational force at the distance r from the centre
arises solely from the mass contained within that point. Let this mass be m = m(r).
Then the gravitational acceleration is −Gm/r2, where we count forces and accelerations
positive in the direction of increasing r. The volume of the slab is drdA. Hence, if the

Figure 4.1: Mass shell in a spherically symmetric star, of thickness dr and containing
the mass dm = 4πr2ρdr. In hydrostatic equilibrium, the pressure force dFP on the
small slab, shown hatched, balances the gravitational force dFg on the slab due to the
mass m(r) interior to r.

53
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density of matter in the slab is ρ, the mass in the slab is ρdrdA, and the gravitational
force is

dFg = −ρGm
r2

drdA . (4.1)

The second force arises from the net pressure acting on the slab. Since pressure P is
defined as force per unit area, this force is

dFP ' P (r)dA− P (r + dr)dA ' −dP
dr

drdA , (4.2)

by making a Taylor expansion of P ; here we used that the contributions from the side
of the slab vanish, by symmetry. Hence, by balancing mass times acceleration with the
combined force, the equation of motion of the slab is obtained as

ρdrdA
d2r

dt2
= dFg + dFP ,

or

ρ
d2r

dt2
= −ρGm

r2
− dP

dr
. (4.3)

If we demand that the star be in equilibrium so that the acceleration vanishes, the pressure
gradient must be determined by

dP
dr

= −Gmρ
r2

. (4.4)

This is the first of the equations of stellar structure.
This equation must be supplemented by an equation relating m to the other properties

of the star. It follows immediately from the definition of m, and the fact that the mass in
a shell between r and r + dr is 4πr2ρdr, that

dm = 4πr2ρdr ,

and hence
dm
dr

= 4πr2ρ . (4.5)

This is our second equation.
The equation of motion (4.3) may be used to provide further justification for the

definition (1.2) of the dynamical timescale tdyn. This is a characteristic time for motion
that occurs if there is not hydrostatic equilibrium, e.g. because the pressure is too small.
To get an estimate of the timescale we may as a first approximation neglect the pressure
term entirely, balancing the acceleration on the left-hand side of equation (4.3) by the
gravitational acceleration on the right-hand side. Furthermore estimating |d2r/dt2| by
r/t2dyn, and as characteristic values of r and m taking the radius R and mass M of the
star, we obtain

R

t2dyn

' GM

R2
,

or

tdyn '
(
R3

GM

)1/2

, (4.6)

which is equation (1.2).
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It is important to remember the goal of estimates like this one: to get an order-of-
magnitude idea about the size of the quantity being estimated, and a feeling for how it
depends on, for example, the mass and radius of the star. However, it is often possible
to consider cases where a more precise meaning can be given to such estimates. Several
examples are considered below. The following two exercises justify that tdyn is indeed a
representative timescale for motion in a gravitational field.

Exercise 4.1:

Consider an object in a circular orbit with radius R around a mass M . Show that the
orbital period is

Πorb = 2πtdyn , (4.7)

where tdyn is given by equation (4.6).

Exercise 4.2:

Consider the collapse of a star of mass M where the pressure is suddenly removed, by
solving equation (4.3) with P = 0, and the initial conditions r = R, dr/dt = 0 for
t = 0. Take m = M . What is the time required to reduce the radius by a factor 2?
What is the time required for a complete collapse?
Hint: Show, by multiplying equation (4.3) by dr/dt and integrating that

dr
dt

= −
[
2GM(r−1 −R−1)

]1/2
.

When integrating this equation it is convenient to use the substitution r = R cos2 u.

4.2 Estimates of stellar internal pressure and temperature

4.2.1 The estimates

From equation (4.4) we may obtain an estimate of the central pressure Pc of a star with
mass M and radius R. We make the following approximations:

• Replace dP/dr by −Pc/R.

• Replace m by M .

• Replace r by R.

• Replace ρ by the mean density, approximated as M/R3.
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Then equation (4.4) gives
Pc

R
' GM2

R5
,

or

Pc '
GM2

R4
. (4.8)

If we assume the ideal gas law, equation (3.6), we may estimate the central temperature
as

Tc =
µcmuPc

kBρc
' GµcmuM

kBR
, (4.9)

where µc is the central mean molecular weight. In terms of solar values we obtain

Pc ' 1.1× 1016
(
M

M�

)2 ( R

R�

)−4

dyn cm−2 , (4.10)

Tc ' 1.9× 107
(
M

M�

)(
R

R�

)−1 ( µc

0.85

)
K , (4.11)

where the value of µc was obtained from equation (3.27), with X = 0.35, Z = 0.02.
The interpretation of these results is the usual: they are obviously not accurate es-

timates of the central pressure or temperature of a star, but they provide an order of
magnitude. After all, without any prior knowledge it would be difficult to guess whether
the central pressure of the Sun was 1010, 1020 or 1030 dyn cm−2! In fact the estimates are
reasonably (in the case of the temperature, fortuitously) accurate: realistic computations
of solar models show that the solar central pressure is Pc = 2.4 × 1017 dyn cm−2 and the
solar central temperature is 1.5 × 107 K. It should be noted also that the estimate for
the pressure is obtained solely on the basis of Newtonian mechanics; the estimate of the
temperature in addition required a minimal amount of thermodynamics. Surely a good
example of the power of basic physics to provide knowledge about the internal properties
of stars.

The second aspect of the simple estimates is that they indicate how pressure and tem-
perature scale with the stellar mass and radius. This dependence has a wider applicability.
We shall later see several examples of how this scaling can be given a more precise mean-
ing for particular types of simplified stellar models. And even for realistic stellar models,
with detailed physics, one often find that the scalings provided by the simple estimates
are surprisingly accurate when the stellar parameters are varied. Thus these estimates are
very helpful for the interpretation of detailed numerical results.

4.2.2 The importance of radiation pressure

We can use the estimates in equations (4.8) and (4.9) to determine the conditions under
which radiation pressure becomes important. We find, from equation (3.37)

Pr

P
' 1

3
aG3(µcmu)4

k4
B

M2 ' 0.01
(
M

M�

)2 ( µc

0.62

)4

, (4.12)

where the reference value of µc corresponds to a chemical composition with X = 0.7,
Z = 0.02. This indicates that for masses of order several solar masses radiation pressure
must be taken into account.
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Exercise 4.3:

Verify equation (4.12)

There are several problems with equation (4.12). The estimate for the temperature
assumed that the gas pressure was dominant, so that the ideal gas law could be used to
determine the temperature from pressure and density. Hence equation (4.12) becomes
invalid once radiation pressure becomes important. Also, as usual in these estimates,
the precise numerical values cannot be trusted; in fact radiation pressure only becomes
substantial at somewhat higher masses, around 50M�. However, the principal result,
namely that radiation pressure dominates in massive stars, is certainly valid.

It was argued in section 3.4 that systems where Γ1 is close to or below 4/3 tend to
be unstable. This would be the case where most of the pressure comes from radiation.
Thus our results suggest that very massive stars might be unstable. In fact, it is thought
that instabilities of this nature limit stellar masses to be less than about 100M�. This is
confirmed by observations.1.

At the risk of appearing repetitive, it should be noted that this limit, or suggestion of
a limit, for stellar masses was again obtained from basic physics, and could in fact have
been derived without any prior knowledge about stars. A striking description of this was
given by Eddington, in The internal constitution of the stars; it is reproduced in Box 4.1.

4.3 Strict limits on the central pressure

It is of some interest that strict limits can be obtained for the central pressure of a star,
with very few assumptions. We consider two examples; a more detailed discussion, with
further precise theorems concerning stellar structure, was given by Chandrasekhar (1939).

4.3.1 A simple limit

The first limit requires no assumptions beyond hydrostatic equilibrium. It is obtained by
manipulating equation (4.4), using also equation (4.5):

dP
dr

= −Gmρ
r2

= − Gm

4πr4
4πr2ρ = − Gm

4πr4
dm
dr

= − d
dr

(
Gm2

8πr4

)
− Gm2

2πr5
,

and hence
d
dr

(
P +

Gm2

8πr4

)
= −Gm

2

2πr5
< 0 . (4.13)

1It was thought for a while that a much more massive star had been discovered in the nebula 30 Doradus
in the Large Magellanic Cloud. This would have caused severe problems for the theory of stellar evolution.
Observations with the Hubble Space Telescope have shown, however, that what appeared from the ground
to be a single star was in fact a dense cluster of about 60 bright stars, each of which is well within the
limits of normal stellar models. Depending on ones general attitude to science this result may be greeted
with relief or disappointment.
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Box 4.1

From Eddington (1930), p. 16.

This shows that the quantity Ψ(r) = P + Gm2/(8πr4) is a decreasing function of r. At
the centre P = Pc; also, equation (4.5) shows that m ∝ r3 for small r, so that the second
term in Ψ vanishes at r = 0. Hence Ψ(0) = Pc. At the surface P is essentially zero. Thus,
from the fact that Ψ is a decreasing function of r it follows that

Pc = Ψ(0) > Ψ(R) =
GM2

8πR4
, (4.14)

and this is the desired limit.
It is remarkable that this limit is a strict mathematical result, valid for any stellar

model in hydrostatic equilibrium, regardless of its other properties, such as equation of
state or energy transport and production. Also, it confirms that GM2/R4 is indeed a
characteristic value for the internal pressure of stars. On the other hand, the limit is fairly
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weak, compared with the actual solar central pressure quoted above.

4.3.2 A stronger limit

A stronger limit on the central pressure can be obtained if in addition to hydrostatic
equilibrium we assume that the mean density ρ(r) inside r, defined by

ρ(r) =
m

4
3πr

3
, (4.15)

decreases with increasing r. As discussed in Chapter 6 a condition of this nature is in fact
required for the star to be stable towards convection. The argument is similar to that
given in the preceding section, but uses an additional trick; it is reproduced here from
Chandrasekhar (1939).

We consider the function Ψα(r) = P + αGm2/(8πr4), where, initially, we leave un-
specified the value of the constant α. Then, using again equations (4.4) and (4.5),

dΨα

dr
= −Gmρ

r2
+ α

Gm

4πr4
4πr2ρ− αGm

2

2πr5

= (α− 1)
Gmρ

r2
− αGm

2

2πr5
=
Gm

r2

[
(α− 1)ρ− 2α

3
ρ(r)

]
.

If ρ(r) decreases outwards, it follows that ρ(r) ≥ ρ. Hence, if we choose α = 3, we have
that

dΨ3

dr
= −2

Gm

r2
[ρ(r)− ρ] ≤ 0 , (4.16)

i.e., that Ψ3 is a decreasing function of r. As before it then follows that

Pc = Ψ3(0) ≥ Ψ3(R) =
3
8π

GM2

R4
. (4.17)

Hence by adding the constraint that the mean density is a decreasing function of r the
lower bound on the central pressure has been increased by a factor 3.

4.4 The virial theorem

4.4.1 Introduction

From the equation of hydrostatic equilibrium we can derive an equation for the energetics
of a star, which is of the greatest importance for understanding stellar evolution. We
begin by deriving an expression for the gravitational potential energy of the star. At the
distance r from the centre the gravitational potential is −Gm/r, if we choose the arbitrary
constant in the potential such that it is zero infinitely far from the star. Hence the total
potential energy is

Ω = −
∫ R

0

Gm

r
4πr2ρdr = −4π

∫ R

0
Gmrρdr . (4.18)

This may be rewritten, by using equation (4.4) and integrating by parts:

Ω = −4π
∫ R

0

Gmρ

r2
r3dr = 4π

∫ R

0

dP
dr
r3dr

= 4πPr3 |R0 − 3
∫ R

0
P4πr2dr . (4.19)
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Here the integrated term vanishes, since P = 0 at the surface, r = R2. Hence

Ω = −3
∫ R

0
P4πr2dr . (4.20)

This integral may be related to the total thermal energy of the gas in the star.

4.4.2 The nonrelativistic case

We first consider the case where the gas is ideal and the particles in it are non-relativistic.
Then pressure and internal energy per unit volume are related by equation (3.1); since in
equation (4.20) 4πr2dr is a volume element, we finally obtain

Ω = −2
∫ R

0
u4πr2dr = −2Utot , nonrelativistic , (4.21)

where Utot is the total thermal energy of the star. This relation is called the virial theorem.
From equation (4.21) it follows that the total energy of the star is

E = Ω + Utot = −Utot =
1
2
Ω ; (4.22)

that the total energy is negative indicates that the star is stable: the thermal energy in
the star is insufficient to cause it to explode.

Equation (4.22) allows us to understand the evolution of stars where there are no
sources of nuclear energy. Since the surface of the star is hot it looses energy which
has to be supplied, and the only source of energy available to the star is the release of
gravitational potential energy that results from the star contracting and hence becoming
more strongly gravitationally bound. From equation (4.22) it follows that contraction also
causes the total energy of the star to become more negative. However, since globally there
has to be energy conservation, the energy lost by the star has to go somewhere else, and
this is what is radiated from the star. Specifically, the luminosity of a contracting star is
given by

LG = −1
2

dΩ
dt
' −1

2
GM2

R2

dR
dt

, (4.23)

where in the last approximate identity we used the estimate in equation (1.4) for the total
gravitational potential energy. From equation (4.22) it follows also that the thermal energy
Utot increases; so therefore does the average temperature in the gas3. Of the gravitational
potential energy that is released in the contraction half is radiated away and the other half
goes to heat up the gas. This demonstrates the paradoxical property of selfgravitating
systems that they have a negative specific heat: as they lose energy they become warmer.

It follows from equation (4.23) that

dR
dt
' −2

R

tKH
, (4.24)

2However, it is sometimes useful to consider an expression like equation (4.19) for some part of the star,
so that the integrated terms must be taken into account.

3Note that it follows already from the estimate in equation (4.9) that the temperature increases as the
radius decreases, when the ideal gas law is assumed.
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where tKH is the Kelvin-Helmholtz time defined in equation (1.5). This confirms that
tKH is a characteristic time for the gravitational contraction of a star. It might be noted
that the equality in equation (4.21) shows that tKH is also a characteristic time for the
radiation of the thermal energy of the star. Hence changes that involve substantial losses
or gains of energy cannot take place on timescales shorter than tKH, at least as long as
hydrostatic equilibrium is nearly maintained. Correspondingly, for changes that do occur
on much shorter timescales the changes in energy must be very small; in other words, such
changes are nearly adiabatic.

Exercise 4.4:

Estimate the annual change in the solar radius, if one were to assume that the entire
solar luminosity came from gravitational contraction. The best current measurements
of the solar radius have a precision of ±0.1''� ; for how long should one observe the Sun
to detect such a radius change?

Similar effects occur in later stages of stellar evolution, as nuclear fuels are exhausted
in the core of the star: again, the result is a gravitational contraction which releases
energy and heats up the core, until the point is reached where further nuclear reactions
set in. In this case, however, the situation may be complicated by the presence elsewhere
in the star of nuclear burning shells; also, one often finds that the outer parts of the star
expand (which require energy to work against gravity) as the core contracts. Thus the
understanding of these evolutionary phases is less straightforward; but the virial theorem
still plays a central role.

When the gas cannot be regarded as ideal, or effects of ionization have to be taken into
account, the simple equation (4.22) must be modified; but the general principles remain
the same.

4.4.3 The relativistic case

If the particles in the gas are extremely relativistic, equation (3.2) must be used to relate
pressure and internal energy. In this case we obtain from equation (4.20) that

Ω = −Utot, extremely relativistic , (4.25)

and hence for the total energy
E = 0 . (4.26)

This result shows that an extremely relativistic system is marginally stable: it may expand
or contract indefinitely without any change in the total energy. Hence a small change to
the system may be sufficient to push it into instability. An important example of extremely
relativistic systems is a star dominated by radiation pressure; thus this argument supports
the postulate that such stars are unstable.
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4.5 Simple solutions to the equation of hydrostatic equilib-
rium

In the general case equations (4.4) and (4.5) cannot be solved as they stand; this requires
further equations, to be discussed in subsequent chapters, to determine ρ. There are two
exceptions, however:

a) When ρ is a known function of r.

b) When ρ is a known function of P .

If ρ(r) is known, equation (4.5) may be integrated, starting from m(0) = 0, to yield m(r);
given m(r) equation (4.4) may be integrated starting from r = R, with the boundary
condition P (R) = 0. Although this case has little practical utility for the construction
of realistic stellar models, it is interesting that knowledge of ρ(r) completely determines
the hydrostatic structure of a star. A simple example, where ρ is prescribed as a linear
function of r, is discussed in section 4.5.1 below.

The second case, where ρ is a known function of P , evidently assumes a rather special
form of the equation of state. A general class of models where this is the case is discussed
in some detail in section 4.6. A very simple example is the case where the temperature
is assumed to be given; this provides a simplified model of a stellar atmosphere. It is
discussed in section 4.5.2.

4.5.1 The linear model

We assume that ρ is a linear function of r, between ρ = ρc at r = 0 and ρ = 0 at r = R,
i.e.,

ρ = ρc

(
1− r

R

)
. (4.27)

By integrating equation (4.5) with this expression for ρ we obtain

m =
4π
3
ρcr

3
(

1− 3
4
r

R

)
= M(4x3 − 3x4) , (4.28)

where we required that the star have total mass M , and we introduced x = r/R. It follows
also that the central density is related to the mass and radius by

ρc =
3M
πR3

. (4.29)

Using this expression and equation (4.27) in equation (4.4) yields, after some manipula-
tions,

P =
5
4π

GM2

R4

(
1− 24

5
x2 +

28
5
x3 − 9

5
x4
)
, (4.30)

where we assumed that P = 0 at the surface, r = R. It should be noted that the
dependence of pressure on mass and radius is again characterized by M2R−4.
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Exercise 4.5:

Fill in the missing details in the derivation of equations (4.28) – (4.30). Compare the
central pressure in equation (4.30) with the exact bounds obtained in section 4.3.

If we assume the ideal gas law with no radiation pressure, equation (3.6), we find from
equations (4.27), (4.29) and (4.30) that the temperature is

T =
5
12
GµmuM

kBR

(
1 + x− 19

5
x2 +

9
5
x3
)
. (4.31)

Note that this leads to an expression for the central temperature on the same form as
equation (4.9), although with a somewhat different numerical constant.

Exercise 4.6:

Verify equation (4.31).

4.5.2 The isothermal atmosphere

We assume that the temperature T is constant in the atmosphere. Furthermore we assume
that the extent of the atmosphere is so small that it can be neglected compared with the
radius of the star. Then the gravitational acceleration g = GM/R2 can be assumed to be
constant. Finally we assume that the ideal gas law, equation (3.6), is valid. In this case
we obtain from equation (4.4) that

dP
dr

= −gρ = −P
H
, (4.32)

where the pressure scale height H is given by

H =
kBT

gµmu
. (4.33)

Since H is a constant, equation (4.32) may be integrated immediately. We introduce the
altitude h = r− r0, where r0 defines some arbitrary reference level in the atmosphere, and
obtain

P = P0 exp
(
− h
H

)
, (4.34)

where P0 is the value of P at h = 0. From the ideal gas law it then follows

ρ = ρ0 exp
(
− h
H

)
, (4.35)

where ρ0 is the value of ρ at h = 0. Thus in an isothermal atmosphere pressure and density
decrease exponentially.
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Exercise 4.7:

Estimate the scale height in the solar atmosphere (T ' 6000 K) and in the Earth’s
atmosphere (T ' 300 K). Both the solar and the Earth’s atmosphere can be assumed
to be totally unionized; remember also that the chemical composition is rather different
in the Earth’s atmosphere from the composition of typical stellar atmospheres. What
is the density of air at the top of Mt Everest, compared with the density at sea level?

4.6 Polytropic models

As mentioned above, the equation of hydrostatic equilibrium can be solved in the case
where ρ is a known function of P . A particular example of this is a relation on the form

P = Kργ , (4.36)

where K and γ are constants; this is called a polytropic relation, and the resulting models
are called polytropic models. Models of this nature have played a very important role
in the development of the subject; they are still useful as simple examples which are
nevertheless not too dissimilar from realistic models. More importantly, there are cases
where a polytropic equation of state is a good approximation to reality. An example
is a gas where the pressure is dominated by degenerate electrons (cf. equation (3.61));
another example, to which we return in Chapter 6, is the case where pressure and density
are related adiabatically, as in equation (3.15).

To obtain the equation satisfied by polytropic models we note that from equations
(4.4) and (4.5)

d
dr

(
r2

ρ

dP
dr

)
= −Gdm

dr
= −4πGρr2 .

Hence, using equation (4.36), we obtain

d
dr

(
r2Kγργ−2 dρ

dr

)
= −4πGρr2 . (4.37)

It is convenient to replace γ by the polytropic index n, defined by

n =
1

γ − 1
or γ = 1 +

1
n
. (4.38)

Furthermore, we introduce a dimensionless measure θ of ρ by

ρ = ρcθ
n , (4.39)

where ρc is the central density. Then equation (4.37) becomes

(n+ 1)Kρ1/n −1
c

4πG
1
r2

d
dr

(
r2

dθ
dr

)
= −θn . (4.40)
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To simplify the equation further, we introduce a new measure, ξ, of the distance to the
centre by

r = αξ, where α2 =
(n+ 1)Kρ1/n −1

c

4πG
. (4.41)

Then the equation finally becomes

1
ξ2

d
dξ

(
ξ2

dθ
dξ

)
= −θn . (4.42)

This equation is called the Lane-Emden equation, and the solution θ = θn(ξ) is called the
Lane-Emden function. From equation (4.39) it follows that θn must satisfy the boundary
condition

θn = 1 for ξ = 0 . (4.43)

The surface of the model is defined by the point, ξ = ξ1, where θ = 0.
Given the solution θn, we can obtain relations between the various quantities charac-

terizing the model. It follows immediately from equation (4.41) that the surface radius of
the model is

R =

[
(n+ 1)Kρ1/n −1

c

4πG

]1/2

ξ1 . (4.44)

The mass m(ξ) interior to ξ may be obtained by integrating equation (4.5), using equations
(4.39), (4.41) and (4.42), as

m(ξ) =
∫ αξ

0
4πr2ρdr = 4πα3ρc

∫ ξ

0
ξ2θn

ndξ

= −4πα3ρc

∫ ξ

0

d
dξ

(
ξ2

dθn

dξ

)
dξ = −4πα3ρcξ

2 dθn

dξ
. (4.45)

Using the second of equations (4.41) we finally obtain

m(ξ) = −4π
[
(n+ 1)K

4πG

]3/2

ρ(3−n)/2n
c ξ2

dθn

dξ
. (4.46)

In particular, the total mass is given by

M = −4π
[
(n+ 1)K

4πG

]3/2

ρ(3−n)/2n
c

(
ξ2

dθn

dξ

)
ξ=ξ1

. (4.47)

From equations (4.44) and (4.47) we may find a relation between M , R and K, by
eliminating ρc. The result is

K = NnGM
(n−1)/nR(3−n)/n , (4.48)

where

Nn =
(4π)1/n

n+ 1

[
−ξ(n+1)/(n−1)

1

(
dθn

dξ

)
ξ=ξ1

](1−n)/n

. (4.49)

There are two different interpretations of these relations, depending on the physical basis
for assuming a polytropic equation of state. If the constant K in equation (4.36) is given
in terms of basic constants and hence is known, equation (4.48) defines a relation between
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the mass and the radius of the star; this is the case, for example, for a star dominated
by the pressure of degenerate electrons, since here K is determined in equation (3.61). If,
on the other hand, equation (4.36) just expresses proportionality, the constant K being
essentially arbitrary, then equation (4.48) may be used to determine K for a star with a
given mass and radius; as shown below one may then determine other quantities for the
star. In the former case, therefore, there is a unique polytropic model for a given mass,
whereas in the latter case a model can be constructed for any value of M and R.

Exercise 4.8:

Verify equations (4.48) and (4.49).
Find the relation between M and R for a star dominated by degenerate electrons.
What is the radius of such a star if the mass is 0.6M�, and it is assumed to consist of
fully ionized carbon? (Use the appropriate value of Nn from Table 4.1 below).

From the last of equations (4.45) we find that the mean density of the star is

ρ =
M

4
3πR

3
= − 3

ξ1

(
dθn

dξ

)
ξ=ξ1

ρc , (4.50)

and hence the central density is determined by the mass and radius as

ρc = −

ξ3 1
dθn

dξ


ξ=ξ1

M
4
3πR

3
. (4.51)

Finally, using that from equation (4.36)

Pc = Kρ(n+1)/n
c ,

and using equations (4.48) and (4.51), we find that

Pc = Wn
GM2

R4
, (4.52)

where

Wn =

4π(n+ 1)

[(
dθn

dξ

)
ξ=ξ1

]2

−1

. (4.53)

The pressure throughout the model is then determined by

P = Pcθ
n+1
n . (4.54)

Exercise 4.9:

Fill in the missing details in the derivation of equations (4.50) – (4.53).
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Exercise 4.10:

Show that the gravitational potential energy of a polytrope of index n is

Ω = − 3
5− n

GM2

R
. (4.55)

(This is quite difficult. It may help to look in Chandrasekhar 1939).

In the case where the temperature is related to pressure and density through the ideal
gas law (3.6), assuming µ to be constant, equations (4.39) and (4.54) yield

T = Tcθn , (4.56)

where
Tc = Θn

GMµmu

kBR
, (4.57)

and

Θn =

[
−(n+ 1)ξ1

(
dθn

dξ

)
ξ=ξ1

]−1

. (4.58)

In this case, therefore, θ is a measure of the temperature.
To determine the structure of a polytropic star completely, we only need to find the so-

lution to the Lane-Emden equation (4.42). Unfortunately, in general no analytical solution
is possible. The only exceptions are n = 0, 1 and 5 where the solutions are

n = 0 : θ0 = 1− 1
6
ξ2 ξ1 =

√
6 , (4.59)

n = 1 : θ1 =
sin ξ
ξ

ξ1 = π , (4.60)

n = 5 : θ5 = (1 +
1
3
ξ2)−1/2 ξ1 =∞ . (4.61)

Exercise 4.11:

Verify that these solutions satisfy the Lane-Emden equation (4.42) and the boundary
condition (4.43).

The solution for n = 5 is evidently peculiar, in that it has infinite radius; also it follows
from equation (4.55) that the gravitational potential energy of the model is infinite. On
the other hand, since

lim
ξ→∞

(
−ξ2 dθ5

dξ

)
=
√

3 (4.62)

is finite, so is the mass of the model (cf. equation (4.47)). It may be shown that only for
n < 5 does the Lane-Emden equation have solutions corresponding to finite radius.
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Table 4.1

n ξ1 −ξ21
(

dθn
dξ

)
ξ=ξ1

ρc
ρ Nn Wn Θn

0. 2.44949 4.89898 1.00000 · · · 0.119366 0.50000
0.50 2.75270 3.78865 1.83514 2.52360 0.212209 0.48438
1.00 3.14159 3.14159 3.28987 0.63662 0.392699 0.50000
1.50 3.65375 2.71406 5.99070 0.42422 0.770140 0.53849
2.00 4.35287 2.41105 11.40254 0.36475 1.638183 0.60180
2.50 5.35528 2.18720 23.40646 0.35150 3.909062 0.69956
3.00 6.89685 2.01824 54.1825 0.36394 11.050679 0.85432
3.25 8.01894 1.94980 88.1532 0.37898 20.36510 0.96769
3.50 9.53581 1.89056 152.8837 0.40104 40.90982 1.12087
4.00 14.97155 1.79723 622.408 0.47720 247.559 1.66607
4.50 31.83646 1.73780 6189.47 0.65798 4921.84 3.33091
4.90 171.4335 1.72462 973806 1.35323 3.916826× 106 16.84808
5.0 ∞ 1.73205 ∞ ∞ ∞ ∞

Properties of polytropic models.

For values of n other than 0, 1 and 5 the Lane-Emden equation must be solved nu-
merically. Extensive tables of the solution exist; in any case, with modern computational
facilities the solution of the equation is a simple numerical problem. Table 4.1 lists a
number of useful quantities, which enter into the expressions given above, for a selection
of polytropic models. Furthermore, Table 4.2 presents the solution for the particular case
of n = 3, at selected values of ξ. To illustrate the distribution of mass in the model,
according to equation (4.47), the last column gives the quantity

q =
m

M
=
(
ξ2

dθn

dξ

)(
ξ2

dθn

dξ

)−1

ξ=ξ1

. (4.63)

From Table 4.1 it follows that the properties of polytropic models vary widely with
n. This is true in particular of the degree of central condensation, as measured by the
ratio ρc/ρ between central and mean density. For n = 0 is is obvious from equation (4.39)
that ρ is constant, and hence ρc/ρ = 1, whereas the ratio clearly tends to infinity as
n → 5. For stars on the main sequence the central condensation is typically around 102,
corresponding to a polytrope of index around 3.3. It should be noticed also that equation
(4.52) for the central pressure and, in the ideal-gas case, equation (4.57) for the central
temperature, confirm the simple scalings derived in section 4.2. However, the polytropic
relations contain the additional numerical constants Wn and Θn. It is obvious from Table
4.1 that Wn varies strongly with n; hence the estimate in equation (4.8) is at most a
rough approximation. On the other hand, the range of variation of Θn is much more
modest, except when n is very close to the critical case n = 5. Thus equation (4.9) gives
a reasonable estimate for the central temperature for a wide range of models.
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Table 4.2

ξ θ3 θ3
3 θ4

3 −dθ3
dξ q

0. 1. 1. 1. 0. 0.
0.25 0.98968 0.96936 0.95935 0.08179 0.00253
0.50 0.95984 0.88429 0.84878 0.15484 0.01918
0.75 0.91354 0.76240 0.69649 0.21263 0.05926
1.00 0.85506 0.62515 0.53454 0.25213 0.12493
1.25 0.78898 0.49113 0.38749 0.27367 0.21187
1.50 0.71950 0.37247 0.26800 0.27991 0.31206
1.75 0.64999 0.27461 0.17849 0.27460 0.41668
2.00 0.58285 0.19800 0.11541 0.26149 0.51826
2.25 0.51962 0.14030 0.07290 0.24380 0.61154
2.50 0.46113 0.09805 0.04521 0.22397 0.69358
2.75 0.40767 0.06775 0.02762 0.20369 0.76325
3.00 0.35923 0.04636 0.01665 0.18405 0.82074
3.25 0.31554 0.03142 0.009914 0.16567 0.86702
3.50 0.27626 0.02109 0.005825 0.14885 0.90344
3.75 0.24098 0.01399 0.003372 0.13369 0.93151
4.00 0.20928 0.009166 0.001918 0.12017 0.95266
4.25 0.18077 0.005907 0.001068 0.10819 0.96826
4.50 0.15507 0.003729 0.000578 0.09762 0.97946
4.75 0.13185 0.002292 0.000302 0.08831 0.98727
5.00 0.11082 0.001361 0.000151 0.08013 0.99252
5.25 0.09171 0.000771 0.000071 0.07292 0.99590
5.50 0.07429 0.000410 0.000030 0.06658 0.99795
5.75 0.05835 0.000199 0.000012 0.06099 0.99910
6.00 0.04374 0.000084 0.000004 0.05604 0.99967
6.25 0.03029 0.000028 0.000001 0.05166 0.99991
6.50 0.01787 0.000006 0.000000 0.04777 0.99999
6.75 0.00637 0.000000 0.000000 0.04430 1.00000
6.89685 0.00000 0.000000 0.000000 0.04243 1.00000

Properties of a polytrope of index n = 3. From equations (4.39) and (4.54) it follows that
θ3
3 and θ4

3 correspond to ρ/ρc and P/Pc, respectively. The last column gives the mass
fraction q = m/M .

Exercise 4.12:

Find ρc, Pc and Tc in a polytrope of index 3 with solar mass and radius and chemical
composition X = 0.7, Z = 0.02, where the ideal gas law is assumed to be valid. Find
also ρ, P and T at the point where r = R/2. (Use the data in Tables 4.1 and 4.2).
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Chapter 5

Radiative energy transport

5.1 Radiative transport in stellar interiors

The complete treatment of the transport of energy by radiation, and the interaction be-
tween radiation and matter, is a research topic in its own right, which has been extensively
treated in the literature (e.g. Mihalas 1978; see also Clayton 1968, Chapter 3). Such a
complete treatment is required to analyze the properties of, for example, stellar atmo-
spheres or the interstellar medium. In stellar interiors, however, it is possible to get by
with a simplified description whose results agree with those of the more complete theory
in the limit where the mean free path of the photons is very short.

As discussed in Section 3.4, one can show that the energy density of radiation is
uR = aT 4, where a is the radiation density constant. T , and hence uR, decreases with
increasing distance r from the centre of the star. As a result, photons moving away from
the centre carry a slightly higher energy on average than photons that move towards the
centre, and this gives rise to a net transport of energy towards the surface of the star. In
the following this argument is made more quantitative.

We consider the energy transport in the time interval dt through an area dA orthogonal
to the direction to the centre of the star, at r = r0. We describe the direction of motion of
the photons by the angle θ between the outward directed normal to dA and the direction of
motion (see Figure 5.1). The motion of the photons is assumed to be almost isotropically
distributed in direction; then out of the total number of photons the fraction of photons
with directions between θ and θ + dθ is 2π sin θdθ/4π = 1/2 sin θdθ.

The motion of the photons through the gas is described in terms of the mean free path
λ between interactions (absorption, scattering, etc.) between a photon and a particle in
the gas; λ is defined such that the probability that the photon is scattered or absorbed
over a small distance ∆` is ∆`/λ. In the interior of a star λ� r.

Exercise 5.1:

Show that the probability that a photon moves over the finite distance ` is exp(−`/λ).
Show from this that λ is in fact the mean value of the distance that a photon moves.

We first consider photons that go through dA with directions between θ and θ + dθ.
On average they come from the distance r′ = r0−λ cos θ from the centre (cf. Figure 5.2).

71
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Figure 5.1: The geometry of the angular distribution of photons. Photons with
directions θ to θ + dθ relative to the outward directed normal to the area dA fall
within the shaded band, of area 2π sin θdθ, on the unit sphere.

Hence they correspond to the energy density uR(r′), and their contribution to the energy
transport through dA is

1
2 sin θ dθ uR(r0 − λ cos θ) × cos θ dA × c̃dt

Contribution to Projected path length
energy density area

(5.1)

The total energy transport through dA in the time dt is obtained by integrating over

Figure 5.2: Photons passing through the plane at r = r0 at the angle θ with the
normal on average originate at r = r′ = r0 − λ cos θ where λ is the mean free path.
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all directions:

dE =
1
2
c̃

∫ π

0
uR(r0 − λ cos θ) cos θ sin θ dθ dAdt

' 1
2
c̃

∫ π

0
uR(r0) cos θ sin θ dθ dAdt− 1

2
λc̃

∫ π

0

duR

dr
cos2 θ sin θ dθ dAdt

= −λc̃
3

duR

dr
dAdt , (5.2)

where we used a Taylor expansion of uR in r. Note that this derivation is consistent with
the discussion in the introduction to this section: the uniform part of the radiation energy
density, viz. uR(r0), makes no contribution to the energy transport, which is determined
by the change with position in the energy density.

The radiative flux FR is defined by

dE = FR dAdt . (5.3)

Hence
FR = −λc̃

3
duR

dr
. (5.4)

Instead of using λ to describe the interaction between matter and radiation it is con-
ventional, and convenient, to use the opacity κ. It is defined such that

λ = (κρ)−1 . (5.5)

By using the expression for uR in terms of T we then obtain

FR = −4ac̃T 3

3κρ
dT
dr

. (5.6)

If the energy transport occurs only through radiation, the total amount of energy
transported through a sphere of radius r is

L(r) = 4πr2FR . (5.7)

We therefore finally have the equation

dT
dr

= − 3κρL(r)
16πac̃r2T 3

, (5.8)

which is one of the fundamental equations of stellar structure.

5.2 Radiation from the stellar surface

Near the surface of the star the density is very low, and hence the mean free path is large.
Thus we cannot use the description given above. However, it is possible to estimate the
amount of energy radiated from the stellar surface. The only contribution comes from
photons directed outwards, i.e., with θ < π/2. There is no near balance between photons
directed outwards and inwards, and hence we need not take the r-dependence of uR into
account. Therefore, instead of equation (5.2) we obtain

dE ' 1
2
c̃

∫ π/2

0
uR cos θ sin θ dθ dAdt =

1
4
c̃ uR dAdt , (5.9)
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or
FR '

ac̃

4
T 4 . (5.10)

As discussed in section 2.3 (cf. equation (2.20)) we define the effective temperature Teff

for the star by

FR =
ac̃

4
T 4

eff = σT 4
eff ; (5.11)

then the surface luminosity Ls = L(r) is given by

Ls = 4πR2σT 4
eff , (5.12)

where R is the surface radius and σ ≡ ac̃/4 is the so-called Stefan-Boltzmann constant.

5.3 The opacity

The mean free path of a photon, and hence the opacity, depends on the microscopic
interaction between radiation and matter. Traditionally this interaction is described in
terms of a cross section σR, such that, roughly speaking, a photon interacts with an atom
if it passes within the area σR around the atom. If the number of atoms per unit volume
is n, the mean free path is thus

λ =
1
nσR

i .e., κ = σR
n

ρ
. (5.13)

Exercise 5.2:

Prove these relations.

Note that n/ρ is the number of atoms per unit mass; hence κ is the total cross section per
unit mass. If σR and n/ρ are independent of the state of the gas (as described by ρ og T )
it follows that κ is also independent of ρ and T .

The computation of the cross section is in general a very complicated numerical prob-
lem, where account must be taken of the detailed interaction between the radiation and
the different atoms in the gas. Hence it is common in computations of stellar models to
use tables over the dependence of opacity on ρ, T and the chemical composition. However,
there are simple approximations which give a feel for the dependence of the opacity on
the thermodynamical state.

The opacity arising from the interaction between radiation and atoms can approxi-
mately be expressed as

κ = κ0ρT
−3.5 (5.14)

(the so-called Kramers approximation), where κ0 is a constant, which depends on the
chemical composition1. This contribution dominates in the interior of relatively light
stars, where the temperature is relatively low. Another contribution to the opacity is

1This dependence can be expressed by κ0 = Z(1+X)κ1, where κ1 is a new constant, which is indepen-
dent of chemical composition.
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Figure 5.3: Summary of the dominant contributions to the opacity, as a function
of log ρ and log T , for a chemical composition typical for a Population I star. In the
lower right-hand corner energy transport is dominated by conduction by degenerate
electrons, and in the upper left-hand corner electron scattering (cf. equation (5.15))
dominates. In the remainder of the diagram the opacity predominantly comes from
atomic interactions; “b-b” and “b-f” refer to bound-bound and bound-free transitions
(between two bound states, and a bound state and the continuum, respectively), and
“f-f” refers to so-called free-free transitions, involving interactions between radiation,
an unbound electron and an atom. The atomic contributions depend on ρ and T
roughly as indicated by the Kramers approximation, equation (5.14). The dot-dashed
line marked ‘α = 0’ marks the transition to beginning degeneracy. (From Hayashi,
Hoshi & Sugimoto 1962.)

scattering off free electrons. The cross section for this process is independent of ρ and T ;
the same is true of the number ne/ρ of electrons per unit mass, if we assume that the gas
is completely ionized. Hence the opacity is also independent of ρ and T ; one finds that

κ = κe = 0.2(1 +X) cm2 g−1 . (5.15)

Thus this contribution dominates over the atomic contribution in equation (5.14) at rela-
tively high temperature, i.e., in more massive stars.

Figure 5.3 gives an overview of the different contributions to opacity. In addition to
the contributions mentioned above, transitions between bound levels in those atoms that
are not yet fully ionized give a substantial contribution to the opacity, indicated by “b-b”



76 CHAPTER 5. RADIATIVE ENERGY TRANSPORT

in the diagram. This contribution was originally thought to be relatively minor, but was
revised in two major efforts to recompute the opacities; one set of calculations, at the
Livermore Laboratories, resulted in the so-called OPAL tables (e.g. Iglesias, Rogers &
Wilson 1992), while a second set of calculations, involving a large international team in
the Opacity Project, has produced the OP tables (Seaton et al. 1994). Although the
details of the computations are rather different, the resulting tables agree to within a few
per cent. Strikingly, the inclusion of literally millions of bound-bound transitions resulted
in increases in the computed opacity by factors of 3 – 5 over the older tables. These
opacity improvements have led to the resolution of a number of long-standing problems in
stellar astrophysics (for an overview, see Christensen-Dalsgaard 1995).

At temperatures below 6 – 10 000 K the opacity is dominated by absorption in H−

(i.e., a hydrogen atom with an extra electron); this is typically the case in the atmospheres
of stars of solar mass or less. The additional electron comes from the ionization of metals.
The opacity increases with the number density of H− and hence of electrons, i.e., with
the degree of ionization; therefore the opacity increases with increasing temperature, as
opposed to the behaviour in equation (5.14), which is valid in the interior of the stars.

5.4 Stellar atmospheres

The computation of models of stellar atmospheres is a complicated problem, which we
cannot treat here (see, for example, Mihalas 1978). In the atmosphere it is necessary to
make a detailed description of the radiative transfer, taking into account the absorption
of radiation from all states of the individual atoms. In particular, one has to consider
transitions between bound states. These transitions remove energy from the radiation
in narrow wavelength intervals and hence cause the dark lines in the spectrum of the
light which the star radiates. On the other hand the distribution of the atoms among
different states of ionization and excitation is determined by the radiation. Hence there is
an intimate, and complex, coupling between matter and the radiation field.

These complications have no serious effect on the structure of stellar interiors. However,
to compute stellar models one must know the relation between pressure and temperature
in the stellar atmosphere. As discussed in Chapter 9 this relation provides one of the
boundary conditions for the calculation. Here we derive a simple, but for our purpose
adequate, form of this relation.

The temperature gradient in the interior of the star is required to ensure the transport
of energy. In the stellar atmosphere the photons are radiated directly to space, with-
out being substantially absorbed, and hence the transport of energy does not require a
temperature gradient. Thus we may expect that the temperature is approximately con-
stant in (simple) models of stellar atmospheres, where the energy transport occurs only
through radiation. This is confirmed by detailed calculations2. The temperature in the
approximately isothermal part of the atmosphere is a little below Teff .

The bottom of the atmosphere, defined as the region from which photons are no longer
radiated directly to space, is normally called the photosphere and corresponds roughly to
the visible surface of the star. We can find a relation for the pressure Pph at this point.

2However, other effects may lead to temperature variations in stellar atmospheres. An important
example is the solar atmosphere where heating due to dissipation of waves, and to magnetic effects, leads
to substantial variations in temperature with altitude in the so-called chromosphere, and to the very hot
outer atmosphere, or corona. Evidence for similar effects has been found in other stars.
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Let h be the height in the atmosphere above the photosphere. It is easy to generalize
the argument in exercise 5.1 to show that the probability that a photon escapes from the
height h is exp(−

∫∞
h dh/λ). A reasonable measure for the location of the bottom of the

atmosphere, i.e., h = 0, is that this probability is e−1; hence

1 '
∫ ∞

0

dh
λ

=
∫ ∞

0
κρdh . (5.16)

If we furthermore assume that the atmosphere is isothermal, the variation of density with
height is given by

ρ = ρph exp(−h/H) (5.17)

(cf. equation (4.35)), where the density scale height H is given by

H =
kBT

µmug
, (5.18)

g = GM/R2 is the gravitational acceleration in the atmosphere, and the subscript “ph”
indicates the value at h = 0. We approximate the opacity by a power law3,

κ = κ
(ph)
0 ρaT b ; (5.19)

as discussed above the opacity increases with increasing temperature when the temperature
is low (where H− dominates), so we expect that b > 0. Hence from equation (5.16) the
relation determining conditions at the base of the atmosphere is

1 '
∫ ∞

0
κphρph exp

[
−(a+ 1)

h

H

]
dh =

H

a+ 1
κphρph , (5.20)

where κph = κ
(ph)
0 ρa

phT
b
eff is the opacity at the photosphere.

To obtain an expression for Pph we use the ideal gas law, equation (3.6), to get

Pph =
GM(a+ 1)
κphR2

. (5.21)

Using again the ideal gas law, and equation (5.19) for κ, we finally get an equation which
can be solved for Pph, assuming that T ' Teff .

Exercise 5.3:

Show that

Pph =

[
GM(a+ 1)

R2κ
(ph)
0

]1/(a+1) (
kB

µmu

)a/(a+1)

T
(a−b)/(a+1)
eff . (5.22)

Furthermore show that

ρph =

[
GM(a+ 1)

R2κ
(ph)
0

]1/(a+1) (
kB

µmu

)−1/(a+1)

T
−(b+1)/(a+1)
eff . (5.23)

3The use of a in this equation should not be confused with the radiation density constant introduced
above.
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In the case of the Sun we can take

κ
(ph)
0 = 1.6× 10−33 , a = 0.4 , b = 9.3 ,

in cgs units. Estimate the pressure and density in the solar photosphere.

Note that, as might have been anticipated, the atmospheric pressure and density are high
in stars with high surface gravity. This fact was already used in the discussion in section
2.5.2 of the luminosity class in the spectral classification: at a given effective temperature,
a small radius corresponds to low luminosity, according to equation (5.12); also, a small
radius leads to high surface gravity and hence to high density which, in turn, causes broad
spectral lines because of the increased perturbation of the atoms in the gas. This allows
such stars to be classified as belonging to a high luminosity class.

5.5 The energy equation

Equation (5.8) must be supplemented by an equation for the luminosity L as a function
of r. During most of the evolution of the star the energy derives predominantly from
nuclear reactions (see Chapter 8). If the rate of energy production per unit mass is ε, in
the spherical shell between radius r and r + dr the energy 4πr2ρεdr is produced per unit
time, giving rise to the increase dL in L over the shell. We therefore have the differential
equation

dL
dr

= 4πr2ρε (5.24)

for L.
Equation (5.24) does not describe the liberation of energy during gravitational contrac-

tion (cf. section 4.4) and hence cannot be used, for example, in the early phases of stellar
evolution. To get a more complete expression we use the first law of thermodynamics
(equation (3.8)):

d-Q = dU + PdV . (5.25)

Here V is the volume of the thermodynamic system under consideration, U is the in-
ternal energy of the system and d-Q is the heat added or subtracted from the system.
We consider the system containing unit mass, so that V = 1/ρ and U = u/ρ, where
u is the internal energy per unit volume. The heat input during the time dt has two
contributions. One is the heat ε liberated by nuclear reactions. The second is the heat
deposited from or extracted by the energy flowing through the layer; since the mass of the
shell between r and r + dr is 4πr2ρdr, this contribution in the time dt, per unit mass, is
[L(r)− L(r + dr)]dt/(4πr2ρdr). Thus we obtain from equation (5.25)

εdt+
[L(r)− L(r + dr)]dt

4πr2ρdr
= d

(
u

ρ

)
+ Pd

(
1
ρ

)
, (5.26)

or
dL
dr

= 4πr2
[
ρε− ρ d

dt

(
u

ρ

)
+
P

ρ

dρ
dt

]
. (5.27)

This is the desired equation.
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The interpretation of equation (5.27) is reasonably clear. The energy radiated comes
from the energy produced by the nuclear reactions; but the contribution required to in-
crease the internal energy of the gas or to do work on the gas must be subtracted. During
gravitational contraction, before nuclear reactions start, only the last two terms on the
right hand side of equation (5.27) contribute. As the temperature in the star is increasing,
u/ρ increases, so that the term in d(u/ρ)/dt gives a negative contribution to dL/dr; but
this is more than compensated for by the positive term in dρ/dt, which corresponds to
the work of gravity on matter in the star.

Exercise 5.4:

Assume, during gravitational contraction, that ρ changes as R−3, and T changes as
R−1. Estimate the relative size of the last two terms in equation (5.27). How can the
result be interpreted in terms of the virial theorem?

In equation (5.27) the two terms in d/dt are essentially negligible during the normal
nuclear burning phases of the evolution of the star. To see this we consider the Kelvin-
Helmholz time tKH, i.e., the time during which the star can maintain its energy output
by radiating the internal thermal energy,

tKH =
Utot

Ls
, (5.28)

where Utot ' R3u is the total internal energy of the star (see sections 1.1.2 and 4.4.2). For
the Sun tKH is of order 107 years. During nuclear burning evolution takes place over the
nuclear time scale tnuc which, as discussed in section 1.1.3, is of order 1010 years for the
Sun. In equation (5.27) we replace, as usual, dL/dr by Ls/R. Similarly we replace du/dt
by u/tnuc. Then we obtain the following estimate of the relative magnitude of the term in
du/dt: ∣∣∣∣4πr2ρ d

dt

(
u

ρ

)∣∣∣∣
dL
dr

'
Utot
tnuc

Ls
' tKH

tnuc
� 1 , (5.29)

given the typical values of tKH and tnuc quoted above.
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Chapter 6

Energy transport by convection

6.1 Introduction

It is possible to calculate stellar models assuming that energy transport takes place through
radiation alone. Such models do not provide a realistic description of real stars, however,
because in general they are unstable.

Any theoretical model should be tested for possible instabilities, before it can be ac-
cepted as realistic. An instability manifests itself through the growth of any small dis-
turbance with time, often exponentially. If the characteristic growth time is less than the
evolutionary time scale for the star, the disturbance may in the end dominate the prop-
erties of the star. Such stability investigations have been carried out for stellar models,
generally showing that these are stable. However, a particular type of instability is often
found, namely the instability corresponding to having a layer of higher density on top of a
layer with lower density1. An extreme analogy to this instability would be a glass where a
layer of mercury had been placed on top of a layer of water. This is evidently an unstable
situation.

In a star this type of instability can occur if the temperature decreases too rapidly with
distance from the centre. The decrease of pressure with r is determined by hydrostatic
equilibrium, and is therefore largely given, and the only possibility for compensating for
a rapid decrease in temperature is therefore, according to the ideal gas law, that the
density decreases slowly or even increases; this leads to the instability. From the equation
for radiative transfer (equation (5.8)) it follows that the temperature decreases rapidly
with increasing r when the opacity is high or the luminosity is high. These are therefore,
roughly speaking, the circumstances which may lead to instability.

As a result of the instability hotter, relatively light elements of fluid rise and cooler,
relatively heavy elements sink. When the motion gets sufficiently strong, the elements
are dissolved and the gas is mixed. As a result, the rising elements deposit their excess
heat to the surroundings, and this leads to a net transport of energy out through the
star (obviously the sinking elements similarly contribute to the energy transport). This
process is called convection, and the instability is therefore called convective instability.
Convection is well known from everyday life, for example when air rises over a heater.
Besides contributing to the energy transport convection also leads to mixing of the parts
of the star where it occurs. As we shall see later this has a substantial effect on the

1The precise description of the instability will be given below.
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Figure 6.1: The motion of a convective element, from the initial position indicated
by “1”, to a later position, indicated by “2”.

evolution of some stars.

6.2 The instability condition

To determine the condition for instability we consider an element of gas (cf. Figure 6.1)
which is moved the distance ∆r outwards. As indicated we denote the pressure and density
outside (inside) the element before and after the motion by P1, ρ1, (P ∗1 , ρ∗1), and P2, ρ2,
(P ∗2 , ρ∗2). The element is initially identical to its surroundings, so that P ∗1 = P1 and
ρ∗1 = ρ1. Its motion is determined by buoyancy, which in turn is given by the difference
in density between the element and its surroundings (think of a cork pushed down into
water). The force per unit volume at the point 2 is

fbuoy = −g(ρ∗2 − ρ2) ≡ −g∆ρ , (6.1)

where g = Gm/r2 is the gravitational acceleration. If fbuoy > 0 the force on the element
is directed outwards, and the motion is accelerated; hence this corresponds to instability.
In the opposite case the force is directed downwards, the element has a tendency to return
to its original position, and the situation is stable.

To determine ∆ρ, and hence decide between stability and instability, we make the
following assumptions:

1) The motion is so slow that there is pressure balance between the element and the
surroundings.

2) The motion is so fast that there is no heat loss to the surroundings.

Note that pressure balance is established on the dynamical time scale tdyn, which we
estimated as

tdyn '
(
GM

R3

)−1/2

(6.2)
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(cf. equation (4.6)). A characteristic time scale for the heat loss is the Kelvin-Helmholtz
time

tKH '
Utot

Ls
, (6.3)

where Utot is the total internal energy, integrated over the star, and Ls is the surface
luminosity (see section 4.4.2). For the Sun tdyn ' 1 hour, while tKH ' 107 years. This
makes it plausible that the assumptions may be satisfied. We shall show below (cf. section
6.4.3) that the time scale for the convective motion is indeed intermediate between tdyn

and tKH.
From assumption 1) we have that P ∗2 = P2. Assumption 2) expresses that the motion

takes place adiabatically; from equation (3.18) it therefore follows that

dρ∗

ρ∗
=

1
Γ1

dP ∗

P ∗
=

1
Γ1

dP
P

, (6.4)

where dρ∗ and dP ∗ are the changes in ρ and P inside the element. From Taylor expansion
we therefore obtain

∆ρ = ρ∗2 − ρ2 = ρ∗2 − ρ1 − (ρ2 − ρ1)

' ρ1
1
Γ1

1
P1

dP
dr

∆r − dρ
dr

∆r

=
(
ρ1

P1

1
Γ1

dP
dr
− dρ

dr

)
∆r =

[(
dρ
dr

)
ad
− dρ

dr

]
∆r , (6.5)

where we introduced2 (
dρ
dr

)
ad
≡ 1

Γ1

ρ

P

dP
dr

. (6.6)

The condition for instability is that ∆ρ < 0 (see equation (6.1)), i.e.,(
dρ
dr

)
ad
<

dρ
dr

. (6.7)

After division by ρd lnP/dr this condition can also be expressed as

d ln ρ
d lnP

<
1
Γ1

(6.8)

(recall that as a result of the equation of hydrostatic equilibrium dP/dr is always negative).
Note that for a completely ionized ideal gas 1/Γ1 = 3/5.

Exercise 6.1:

Use equations (6.1) and (6.5) to determine an equation of motion for the element,
expressed as a differential equation for ∆r as a function of time. Discuss the solution
in the simple case where ρ, Γ1 and dP/dr can be assumed to be almost constant, and
describe the behaviour of the element in the case of instability. Show that in the case
of stability the element executes an oscillation around the equilibrium position.

2hence (dρ/dr)ad is the density gradient resulting from adiabatic motion in the given pressure gradient.
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The interpretation of equation (6.8) is entirely in accordance with the introduction:
instability occurs when the density does not decrease sufficiently rapidly, or even increases,
towards the surface of the star. That instability does not require (as indicated by our
simple argument) that density increases towards the surface is due to the fact that we
consider a gas whose density decreases with decreasing pressure.

The instability condition is normally expressed in terms of the gradient in temperature,
rather than the gradient in density. We use the ideal gas law, written in the form

ρ =
µmuP

kBT
. (6.9)

It is normally assumed that the chemical composition is independent of position; if we
furthermore assume that the gas is fully ionized, µ is constant, and we obtain by differen-
tiation

1
ρ

dρ
dr

=
1
P

dP
dr
− 1
T

dT
dr

. (6.10)

This leads to (
dρ
dr

)
ad
− dρ

dr
=

1
Γ1

ρ

P

dP
dr
− ρ

P

dP
dr

+
ρ

T

dT
dr

= −Γ1 − 1
Γ1

ρ

P

dP
dr

+
ρ

T

dT
dr

. (6.11)

A correct thermodynamical treatment, taking into account partial ionization and depar-
tures from the ideal gas law, shows that Γ1 in equation (6.11) must be replaced by Γ2, i.e.,
the adiabatic exponent for the relation between P and T . Hence the instability condition
becomes (

dT
dr

)
ad
>

dT
dr

, (6.12)

where (
dT
dr

)
ad
≡ Γ2 − 1

Γ2

T

P

dP
dr

(6.13)

is the adiabatic temperature gradient. In analogy with equation (6.8), equation (6.12) can
also be written as

d lnT
d lnP

>
Γ2 − 1

Γ2
. (6.14)

This equation shows that there is instability if the temperature decreases too rapidly out
through the star, in perfect agreement with our simple discussion.

It is the convention to introduce the notation

∇ =
d lnT
d lnP

, ∇ad ≡
Γ2 − 1

Γ2
=
(
∂ lnT
∂ lnP

)
ad

. (6.15)

Then the instability condition in equation (6.14) can be written

∇ > ∇ad . (6.16)

This condition is normally expressed by saying that the temperature gradient is super-
adiabatic. For a fully ionized ideal gas ∇ad = 2/5.

Note that our assumption that the chemical composition is constant, in the derivation
of equations (6.12) and (6.13), is incorrect in regions where nuclear burning is taking place.
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In a region of hydrogen burning, for example, the hydrogen abundance increases outwards
(because of the steep increase in the rate of burning with increasing temperature), and
hence µ decreases outwards. It is evident from the derivation of the instability condition
that the condition (6.8) in terms of P and ρ is correct, regardless of this complication.
Hence, strictly speaking the condition in equation (6.14) should be corrected, by including
a term in the gradient in µ. In actual computations the instability criterion in equation
(6.14) is almost always used, largely due to tradition and computational convenience. This
error probably has little qualitative effect on the results of the computations, however.

6.3 Where does convection occur?

To determine the circumstances under which one may expect convection, we consider a
model where energy transport takes place through radiation and investigate its stability.
Here (cf. equation (5.8))

dT
dr

= − 3κρL(r)
16πac̃r2T 3

. (6.17)

By using the equation for hydrostatic equilibrium (4.4) and the ideal gas law (6.9), the
temperature gradient, in the form introduced in equation (6.15), can be written

∇ = ∇R ≡
3kB

16πac̃Gmu

κ

µ

L(r)
m(r)

ρ

T 3
, (6.18)

where we introduced the radiative temperature gradient ∇R, i.e., the gradient required to
transport the entire luminosity by radiation. The condition for instability can now be
written as

∇R > ∇ad . (6.19)

When this condition is satisfied, energy transport by radiation requires too steep a tem-
perature gradient, and convection must take place.

From equations (6.18) and (6.19) it is evident that, roughly speaking, one may expect
convection if

a) L(r)/m(r) is large. This condition expresses that the average rate of energy gener-
ation per unit mass within the radius r is large. This is typically the case in the
interiors of massive stars. As we shall see later the energy generation in such stars
is a rapidly increasing function of temperature and hence is strongly concentrated
towards the centre of the star. Therefore L/m is large, and the star has a convective
core.

b) κ is large. This is satisfied in the outer parts of relatively light stars on the main
sequence, or more generally in stars with low surface temperatures, where the tem-
perature in the outer parts of the star is low, and the opacity consequently high (cf.
equation (5.14)). A further contribution to the high opacities in these regions comes
from the ionization of hydrogen (see also Figure 6.3 below).

c) ρ/T 3 is large. This is also typically satisfied in the outer parts of relatively cool
stars. Indeed, it follows from equation (5.23) that in the photosphere ρ/T 3 increases
rapidly with decreasing effective temperature.
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M ≥ 2M� 1M� < M < 2M� M ≤ 1M�

Figure 6.2: The typical occurrence of convection zones in main-sequence stars. In
relatively massive stars there is a convective core, whereas in relatively light stars on
the main sequence, and in general in stars with low effective temperature, there is an
outer convection zone. In red giants this convection zone occupies by far the largest
fraction of the stellar radius, and a substantial fraction of the stellar mass.

d) ∇ad is small. This is satisfied in the ionization zone of hydrogen, i.e., again in the
outer parts of cool stars.

Thus condition a) predicts convection in the core of massive stars, whereas the remaining
conditions indicate a tendency for convection in the outer parts of cool stars, i.e., in
relatively light stars on the main sequence, and in the so-called red giants. These locations
of convection zones are summarized in Figure 6.2.

The situation in a model of the present Sun is shown in Figure 6.3. As indicated,
∇R gets very large in the outer parts of the model, mainly as a result of the increase
in the opacity (mechanism b) above). Furthermore, it is evident that ∇ad is decreased
substantially below 2/5 in the outer ionization zones of hydrogen and helium, to a minimum
value of around 0.12 (mechanism d)). The figure also illustrates the behaviour of the actual
temperature gradient ∇, which is discussed in more detail in the following section: in the
convectively stable region obviously ∇ = ∇R, and the energy is carried exclusively by
radiation; in almost all of the convection zone ∇ is only slightly above ∇ad, the only
exception being a very thin region near the top of the convection zone.

6.4 Energy transport by convection

6.4.1 Introduction

The motion of a convective element after the onset of instability is extremely difficult
to describe. As a result, there is no definitive method for calculating the motion or
the convective energy transport. Presumably the velocity of the element increases up to
the point where new hydrodynamical instabilities set in, making the motion turbulent
and dissolving the element. In this way the excess heat in the element is deposited in
the surroundings, hence leading to energy transport. The description of such turbulent
processes is, and has for a long time been, the subject of intensive investigations3; so far

3Turbulent motion is of immense practical importance under a wide range of circumstances, from the
motion of air around an airplane to the flow of liquids through a pipe.



6.4. ENERGY TRANSPORT BY CONVECTION 87

Figure 6.3: Temperature gradients in a model of the present Sun. The solid line
shows the actual temperature gradient ∇, and the dotted line shows the adiabatic
gradient ∇ad (cf. equation (6.15)); the dashed line shows the radiative gradient ∇R

(equation (6.18)). Panel a) shows the entire model, panel b) a very small region near
its surface. In the radiative region, for r <∼ 0.72R, ∇ = ∇R, and the solid and dashed
lines coincide. In the convection zone ∇ is so close to ∇ad that the solid and dotted
lines are indistinguishable, except very near the surface.
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a satisfactory understanding, or sufficiently efficient methods for numerical computation,
have not been achieved. In the case of stellar convection the magnitude of the problem is
illustrated by the fact that the most advanced computations of convection near the solar
surface (carried out by Åke Nordlund, Copenhagen and R. W. Stein, Michigan; see for
example Stein & Nordlund 1989, 1998), when carried out on the fastest possible computers,
take much longer than the actual motion, even when restricted to a very small part of the
Sun. Several hundred hours of computing time have been used to simulate a few hours of
solar time. (For comparison, a complete calculation of solar evolution, using a simplified
description of convection, takes only about a minute.) It is evident that we are very far
from incorporating a complete numerical description of convection into computations of
stellar models.

Fortunately a less complete description is adequate for such computations, at least as
far as the overall properties of the stars are concerned. This only requires a relation for
the temperature gradient required to transport the luminosity by convection, to replace
equation (6.17) for radiative transport. It is possible to make a very rough estimate of
the relationship between the temperature gradient and the luminosity. This is carried out
in the remainder of this section. The result is that in most of the star the temperature
gradient is only slightly steeper than the adiabatic gradient determined by equation (6.13).
Hence for the purpose of computing stellar models the effect of convection is to replace
equation (6.17) by

dT
dr

=
(

dT
dr

)
ad

=
Γ2 − 1

Γ2

T

P

dP
dr

= −Γ2 − 1
Γ2

T

P

Gmρ

r2
, (6.20)

in regions where there is convective instability. This can conveniently be expressed by
writing the actual temperature gradient ∇ as

∇ = min(∇R,∇ad)

(see also Fig. 6.3).
A second conclusion is that the typical timescale for convective motion is much shorter

than the evolutionary time scale. Consequently convection zones are very efficiently mixed,
and we may assume that their chemical composition is uniform at all times. This has
important effects on the evolution of stars with convective cores.

6.4.2 Estimate of the superadiabatic temperature gradient

As usual in these estimates, we neglect factors of order unity, and make rough approx-
imations of the physics involved. We assume that a given convective element moves a
distance ∆r, before being destroyed. In the destruction the surroundings receive the en-
ergy ∆u ' ρcP ∆T per unit volume, where

∆T =
[(

dT
dr

)
ad
− dT

dr

]
∆r (6.21)

is the temperature difference between the element and the surroundings. If the mean
speed of the element is v̄, the convective energy flux can thus be estimated as

Fcon ' v̄cPρ∆T . (6.22)
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To obtain an estimate of v̄ we equate the kinetic energy 1/2ρv̄2 of the element per unit
volume to the work of buoyancy over the distance ∆r. From equations (6.1), (6.5) and
(6.11) we obtain (neglecting the factor 1/2)

ρv̄2 ' fbuoy∆r ' −
[(

dρ
dr

)
ad
− dρ

dr

]
g∆r2

=
ρ

T

[(
dT
dr

)
ad
− dT

dr

]
g∆r2 . (6.23)

To simplify the notation we introduce the dimensionless measure

δ ≡ R

T

[(
dT
dr

)
ad
− dT

dr

]
(6.24)

of the departure of the temperature gradient from its adiabatic value. Then we finally
obtain

Fcon ' ρcPTδ3/2
(

∆r
R

)2

(gR)1/2 , (6.25)

and hence the convective luminosity

Lcon ' R2Fcon ' R3ρcPTδ
3/2
(

∆r
R

)2 ( g
R

)1/2

. (6.26)

In the interior of the star we can estimate Lcon as

Lcon ' Utotδ
3/2
(

∆r
R

)2

t−1
dyn ,

where we used that tdyn ' (R/g)1/2 (cf. equation (6.2)), and Utot ' ρcPTR
3 is the total

internal energy of the star. This equation has a simple physical interpretation. If we neglect
the factor (∆r/R)2 we have that Lcon ' (Utotδ)(δ1/2/tdyn). Here Utotδ is a measure of the
internal energy that is transported; the factor δ reduces the energy transport, since it is
only the excess internal energy which contributes to the energy transport. Correspondingly
tdyn/δ

1/2 is the convective timescale tcon, which can be defined as

tcon =
∆r
v̄
' δ−1/2

(
R

g

)1/2

' δ−1/2tdyn , (6.27)

which determines the time taken to transport the energy; tcon is a dynamical time scale,
but the effective gravitational acceleration is reduced, since it is only the difference in
density which provides the force. Therefore the timescale is increased by the factor δ−1/2.

In the case of radiative transport the temperature gradient was determined as being
sufficiently large to transport the energy by radiation. Correspondingly, in the case of
convection, δ must be sufficiently large that the energy can be transported by convection.
If we assume that Lcon = Ls we obtain

δ '
[
Ls

Utot

(
∆r
R

)−2

tdyn

]2/3

'
(
tdyn

tKH

)2/3 (∆r
R

)−4/3

, (6.28)

by using equation (6.3). In the interior of a star we may assume, very roughly, that
∆r ' R/10. Using the values of tdyn and tKH for the Sun, we obtain

δ ' 10−6 . (6.29)
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Although these estimates are very uncertain, it is obvious that even an extremely small
superadiabatic gradient is sufficient to transport the entire energy by convection (see also
Figure 6.3). This simplifies the treatment of convection tremendously: at a given point
in the star one determines, by means of equation (6.14), whether the layer is unstable; if
this is the case, energy transport occurs through convection, and δ ' 0, and hence

dT
dr

=
(

dT
dr

)
ad

=
Γ2 − 1

Γ2

T

P

dP
dr

= −Γ2 − 1
Γ2

T

P

Gmρ

r2
. (6.30)

At such a point equation (6.30) replaces the usual equation (6.17) for the temperature
gradient.

In convection zones there is also a contribution from radiation to the energy transport,
given by (cf. equation (6.17))

Lrad = −16πac̃r2T 3

3κρ
dT
dr

, (6.31)

where dT/dr is given by equation (6.30). Hence, δ is actually smaller than the value
given in equation (6.28), where the entire energy transport was assumed to be carried by
convection. Near the surface in convective envelopes typically Lrad � L. However, in
the bulk of the convection zones the radiative and convective contributions to L are of a
similar magnitude, and there is a gradual transition from convective to radiative transport
at the boundaries of the convective regions.

Detailed computations of stellar models use a formalism that is somewhat more com-
plex, but the underlying ideas, and the results, are by and large similar to the those of the
simple analysis presented here. An important exception, however, is the fact that near
the surface of a star convection does not transport energy very efficiently. It may be seen
from equation (6.26) that Lcon is proportional to the density ρ, which is very low near
the surface. Furthermore one might expect that the distance ∆r is small near the stellar
surface. This is confirmed indirectly by observations of the Sun, where the convective
elements can be seen in the solar atmosphere as the so-called granulation; the size of these
convective elements, which is probably typical of ∆r in the outer layers of the Sun, is only
about 10−3R. As a result a substantial δ is required to transport the energy by convection;
this was also evident from Figure 6.3b. Thus when computing stellar models one has to
take into account the departure of dT/dr from (dT/dr)ad as determined by δ; hence a
more detailed description of convection is required. The effects of this for computations
of stellar models were discussed by Gough & Weiss (1976).

With our present limited understanding of convection this description contains a free
parameter (related to ∆r/R), which cannot be obtained from fundamental physical quan-
tities. This determines the efficiency of convection, and hence the superadiabatic gradient
∇ −∇ad required to transport the energy. In the case of the Sun this parameter can be
found by requiring that the radius of the computed model agrees with the observed solar
radius. In the bulk of the solar convection zone, where the temperature gradient is almost
adiabatic, the entropy is constant; the structure of this region, which in turn determines
the radius of the model, is essentially fixed by the value of the entropy. Adjusting the
parameter in the description of convection, changes the entropy in the adiabatic part of
the convection zone and hence the radius of the model. The uncertain details of the de-
scription of convection then only affects the region very near the surface where ∇−∇ad

is substantial. When computing models of other stars it is then normally assumed that
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the parameter is the same for all stars, despite the wide range of their properties (such
as effective temperature and surface gravity), and the solar calibration is used in compu-
tations of stellar models. Remarkably enough the resulting models are not too dissimilar
from the observed properties of, for example, stellar clusters (e.g. Pedersen, VandenBerg
& Irwin 1990).

It should also be noted that the detailed computations of solar granulation, mentioned
above, provide a measure of the average conditions in the outermost layers of the Sun.
The results are again fairly similar to those of traditional solar model computations, as far
as their effect on the overall structure of the Sun is concerned. Thus there may be some
hope that our inadequate treatment of convection does not introduce gross errors in the
computed models. Nevertheless, convective energy transport remains one of the major
uncertainties in computations of stellar models.

6.4.3 The convective time scale

From equations (6.27) and (6.28) we can estimate tcon as

tcon ' δ−1/2tdyn '
(
tKH

tdyn

)1/3 (
∆r
R

)2/3

tdyn = t
1/3
KH t

2/3
dyn

(
∆r
R

)2/3

. (6.32)

Assuming again that ∆r ' R/10, we find in the case of the Sun that tcon ' 0.2 year.
This is much shorter than the characteristic evolutionary time scale. Over a timescale
not much longer than tcon matter in a convection zone must be completely mixed. Hence,
we can assume that convection zones are chemically homogeneous with the same chem-
ical composition everywhere. We shall later discuss the consequences of this for stellar
evolution.
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Chapter 7

Mass-luminosity relations

7.1 Stars dominated by radiative transport

We can estimate the luminosity of stars, from the equation of radiative transport combined
with our previous estimates of the temperature and density in the stars. As usual the
purpose is to get a feeling, within a few orders of magnitude, for the characteristic value
of the luminosity, and an idea about how it varies with the parameters characterizing the
star. Hence in general we neglect factors of order unity.

We assume the ideal gas law and neglect radiation pressure. Then we have the estimate
for the temperature

T ' GMmuµ

kBR
(7.1)

(cf. equation (4.9)), and we estimate the density by the mean density

ρ ' M

R3
. (7.2)

The luminosity is determined by the equation of radiative transport (equation (5.8)),
which we write as

L = −4πr2ac̃
3κρ

dT 4

dr
. (7.3)

We approximate the opacity by a power law

κ ' κ0ρ
λT−ν (7.4)

(cf. equations (5.14) and (5.15)). Finally we replace r by R, and approximate −dT 4/dr
by T 4/R. Since the luminosity is essentially constant throughout most of the star, we may
use the resulting average value of L as representative of the surface luminosity Ls. Thus
we obtain

Ls '
ac̃RT 4+ν

κ0ρλ+1
' ac̃

κ0

(
Gmuµ

kB

)4+ν

R3λ−νM3+ν−λ . (7.5)

We distinguish between two cases:

93
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1) Lower main sequence, relatively low masses.

Here the temperature is relatively low, and the opacity is dominated by atomic processes, in
particular bound-free transitions. Hence the opacity can be approximated by the Kramers
law, i.e., λ = 1, ν = 3.5. Furthermore the constant in the law is

κ0 ≡ κ(bf)
0 ' 4× 1025Z(1 +X) in cgs units . (7.6)

Then equation (7.5) gives

Ls ' Lbf =
ac̃

κ
(bf)
0

(
Gmuµ

kB

)7.5

R−0.5M5.5

' 1.4× 1035
(
M

M�

)5.5 1.7
1 +X

0.02
Z

(
µ

0.62

)7.5 ( R

R�

)−0.5

erg sec−1 , (7.7)

where, as indicated, we assumed X = 0.7, Z = 0.02 as reference. This estimate is rather
too high, compared with the solar luminosity of 3.846 × 1033 erg/sec. In view of the
approximations made, this is hardly surprising. In fact, it is striking that the result is
so relatively close to the correct value. This is yet another example of the ability from
laboratory physics to predict properties of stars. All the quantities used in the estimate,
including κ(bf)

0 can either be measured or calculated from the laws of physics.
In equation (7.7) Ls depends on both M and R. However, the exponent in the de-

pendence on R is much smaller than the exponent in the M -dependence. Numerical
calculations show that on the main sequence R is approximately proportional to M ; hence
the variation of Ls is dominated by the M -dependence.

2) Upper main sequence, relatively massive stars

Here the temperature is relatively high, and the opacity is dominated by electron scatter-
ing. Then we obtain (cf. equation (5.15)) λ = ν = 0, κ0 = κ

(e)
0 = 0.2(1 +X) in cgs units,

and hence

Ls ' Le =
ac̃

κ
(e)
0

(
Gmuµ

kB

)4

M3 ' 3× 1035
(
M

M�

)3 ( µ

0.62

)4 1.7
1 +X

erg sec−1 . (7.8)

Note that Ls is independent of R in this approximation, while the M -dependence is less
steep than on the lower main sequence.

The choice between these two expressions depends on the relative magnitude of κe and
κbf ; when κe > κbf the opacity is dominated by electron scattering and equation (7.8)
must be used. It is easy to show that this condition is equivalent to Le < Lbf , i.e.,

M

M�
> 1.4

(
R

R�

)1/5

, (7.9)

for X = 0.7, Z = 0.02.

Exercise 7.1:

Show this.
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This confirms that equation (7.7) is valid on the lower, and equation (7.8) on the upper,
part of the main sequence; the transition takes place at a mass somewhat higher than the
solar mass.

It may seem peculiar that we can calculate the stellar luminosities, particularly on the
upper main sequence, without taking into account the processes that are responsible for
the energy generation. The explanation is that the star is in equilibrium, so that all parts
of the star have to “fit together”. The energy production has to adjust itself to produce
the amount of energy necessary to satisfy equation (7.7) or equation (7.8). This is possible
because the rate of energy production is a very sensitive function of temperature, as shown
in Chapter 8. Hence a small modification of the central temperature is sufficient to obtain
the correct luminosity.

It should also be noted that the present description, at least for the lower main se-
quence, assumes that the radius is known. In reality, the radius should also be determined
by similar arguments, and this requires that the complete set of constraints on the model
be taken into account. There exist well-defined procedures for doing that in the case where
the ideal-gas law is assumed and energy generation and opacity are approximated by power
laws in density and temperature; this results in the so-called homology-scaling relations
for stellar structure (e.g. Kippenhahn & Weigert 1990). The results are quite similar
to those obtained here, however; in particular, the luminosity is approximately inversely
proportional to opacity and depends very little on the details of energy production.

The relations found here do not depend on the star being on the main sequence, and
hence should also describe the evolution of the star before it arrives on, and after it leaves,
the main sequence, at least as long as the physical properties assumed here are valid1.
Since this is often depicted in a (log Teff , logLs) diagram, it is convenient in equation (7.7)
to express R in terms of Teff , by means of

Ls = 4πσR2T 4
eff (7.10)

(cf. equation (5.12)). The result is

Ls ∝ T 0.8
eff M

4.4 . (7.11)

Exercise 7.2:

Verify this.

Of course equation (7.8) is unchanged.

7.2 Predominantly convective stars

7.2.1 Introduction

In section 7.1 we assumed that the energy transport takes place by radiation in substan-
tial parts of the star. Hence the relations derived there are invalid for stars that are

1On the other hand the relations are not valid for, e.g., white dwarfs where the physical conditions are
quite different.
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predominantly convective. In particular, there are problems for stars with low effective
temperature, and hence having extensive convection zones in the outer parts where the
temperature is low and the opacity consequently high (cf. Chapter 6). Here we consider
such stars.

The analysis leading to the appropriate mass-luminosity relation for this case is rather
intricate; it is presented below. The result is a relation between mass, effective temperature
and luminosity, which may be written as

Ls

L�
' 0.03

(
M

M�

)−7 ( Teff

2400K

)40

. (7.12)

A notable feature of this relation is the very large exponent on Teff . Hence stars of this type
all have nearly the same effective temperature, which according to equation (7.12) is close
to 2400K. An important example of the use of this relation is to describe the contraction
of a star that is being formed; it may be shown that such a star is almost completely
convective and hence, during its evolution, the luminosity decreases with decreasing radius
while Teff is almost constant. Hence the evolution takes place along an almost vertical
track in the (log Teff , logLs) diagram; the location of the track depends little on M . This is
known as the Hayashi track, after the Japanese astrophysicist who was the first to describe
it. Equation (7.12) is illustrated schematically by the solid lines in Figure 7.1.

This overall behaviour is largely confirmed by numerical calculations (see Chapter 10),
although the details are somewhat different. Thus computationally Teff on the Hayashi
track is around 4000 − 5000 K. Also, the sign of the exponent on Teff , and hence the
slope of the Hayashi track is wrong: the detailed calculations show that the exponent is
negative, although still with a very large absolute value, so that the luminosity decreases
steeply with increasing effective temperature (see Figure 7.1). However, the qualitative
agreement between equation (7.12) and the numerical results is reasonable.

It may also be shown (cf. section 7.3) that stars on the left hand side of the Hayashi
track (i.e., at higher effective temperature) have a small core with radiative transport.
There are no stable stars on the right hand side of the Hayashi track. If one attempts to
construct a star with lower effective temperature than on the Hayashi track, the result is
a star with a void at the centre, and hence an obviously unstable situation.

7.2.2 Convective envelopes

In the convection zone
d lnP
d ln ρ

= Γ1 . (7.13)

We assume that Γ1 is constant, Γ1 = γ, where we use the value γ = 5/3 for a completely
ionized ideal gas. Then equation (7.13) can be integrated, to yield

P = Kργ , (7.14)

where K is a constant. Therefore the relation between P and ρ corresponds to a polytropic
equation of state.

As a further simplification we assume that the convection zone extends all the way up
to the photosphere and is adiabatically stratified everywhere, with a continuous transition
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Figure 7.1: Schematic illustration of the Hayashi track. The solid lines were ob-
tained from equation (7.12), for the masses 1, 2, 5 and 10M�. The dashed lines used
the same relation, except that the exponent 40 to Teff was replaced by −40. This
corresponds more closely to the behaviour obtained from numerical computations (cf.
Figure 10.1).

in P and ρ to the values in the photosphere. Then the constant K is determined by
conditions in the photosphere as

K =
Pph

ργ
ph

, (7.15)

where the index “ph” indicates the values in the photosphere. They can be found from
the results of section 5.4, in particular equations (5.22) and (5.23) for Pph and ρph. By
substituting into equation (7.15) we obtain

K =

[
GM(a+ 1)

R2κ
(ph)
0

]−η (
kB

µmu

)1+η

T
1+η(b+1)
eff , (7.16)

where η = (γ − 1)/(a+ 1)
According to equation (7.16) the properties of the atmosphere, described by Teff , ap-

parently determine K, and hence the structure of the interior of the star. This may seem
as a rather extreme case of the tail wagging the dog. In fact, the situation is the op-
posite: the structure of the star is determined by the polytropic relation (7.14); when
the density is sufficiently low that radiation can escape (as expressed by equation (5.20)),
the photosphere of the star is reached, and the temperature at that point is the effective
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temperature. Hence equation (7.16) determines Teff as a function of the structure of the
star, as given by the value of K, the mass and the radius. Given Teff the luminosity is
determined by

Ls = 4πσR2T 4
eff . (7.17)

Hence, if K is known, we obtain a mass-luminosity relation, corresponding to the relations
derived in section 7.1 for the case of radiative transfer.

It should be noted, however, that the assumption that equation (7.14) is valid up to the
photosphere is questionable. This assumes that convection is so efficient that the density
gradient is adiabatic everywhere. In fact, convection is rather inefficient near the surface of
the star, where the density is low. This is a problem in particular for stars of large radius
(cf. equation (5.23)). To relate the value of K in the interior of the star, which determines
its structure, to the properties in the photosphere we need a more detailed description of
convection. Another problem is that Γ1 is not constant in the ionization zones for H and
He, and hence that equation (7.14) does not always follow from equation (7.13). Thus
we cannot expect from the relations derived here to obtain an accurate description of the
star; on the other hand the analysis largely explains the results of more complete models.

7.2.3 Completely convective stars

For such stars equation (7.14) is valid everywhere, and hence the star is a complete poly-
trope of index n = 1/(γ − 1) = 3/2. Then we may use the relations in section 4.6; in
particular, we have that

K = Kpol ≡ N3/2GRM
1/3 (7.18)

(cf. equation (4.48)), where we have defined Kpol as the value of K corresponding to
complete polytrope, and the coefficient Nn is given in Table 4.1. From equations (7.16)
and (7.18) we then obtain

N3/2GRM
1/3 =

[
GM(a+ 1)

R2κ
(ph)
0

]−η (
kB

µmu

)1+η

T
1+η(b+1)
eff , (7.19)

and hence

Teff = N ξ
3/2

(
Gµmu

kB

)ξ(η+1)
(
κ

(ph)
0

a+ 1

)−ξη

Rξ(1−2η)M ξ(η+ 1
3
) , (7.20)

where ξ = 1/[1 + η(b+ 1)]. Finally equation (7.17) gives

Ls = 4πσN4ξ
3/2

(
Gµmu

kB

)4ξ(η+1)
(
κ

(ph)
0

a+ 1

)−4ξη

R4ξ(1−2η)+2M4ξ(η+ 1
3
) . (7.21)

This is the desired mass-radius-luminosity relation.
As the the radiative case (cf. equation (7.11)) it is instructive to eliminate R; this

gives a relation between Teff and Ls, which can be used to interpret evolutionary tracks
in a (log Teff , logLs) diagram. The result is

R = N−ζ
3/2

(
kB

Gµmu

)ζ(1+η)
(
κ

(ph)
0

a+ 1

)ζη

M−ζ(η+ 1
3
)T

ζ/ξ
eff , (7.22)
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and hence

Ls = 4πσN−2ζ
3/2

(
kB

Gµmu

)2ζ(1+η)
(
κ

(ph)
0

a+ 1

)2ζη

M−2ζ(η+ 1
3
)T

4+2ζ/ξ
eff , (7.23)

where ζ = 1/(1− 2η).
To get an impression of the numerical values we may use κ(ph)

0 = 2×10−20 in cgs units,
a = 0.7, b = 6, which is typical for a Population I chemical composition, X = 0.7, Z =
0.02. After suitably truncating the coefficients and exponents we then obtain

Teff ' 2400 K
(
M

M�

)0.2 ( R

R�

)0.06

, (7.24)

Ls

L�
' 0.03

(
M

M�

)0.8 ( R

R�

)2.2

, (7.25)

and
Ls

L�
' 0.03

(
M

M�

)−7 ( Teff

2400K

)40

. (7.26)

There are several noteworthy features of these relations. The exponent on R is very
small in equation (7.24), and hence Teff is almost independent of R; the dependence on
M is also weak. Thus stars of this type all have nearly the same effective temperature.
This is reflected in the very large exponent on Teff in equation (7.26). As discussed in
section 7.2.1 this causes the evolution of almost convective stars to follow the Hayashi
track.

Numerical computations of stars of this type largely confirm the results, although
the details are different. In particular, a qualitative difference is that unlike the numerical
results equation (7.26) predicts that the luminosity decreases with increasing mass at fixed
Teff and increases with increasing Teff for fixed mass. Hence, roughly speaking the evolution
tracks in the (log Teff , logLs) diagram obtained from the approximation have been rotated,
so that they have a positive slope rather than the correct negative slope. This problem
can be traced back to the sign of the exponent on R in equation (7.20) for Teff , and hence
to the magnitude of η; had η been slightly larger than 0.5 rather than, as here, slightly
below 0.5 the slope would have been at least qualitatively correct. It is obvious that one
cannot expect correct results for such relatively subtle details, with approximations as
coarse as those that we have made. Particularly troublesome is probably the assumption
that adiabatic convection extends all the way to the photosphere.

7.3 The “forbidden” region

In section 7.2 we assumed that the star was convective everywhere, so that the structure
corresponded to a complete polytrope. However, it is also possible to get a qualitative
understanding of the properties of a star where the convection zone extends over most, but
not all of, the star. In particular, it may be shown that the region in the (log Teff , logLs)
diagram corresponding to lower Teff than on the Hayashi track (for given Ls) is “forbidden”,
in the sense that it is impossible to construct stellar models in hydrostatic equilibrium in
that region. Here we present the ideas of this argument.
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When the model is not a complete polytrope, K 6= Kpol. However, it is still the
case that the outer parts of the model, where the temperature is lowest and the opacity
consequently highest, are convective. Hence we can find the structure of the outer parts
by integrating the polytropic equation from r = R in the direction of decreasing r. The
relevant differential equation is still equation (4.37):

1
r2

d
dr

(
r2K

ρ
γργ−1 dρ

dr

)
= −4πGρ , (7.27)

and we again introduce n = 1/(γ− 1). However, since the conditions at the centre are not
immediately relevant for the solution, it is not convenient to scale the density in terms of
the central density, as was done in equation (4.39). Instead we introduce the dimensionless
variable φ, by

ρ = ρφn =
3M

4πR3
φn . (7.28)

Then we obtain
1
r2

d
dr

(
r2

dφ
dr

)
= − 4πG

(n+ 1)K

(
3M

4πR3

)1− 1/n

φn ; (7.29)

of course this equation is, apart from the scaling of the dependent and independent vari-
ables, entirely equivalent to the Lane-Emden equation (cf. equation (4.40)). Assuming,
as an approximation, that the equation is valid to the surface of the star we obtain the
boundary conditions

φ = 0
dφ
dr

= −
(

4π
3

)1/n GM1− 1/n

(n+ 1)KR2− 3/n

 for r = R , (7.30)

where the last condition follows from the equation of hydrostatic equilibrium.
We now consider three models, with the same M and R:

Model 1, with K = Kpol.

Model 2, with K = K2 > Kpol.

Model 3, with K = K3 < Kpol.

Thus Model 1 is on the Hayashi track. The effective temperature and the luminosity for
the other two models can be obtained from equations (7.16) and (7.17). We obtain

Teff,2

Teff,1
=

(
K2

Kpol

)ξ

, (7.31)

and
L2

L1
=

(
K2

Kpol

)4ξ

, (7.32)

where indices “1” and “2” indicate Model 1 and Model 2. Corresponding relations are of
course obtained for Model 3. By using equation (7.23) we then find that Model 2 is on the
side of Hayashi track corresponding to higher Teff , while Model 3 is on the opposite side.
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Exercise 7.3:

Verify equations (7.31) and (7.32), as well as the location of Model 2 and 3 relative to
the Hayashi track.

We can now compare the structure of Models 1 and 2. From equation (7.30) it follows
that dφ/dr is smaller in absolute value at the surface of Model 2 than for Model 1, and
equation (7.29) then shows that |dφ/dr| increases more slowly with increasing r. Hence φ
also increases more slowly with decreasing r in Model 2, so that

φ2(r) < φ1(r) , (7.33)

or
ρ2(r) < ρ1(r) . (7.34)

Thus at given r the density is lower in Model 2. Furthermore, from the equation for m we
obtain

m2(r) = M −
∫ R

r
4πr2ρ2(r)dr > M −

∫ R

r
4πr2ρ1(r)dr = m1(r) . (7.35)

These relations are valid in the convective part of Model 2. Had Model 2 been convec-
tive to the centre, we would obtain from equation (7.35) that m2(0) > m1(0) = 0. Thus
Model 2 would have had a point-mass at the centre. This is rather unrealistic. In fact,
there has to be a transition to radiative transport somewhere in the interior; here the
density gradient is steeper than in Model 1, and hence the density increases more rapidly
with decreasing r, thus compensating for the lower mass in the outer parts of Model 2. If
the model is close to the Hayashi track, the region with radiative transfer is small; thus
the star has a small compact core surrounded by an extended convective envelope. As
discussed in Chapter 12 this corresponds to the structure of red giants, which are late
phases of stellar evolution.

For Model 3 the opposite argument may be made. Here we find that

ρ3(r) > ρ1(r) , (7.36)

and hence
m3(r) < m1(r) . (7.37)

But this gives rise to serious problems. Had Model 3 been everywhere convective, so that
equations (7.36) and (7.37) were valid at all r, there would be a point, r = r0 > 0, so that
m3(r0) = 0. Thus the star would have a hole in the middle! The only way to avoid this is
for the density to increase more slowly than corresponding to the adiabatic gradient. But
then the star would be convectively unstable, and hence this solution is impossible. Thus
we see that one cannot construct a stable model with K < Kpol, i.e., with lower Teff than
on the Hayashi track.
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Chapter 8

Nuclear energy generation

8.1 Introduction

During most of their lifetimes stars derive the energy which they radiate from nuclear
reactions. The gradual change in chemical composition as the reactions proceed determines
the evolution of the stars. Hence, to follow the life history of a star it is important to
understand the properties of the nuclear reactions. For this reason we describe the physics
of the nuclear energy generation in rather more detail than, for example, the opacity.
Nevertheless, a complete description is beyond the scope of these notes. Clayton (1968)
describes many aspects of the problem, and relates them to the detailed structure of the
nuclei involved.

The goal is to compute the rate ε of energy generation per unit mass, which was intro-
duced in equation (5.24). The computation can be separated into three parts, discussed in
separate sections below: the cross section for a reaction between a pair of nuclei, which is
determined predominantly by the properties of the nuclei; the amount of energy generated
per reaction, which again is a property of the nuclei; and the total reaction rate which,
beside the cross section, also depends on the statistics of the motion of the nuclei.

An additional consequence of the nuclear processes is a gradual change of the chemical
composition, which controls the evolution of the star. Hence we must determine the rate
of change of the abundances; for example, the rate of change of the hydrogen abundance
X may be written as

dX
dt

= rX , (8.1)

where rX is determined as a sum over the reactions which consume hydrogen.
For the purposes of the following discussion, it is convenient to introduce a compact

notation for nuclear reactions. The reaction

A+ a→ Y + y is written A(a, y)Y , (8.2)

where in the bracket the particle(s) in front of the comma is the one (are those) entering
into the reaction, and that (those) after the comma is (are) the particle(s) resulting from
the reaction. Clearly the reaction could equivalently be written as a(A, y)Y , a(A, Y )y or
A(a, Y )y, although there is a tendency to place the primary reactant and the primary
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Figure 8.1: Schematic potential energy between two nuclei. For r < r0 the attractive
nuclear forces dominate; for r > r0 Coulomb repulsion dominates.

product outside the brackets1. As a specific example, the reaction

12C + 1H→ γ + 13N (8.3)

is written as 12C(1H, γ) 13N, or 12C(p, γ) 13N, using p for the proton.

8.2 The cross sections

The reaction between nuclei is caused by the strong force acting between nucleons (protons
and neutrons). The range of the strong force is essentially limited to the extent of the
nucleus; hence, for a reaction to occur the nuclei must be brought so close together that
they almost touch, and this requires that the Coulomb repulsion between them must be
overcome2. Hence the potential for a reaction is as indicated in Figure 8.1.

The magnitude of the difficulty in achieving a reaction may be appreciated by noting
that the height of the Coulomb barrier at the surface of the nucleus, corresponding to a
typical radius of r0 ' 10−13 cm, is

ECoul '
Z1Z2e

2

r0
' Z1Z2 MeV , (8.4)

where Z1 and Z2 are the atomic numbers of the nuclei taking part in the reaction. This is
consistent with the fact that typical nuclear energies are in the MeV range. In contrast,

1For laboratory reactions the target would probably in general be placed in front of the bracket.
2The only exception are reactions involving capture of neutrons, where there is no Coulomb repulsion.

These play no role during normal stellar evolution; but, as discussed in Chapter 14, they become important
in very advanced stages of evolution. They are also decisive for nucleo-synthesis of the light elements shortly
after the Big Bang.
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Figure 8.2: Measured cross section for the reaction 12C(1H, γ) 13N, as a function of
the laboratory proton energy. A four-parameter theoretical curve has been fitted to
the experimental points. It is clearly impossible to extrapolate to the energy, of order
25 keV, which is relevant in astrophysics. (From Clayton 1968.)

the average kinetic energy of the nuclei is

〈Ekin〉 =
3
2
kBT ' 130 eV T6 (8.5)

(cf. section 3.3), where T6 ≡ T/106 K. Since typical temperatures in the cores of hydrogen-
burning stars are 1 − 2 × 107 K, the average kinetic energy is roughly three orders of
magnitude smaller than the energy required to overcome the potential barrier. Even
taking into account the distribution of energies, it is clear that within the framework of
classical mechanics essentially no reactions would be possible.3

What makes reactions, and hence ultimately our existence, possible is that according
to quantum mechanics there is a finite probability that the nuclei may tunnel through the
barrier and react. Even so, the extent of the barrier means that this probability is small.
Thus, in fact the nuclear burning in stellar interiors is generally a very slow process.

3Even quantum-mechanically, it is found that the reactions mainly occur at several times the average
thermal energy; cf. equation (8.37).
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Exercise 8.1:

What is the average energy generation rate in the Sun, per unit mass? Compare it
with the average rate of energy production per unit mass in a typical car engine; and
the rate of energy consumption per unit mass in a human being.

The very low energies also make it extremely difficult to measure the cross sections
under stellar conditions for the relevant reactions. As an example, Figure 8.2 shows
measured cross sections for proton capture by 12C. It is obviously meaningless, on the
basis of data on this form, to extrapolate the measurements to the energy range where
the reactions take place in stellar interiors. However, a reasonable extrapolation can be
obtained by using that most of the variation with energy of the cross section is caused by
the energy dependence of the probability that the nuclei penetrate the potential barrier.
The same probability enters into the problem of α decay since, to decay, the α particle
must tunnel out through the potential barrier (see for example Krane 1988, Chapter 8).
It was shown by Gamow that this probability is proportional to

exp

(
−2πZ1Z2e

2

h̄v

)
, (8.6)

where v is the relative speed between the two nuclei and, as usual, h̄ = h/2π, where h is
Planck’s constant. An additional energy dependence enters into the cross sections from
the fact that, roughly speaking, the nuclei have a geometrical extent given by their de
Broglie wavelengths λ ∝ 1/p, where p is the momentum of the nucleus; this results in a
geometrical cross section

πλ2 ∝ p−2 ∝ E−1 , (8.7)

where E is the energy of the nucleus.
These considerations justify characterizing the cross section by the cross-section factor

S(E), defined such that the cross section is

σ(E) ≡ S(E)
E

exp

(
−2πZ1Z2e

2

h̄v

)
. (8.8)

Hence S(E) essentially describes the energy dependence of the reaction once the nuclei
have penetrated the potential barrier. It varies far less with E than does the full cross
section. As an example, Figure 8.3 shows S(E) for the same reaction that was illustrated in
Figure 8.2. Clearly in this case one may extrapolate to low energies with some confidence.

In equation (8.8) E is the energy of the particles in the centre-of-mass system. This is
related to the relative speed of the particles by

E =
1
2

m1m2

m1 +m2
v2 =

1
2
Amuv

2 , (8.9)

where m1 and m2 are the masses of the nuclei, and A is the reduced atomic weight,

A =
A1A2

A1 +A2
, (8.10)
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Figure 8.3: The cross-section factor S(E) corresponding to measured cross sections
for the reaction 12C(1H, γ) 13N, as a function of the laboratory proton energy. This
curve is more readily extrapolated than the one in Figure 8.2 (From Clayton 1968.)

where A1 and A2 are the atomic weights of the nuclei. From equation (8.8) it therefore
follows that the cross section can be written as

σ(E) ≡ S(E)
E

exp
(
−bE−1/2

)
, (8.11)

where
b = 31.291Z1Z2A1/2 keV1/2 . (8.12)

Exercise 8.2:

Verify this equation.

From equations (8.11) and (8.12) it follows that the cross section is very sensitive to
the charges of the nuclei involved, as a result of the effect of the charges on the extent of
the Coulomb barrier. Hence in general reactions amongst nuclei of low charges are faster,
and are possible at lower temperature, than reactions involving nuclei of higher charges.
However, this general tendency may be reversed by differences in the cross-section factor
S(E), due to differences in the nuclear structure.

The measurement of nuclear cross sections is an extensive and ongoing research effort
at several laboratories. (Recently it has even become possible to make some measurements
at energies corresponding to stellar conditions; an example is shown in Figure 8.4.) The
results of these efforts are available in the form of compilations of parameters characterizing
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Figure 8.4: Cross-section factors for the reactions 6Li(1H, 4He) 3He and
7Li(1H, 4He) 4He, extending to energies comparable with those found under stellar
conditions. The departure from a constant value at very low energies results from the
screening from the electrons in the target 6Li or 7Li atoms, which reduces the Coulomb
potential around the nucleus, and hence increases the cross section. A similar effect
occurs in stellar interiors due to the clustering of otherwise free electrons around the
nuclei; this must be taken into account in accurate calculations of nuclear reaction
rates. (From Parker & Rolfs 1991.)

the cross-section factors, often given in terms of Taylor expansions of S(E) around E = 0
or, equivalently, parameters giving the temperature dependence of the energy-averaged
cross sections (see below). A comprehensive compilation was given by Caughlan & Fowler
(1988). More recent compilations include Angulo et al. (1999) and, for the specific case
of the reactions relevant to the Sun, Adelberger et al. (1998).

Table 8.1 provides data for the reactions that are relevant to the hydrogen burning in
stellar interiors.
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Table 8.1

Thermonuclear parameters for the principal reactions contributing to hydrogen burning,
through the PP chains and the CNO cycle. Note that in this table only the positron is
indicated by β+ (rather than e+), and the electron neutrino is shown as ν; as usual α
indicates an α particle, i.e., a 4He nucleus. The third column gives the energy carried
off by the neutrino emitted per reaction. The fourth and and fifth columns give the
cross-section factor extrapolated to E = 0 and its derivative; the unit of cross section is
barn, with 1 barn = 10−24 cm2. The quantity B in the penultimate column is defined in
equation (8.34). The last column gives the characteristic time for the reaction (cf. equation
(8.44)), evaluated for the conditions T = 15 × 106 K, ρ = 100 g cm−3 and X = Y = 0.5,
corresponding roughly to the solar core. (Adapted from Clayton 1968).

8.3 The release of energy

To compute the total energy release we need to know the energy released by each reaction.
Because of the equivalence between mass and energy, this follows from the difference in
mass between the particles entering on the two sides of the reaction, and hence can be
determined with the help of tables of nuclear masses.

To be specific, consider the reaction

A+ a→ Y + y . (8.13)

The energy released in this reaction is

Q = c̃2[m(A) +m(a)−m(Y )−m(y)] , (8.14)

where, for example, m(A) is the mass of particle A and c̃ is the speed of light. Since the loss
of mass is generally very small compared with the individual masses, it is more convenient
to work with the mass excess ∆m. For a nucleus with Z protons and N neutrons we
define the mass excess as

∆m = m−mu(Z +N ) , (8.15)
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where mu is the atomic mass unit. Then, since the combined number of protons and
neutrons must be conserved in the reaction (8.13), it follows that equation (8.14) can be
written as

Q = c̃2[∆m(A) + ∆m(a)−∆m(Y )−∆m(y)] . (8.16)

A particular problem is caused by reactions where electrons or positrons are emitted,
or electrons are absorbed. As discussed in section 1.2 this must occur in the fusion of
hydrogen into helium, to preserve charge neutrality, where positron emission results from
the conversion of a proton into a neutron. To see how the energetics of such a reaction is
calculated, consider the reaction

A′ + a′ → Y ′ + y′ + e+ + νe , (8.17)

where a positron and an electron neutrino are emitted.4 Since the positron is immediately
annihilated by an electron in the gas, this reaction may equivalently be written as

e− +A′ + a′ → Y ′ + y′ + νe . (8.18)

However, in the reaction a proton has been converted into a neutron, so that the atomic
numbers on the two sides of the reaction satisfy Z(A′)+Z(a′)−1 = Z(Y ′)+Z(y′). Hence,
by adding Z(Y ′) + Z(y′) electrons on each side of equation (8.17), this equation may be
written as

Z(A′)e− +A′ + Z(a′)e− + a′ → Z(Y ′)e− + Y ′ + Z(y′)e− + y′ + νe . (8.19)

This obviously corresponds to a reaction between the complete atoms A′ and a′; hence the
energy release may be calculated as in equation (8.16), provided the mass excesses refer
to the atomic (rather than nuclear) masses. From the condition of charge conservation
it evidently follows that this is true for any reactions involving emission or absorption of
positrons or electrons.

A table of atomic mass excesses is given in Appendix B, in the form of c̃2∆m, expressed
in MeV. Hence this table immediately allows the calculation of the energy release in any
reaction.

The energy produced in the reactions is released as kinetic energy of the particles which
result, as well as in some cases in the form of γ photons. This energy is redistributed
among the other constituents of the gas through collisions, and through absorption of the
photons. As a result of the assumption of thermodynamic equilibrium in the gas, the
details of this redistribution process is irrelevant; all that matters is the total amount of
heat that is added to the gas. An exception to this general statement results in the cases
where neutrinos are emitted in the reaction. Because of their extremely small interaction
cross section, in almost all cases5 these do not react with the other particles in the gas
but escape directly from the star. Hence, to compute the energy release in the region
where the nuclear reactions take place, the energy carried away by the neutrinos must be
subtracted. Examples of this are discussed in section 8.5.

4Emission of the neutrino is a result of the requirement of lepton-number conservation. Since the
neutrino mass is extremely small compared with the mass of the positron, it does not contribute to the
mass budget discussed here.

5The only exception is in supernova explosions, where the density may be so high that the neutrinos
are partially absorbed.



8.4. THE AVERAGE REACTION RATE 111

8.4 The average reaction rate

We now need to relate the total rate of reactions, between particles A and a in equation
(8.13), say, to the cross section discussed in section 8.2. For simplicity we first assume that
the particles move with a relative speed v. Also, we take all particles A to be stationary,
with a number density nA. Consider a box such that the area of the side is dA, and the
length is dl. We may think about the cross section σ as being defined such that a reaction
occurs if a particle a passes within the area σ around a particle A. Then the probability
of reaction for a particle of type a, which is shot towards the box in a direction orthogonal
to dA, is the ratio of the total area in the box “covered” by cross section to the area dA,
i.e.,

σnAdAdl
dA

= σnAdl . (8.20)

(note that this argument, together with the definition of the mean free path, also estab-
lishes the validity of equation (5.13) for the relation between the cross section and the
mean free path of a photon). If the number density of particles a is na, their flux is vna,
and hence the number of reactions per unit time in the box is

σnAdl vnadA = σvnanAdV , (8.21)

where dV is the volume of the box. Thus we finally obtain the reaction rate raA per unit
volume as

raA = σvnanA . (8.22)

In reality of course there is a distribution of relative velocities; if f(v)dv denotes the
fraction of pairs of particles with relative speed between v and v + dv, equation (8.22)
must be replaced by

raA = 〈σv〉nanA , (8.23)

where
〈σv〉 =

∫ ∞

0
vσ(E)f(v)dv , (8.24)

and we explicitly indicated that σ depends on the energy in the reaction, and hence on v
(cf. equation (8.9)).

A small complication arises in reactions involving just one type of particle (i.e., with
a = A in equation (8.16)). In this case we have counted each particle twice in the argument
leading to equation (8.23): once as “target” and once as “projectile”. As a result in this
case equation (8.23) must be replaced by

rAA =
1
2
〈σv〉n2

A . (8.25)

To evaluate 〈σv〉 we must know the distribution function f(v). We assume that both
nuclei have a Maxwellian distribution (cf. section 3.3). Then, as shown by Clayton (1968),
the distribution of v is also Maxwellian, with a mass given by the reduced mass, i.e.,

f(v)dv = 4π
(

m

2πkBT

)3/2

exp

(
− mv2

2kBT

)
v2dv , (8.26)
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where m = Amu, and A is given by equation (8.10). This may also be written in terms of
the distribution of centre-of-mass energy, as

f(v)dv = φ(E)dE =
2√
π

E1/2

(kBT )3/2
exp

(
− E

kBT

)
dE . (8.27)

Using equation (8.9) to express v, and equation (8.11) for σ, we finally obtain from equation
(8.24) that

〈σv〉 =
(

8
mπ

)1/2 1
(kBT )3/2

∫ ∞

0
S(E) exp

(
− E

kBT
− b

E1/2

)
dE . (8.28)

Equation (8.28) demonstrates the two opposing effects that determine the total reaction
rate: the cross section increases steeply with increasing energy, as shown by the factor
exp(−bE−1/2), whereas the number of particles decreases with increasing energy, as shown
by the factor exp(−E/kBT ). As a result, the reactions are dominated by the nuclei in
a fairly narrow range of energies, near the maximum of exp(−E/kBT − bE−1/2). This
function is illustrated in Figure 8.5; it is commonly called the Gamow peak, in recognition
of Gamow’s work on barrier penetration in nuclear reactions. The maximum of the Gamow
peak is at the energy

E0 =
(
bkBT

2

)2/3

, (8.29)

which therefore corresponds to the energy of the nuclei dominating the reactions.

Exercise 8.3:

Verify equation (8.29). Show also that E0 may be written as

E0 = 1.22042(Z2
1Z2

2AT 2
6 )1/3 keV . (8.30)

Given S(E), the integral in equation (8.28) may be evaluated numerically as a function
of T . However, an approximate (and for many purposes adequate) expression for 〈σv〉 may
be obtained by neglecting the variation of S(E) over the Gamow peak6, and approximating
the function exp(−E/kBT − bE−1/2) by a Gaussian,

exp
(
− 3E0

kBT

)
exp

[
−
(
E − E0

∆/2

)2
]
, (8.31)

where the width is determined as ∆ = 4(E0kBT/3)1/2, by requiring that the approximation
have the same curvature at the maximum as the Gamow peak. The result (after some
algebra, which is described in more detail by Clayton 1968) is that

〈σv〉 = 4
(

2
3m

)1/2 S(E0)
(kBT )3/2

(E0kBT )1/2 exp
(
− 3E0

kBT

)
. (8.32)

6More accurate expressions can be obtained by including additional terms in a Taylor expansion of
S(E) around E0.
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Figure 8.5: The dominant energy-dependent factors in a thermonuclear reaction,
evaluated for the reaction 1H + 1H at 15× 106 K. Most of the reactions occur in the
high-energy tail of the Maxwellian energy distribution, which introduces the rapidly
falling factor exp(−E/kBT ). Penetration through the Coulomb barrier introduces the
factor exp(−bE−1/2), which vanishes strongly at low energy. Their product is a fairly
sharp peak near an energy designated by E0, which is generally substantially higher
than kBT . This peak is commonly known as the Gamow peak.

The factor (E0kBT )1/2 essentially comes from the width of the Gaussian, whereas the factor
exp(−3E0/kBT ) clearly gives the maximum value of the Gamow peak. We introduce

η =
3E0

kBT
= BT

−1/3
6 , (8.33)

where the last equality follows from equation (8.29); by using equation (8.12), the constant
B may be written as

B = 42.487(Z2
1Z2

2A)1/3 . (8.34)

(Values of B for the reactions involved in hydrogen burning are given in Table 8.1.) Then
equation (8.32) finally yields

〈σv〉 =
8
√

2
9
√

3
S(E0)√
mb

η2 exp(−η) . (8.35)

This determines the temperature dependence of the average reaction rate.
From equations (8.33) and (8.34) it follows that the reactions typically occur at fairly

large values of η, where 〈σv〉 is a decreasing function of η; hence the reaction rate decreases
with increasing Z1Z2, as was also discussed in connection with equation (8.12). Further-
more, for fixed Z1Z2 the reaction rate decreases with increasing A, due to the decrease
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in the speed of the nuclei at fixed energy. Equation (8.33) also provides a measure of the
energy E0 which dominates the reactions. Specifically, E0 in units of the average thermal
energy is obtained as

E0

3/2 kBT
=

2
9
η =

2
9
BT

−1/3
6 . (8.36)

At the temperature of the solar core, T = 15× 106 K, we find

E0

3/2 kBT
= 3.8(Z2

1Z2
2A)1/3 . (8.37)

This confirms that the reactions occur quite far out in the tail of the Maxwellian distri-
bution.

Although greatly simplified compared with the original expression (8.28), equation
(8.35) is nevertheless sufficiently complicated that it is difficult to visualize the variation
of 〈σv〉 with T . A further simplification may be obtained by approximating 〈σv〉 over a
limited range in T around T = T0, by

〈σv〉 ' 〈σv〉0
(
T

T0

)n

, (8.38)

where 〈σv〉0 is the value of 〈σv〉 at T = T0 and

n =
d ln〈σv〉
d lnT

=
d ln〈σv〉
d ln η

d ln η
d lnT

=
η − 2

3
, (8.39)

evaluated at T = T0. From equation (8.33) it follows that η ∝ T−1/3, so that n depends
quite weakly on T0; hence we expect that equation (8.38) is reasonably accurate over
a substantial range in T . Also, equation (8.34) shows that η ∝ (Z1Z2)2/3; thus the
temperature sensitivity of the reactions increases quite strongly with increasing nuclear
charge.

We may now write the reaction rate raA in equation (8.23), using the approximation
(8.38), as

raA = 〈σv〉0nanA

(
T

T0

)n

. (8.40)

It is convenient to express the number densities in terms of the abundances XA and Xa

by mass, by using, for example,

nA =
XAρ

AAmu
; (8.41)

then we finally obtain

raA = 〈σv〉0
XaXA

AAAam2
u

ρ2
(
T

T0

)n

. (8.42)

This corresponds to the contribution

εaA = QaA〈σv〉0
XaXA

AAAam2
u

ρ

(
T

T0

)n

(8.43)

to the energy generation rate ε per unit mass, where QaA is the energy released per
reaction, as determined in section 8.3. Also, the rate of change in XA due to reactions
with nuclei of type a, is given by

dXA

dt
= −〈σv〉0

XaXA

Aamu
ρ

(
T

T0

)n

≡ −XA

τaA
, (8.44)
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where we introduced the characteristic time τaA. Note that in reactions between iden-
tical nuclei we must introduce the correction factor 1/2 in equations (8.42) and (8.43),
corresponding to equation (8.25), but not in equation (8.44).

The total energy generation rate is obviously the sum over all possible reactions of
equation (8.43). Similarly, to evaluate the total rate of change of the abundance of a given
element, we must take into account both the reactions that destroy and the reactions
that create the element. Thus the computation of ε and the evolution of the chemical
composition requires careful consideration of the possible reaction network. Examples of
this are considered in the following sections.

8.5 Hydrogen burning

During most of their life stars derive their energy from the fusion of hydrogen into helium.
This reaction may be written schematically as

4 1H→ 4He + 2e+ + 2νe . (8.45)

As discussed in section 1.2 (see also section 8.3) the release of the two positrons is required
to maintain charge balance, and results from the conversion of two protons into neutrons.
Due to the requirement of lepton number conservation, the emission of two anti-leptons
(the positrons) must be balanced by the emission of two leptons, the two electron neutrinos.

It is obvious that the reaction does not take place as indicated in equation (8.45): the
probability that four protons come together and react at one point is entirely negligible.
Instead the reaction may proceed through a number of different paths, discussed in more
detail below. Regardless of these details we can determine the total amount of energy
liberated in the reaction (8.45) from equation (8.16), using the data in Appendix B. The
result is

Qtot = 26.73 MeV for hydrogen burning . (8.46)

However, as discussed in section 8.3 the neutrinos escape directly from the star, without
interacting with the matter in it, and hence do not contribute to the energy release within
the star. Hence to compute the effective energy Qeff released per 4He that is formed, and
hence the energy generation rate ε, we must subtract the neutrino energy. This depends
on the detailed reactions in which the neutrinos are produced. Also, it is evident that to
compute the reaction rate, and hence the energy generation rate, we need to consider the
actual reactions which take place.

Given Qeff , the rate of change in the hydrogen abundance is related to ε by

dX
dt

= rX = −4AHmu
ε

Qeff
, (8.47)

where AH is the atomic weight of hydrogen. If we introduce the mass-averaged hydrogen
abundance X by

X =
1
M

∫ M

0
Xdm , (8.48)

we also find that

dX
dt

= − 1
M

∫ M

0
4AHmu

ε

Qeff
dm = −4AHmu

Qeff

Ls

M
, (8.49)
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where Qeff is a suitable average over the star of Qeff .
In principle, all possible reactions between the constituents of the gas must be consid-

ered, to determine which reactions dominate. The outcome is that there are two basically
different ways (each with some variations) in which the overall reaction (8.45) may be
accomplished: one (the PP-chains) which directly involves fusion of protons, the second
(the CNO-cycle) in which the fusion occurs through a sequence of reactions involving C,
N and O, which effectively act as catalysts.

Exercise 8.4:

Estimate the total number of neutrinos generated in the Sun per second, and the flux
of solar neutrinos on the Earth (i.e., the number of neutrinos per unit area and per
unit time).
Assume that the cross section for reaction between a neutrino and a nucleus is
10−46 cm2. Estimate the total number of neutrino reactions per year in the body
of a typical student.

8.5.1 The PP-chains

The basic sequence of reactions may be written as7

1H(1H, e+νe) 2D(1H, γ) 3He(3He, 21H) 4He . (8.50)

This sequence of reactions is known as the PP-I chain. Note that the production of one
4He nucleus uses two 3He nuclei, and hence requires that the first two reactions in the
chain take place twice. It follows that the net reaction is in fact (8.45).

Exercise 8.5:

Verify this.

The average neutrino loss in each of the 1H(1H, e+νe) 2D reactions is 0.263 MeV. Hence
the effective Q-value for the PP-I chain is

Qeff(PP-I) = 26.21 MeV . (8.51)

Despite having the lowest possible Coulomb barrier the first reaction in the chain is by
far the slowest. The reason is that this reaction involves the conversion of a proton into a
neutron through the effect of the weak interaction; this leads to an extremely small cross-
section factor (cf. Table 8.1). The remaining reactions are in equilibrium, in the sense that
the abundances of 2D and 3He adjust themselves so that equal amounts of 2D and 3He

7Here the notation of equation (8.2) is used; note that this illustrates an important advantage of that
notation: it is possible to string together several reactions.
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are produced and destroyed. Hence the combined rate of energy generation is controlled
by the 1H(1H, e+νe) 2D reaction. According to equation (8.43) we may approximate it as

ε(PP-I) = ε
(PP−I)
0 X2ρTn , (8.52)

where ε(PP−I)
0 is a constant.

Exercise 8.6:

Verify equation (8.52). Show that at a temperature T = 15 × 106 K the temperature
exponent is n ' 4.

In addition to the reactions in (8.50) there are two additional chains which may produce
4He, following the production of 3He:

3He(4He, γ) 7Be(e−, νe) 7Li(1H, 4He) 4He (PP-II)
⇓ (8.53)

7Be(1H, γ) 8B(, e+νe) 8Be(, 4He) 4He (PP-III)

In the PP-II chain the neutrino is emitted in the electron capture in 7Be; the average
neutrino energy is 0.80 MeV, and hence the effective Q-value is

Qeff(PP-II) = 25.67 MeV . (8.54)

In the PP-III chain the neutrinos result from the positron decay of 8B8, with average
neutrino energy of 7.2 MeV, resulting in an effective Q-value of

Qeff(PP-III) = 19.27 MeV . (8.55)

Exercise 8.7:

Show that the reactions in the PP-II and PP-III chains are consistent with the net
reaction in equation (8.45). Verify also the effective Q-values in equations (8.54) and
(8.55).

The branching ratios between the different parts of the PP chains depend on the
balance between the competing reactions, and hence on the temperature. Under the
conditions in the solar core the PP-I chain dominates, and the PP-III chain makes a
very small contribution to the energy generation. On the other hand, the PP-III chain
is very important for attempts to detect solar neutrinos: due to their high energies the
neutrinos from this chain dominate the measurements in the 37Cl detector, and only
the PP-III neutrinos can be seen by the detector based on neutrino scattering in water

8written as 8B(, e+νe)
8Be, and hence stretching the notation in equation (8.2) a little; this reaction

could also be written as 8B(e+νe)
8Be, since it is obvious from charge conservation that the positron is

emitted, rather than absorbed.
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(cf. section 2.10.1). Since the electron capture in 7Be depends weakly on temperature, the
branching ratio between the PP-II and the PP-III chains, and hence the flux of PP-III
neutrinos, in principle provides a very sensitive measurement of the temperature in the
solar core. As discussed in Chapter 11, these measurements involve further complications
related to the properties of the neutrino.

Exercise 8.8:

We consider the temperature sensitivity of the branching ratios amongst the PP-chains,
expressed as exponents in power-law approximations similar to equation (8.42). The
temperature is assumed to be 15× 106 K, corresponding to conditions at the centre of
the present Sun.

i) Find the temperature sensitivity of the equilibrium abundance of 3He, assuming that
most of the reactions go through the PP-I chain.

ii) Find the temperature sensitivity of the branching between the PP-I and the PP-II
chains,

iii) Find the temperature sensitivity of the branching between the PP-II and PP-III
chains, assuming that electron capture in 7Be is temperature-independent.

iv) Assume that the total energy generation rate is dominated by the PP-I chain, as
given in equation (8.52), and that the total amount of energy generated is held fixed.
Estimate the sensitivity of the flux of PP-III neutrinos to the central temperature
of the Sun, for temperatures near 15× 106 K.

As for the PP-I chain, the subsequent reactions of the PP-II and PP-III chains may
be assumed to be in equilibrium; hence the reaction rates in these chains are determined
by the rate of production of 3He, and therefore again by the 1H(1H, e+νe) 2D reaction.
The combined energy generation rate ε(PP) from the PP chains depends on the branching
between the different chains: for the PP-I chain it takes two 1H(1H, e+νe) 2D reactions
to produce a 4He, whereas for the PP-II and PP-III chains only one such reaction per
4He is needed; on the other hand the neutrino loss is larger in the PP-II, and particularly
in the PP-III, chain than in the PP-I chain. Similar considerations evidently arise in
the computation of the rate of change rX in the hydrogen abundance (cf. equation (8.1)).
Nevertheless, as a first approximation these complications may be neglected; it then follows
that ε(PP) may be determined as in equation (8.52), with the same exponent n, but with
a different constant ε(PP)

0 .

8.5.2 The CNO cycle

A second sequence of reactions is possible in stars that contain C, N, and O. This may be
written as

12C(1H, γ) 13N(e+νe) 13C(1H, γ) 14N(1H, γ) 15O(e+νe) 15N(1H, 4He) 12C . (8.56)

6
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Thus the reactions proceed through a sequence of proton captures, interrupted by positron
decay (with emission of neutrinos) to convert protons into neutrons; as indicated 12C is
produced at the end of the sequence of reactions, and hence acts as a catalyst. The total
average neutrino loss in the cycle is 1.71 MeV, and hence the effective Q-value is

Qeff(CNO) = 25.02 MeV . (8.57)

The 14N(1H, γ) 15O reaction has the smallest probability amongst the reactions in the
cycle; hence, once the cycle operates in equilibrium this reaction determines the overall
reaction rate. A second consequence is that in equilibrium almost all the original C and
N is converted into 14N9. As a result, the energy-generation rate for the CNO-cycle may
be written as

ε(CNO) = ε
(CNO)
0 ZXρTn , (8.58)

where ε(CNO)
0 is a constant, and we assumed that the total abundance of CNO elements is

a fixed fraction of the total heavy-element abundance Z.

Exercise 8.9:

Verify equation (8.58). Show that at a temperature T = 15 × 106 K the temperature
exponent is n ' 20.

From the results of exercise 8.6 and 8.9 it follows that the energy-generation rate from
the CNO cycle is much more temperature-dependent than the energy-generation rate for
the PP-chains. Hence the PP-chains dominate at relatively low temperature, whereas the
CNO cycle dominates at relatively high temperature. From the estimate of stellar internal
temperature in section 4.1.1 (cf. equation (4.11)) we therefore expect the CNO cycle to be
important in massive stars. This is confirmed by more detailed calculations; as mentioned
in section 6.3, and discussed in more detail in Chapter 11, this leads to the presence of a
convective core in such stars, with significant effects for their evolution.

It turns out that the first reactions of the CNO cycle, i.e., the reactions

12C(1H, γ) 13N(e+νe) 13C(1H, γ) 14N , (8.59)

have a comparatively high reaction rate, despite the substantial Coulomb barrier resulting
from the charge of the carbon nuclei. Thus they set in at lower temperatures than even the
proton-proton reaction. During the final stages of gravitational contraction, leading to the
formation of a star, this causes a brief episode of nuclear reaction where the original 12C

9Additional reactions involving C, N and O are

16O(1H, γ) 17F(e+νe)
17O(1H, 4He) 14N ,

and
15N(1H, γ) 16O .

These give rise to a subsidiary cycle, whose main effect is to convert almost all the original 16O into 14N.
Unlike the primary cycle in equation (8.56), however, this cycle reaches equilibrium only over a substantial
fraction of a stellar lifetime; in the case of the Sun, for example, very little 16O has been consumed up to
the present time. In more massive stars the conversion of 16O into 14N causes a gradual increase in the
efficiency of the CNO cycle.
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is converted into 14N, with some release of energy which slows the contraction. Once the
12C has been consumed, the nuclear burning virtually stops, until the temperature gets so
high that the reactions controlling primary hydrogen-burning, viz. 1H(1H, e+νe) 2D and
14N(1H, γ) 15O, set in.

8.6 Later reactions

After the exhaustion of hydrogen, the next reactions that may take place involve 4He.
Indeed, given that the 3He + 4He reaction plays a role in the PP-chains (cf. equation
(8.53)) one might have expected that the 4He+ 4He reaction could also have set in during
hydrogen burning. That this is not the case is due to the fact that there are no stable
nuclei with atomic weight eight10. Thus 4He-burning has to take place through the so-
called triple-alpha process:

3 4He→ 12C + γ . (8.60)

In practice the probability that three 4He should come together at precisely the same time
is negligible, and hence the reaction actually occurs through the generation of 8Be:

4He(4He, ) 8Be(4He, γ) 12C ; (8.61)

but since 8Be is unstable, the complete reaction requires that the third 4He arrives within
a very short time after the initial reaction. Thus the reaction is effectively a three-body
process. At the typical temperatures where it takes place (T = 1− 2× 108 K), the energy
generation rate may be written as

ε(3α) = ε
(3α)
0 Y 3ρ2T 30 . (8.62)

Exercise 8.10:

Why is ε(3α) proportional to ρ2 and Y 3, rather than to ρ as is, for example, ε(PP-I)
as given in equation (8.52)?

The triple-alpha reaction is followed by successive α-captures:

12C + 4He→ 16O
16O + 4He→ 20Ne
20Ne + 4He→ 24Mg

... ;

(8.63)

in principle, this could continue to even more massive nuclei, although the total production
of these nuclei during the helium-burning phase is probably relatively small. In addition,
14N reacts to produce 22Ne:

14N(4He, e+νe) 18O(4He, γ) 22Ne . (8.64)
10Formally 8Be is formed in the PP-III chain but, as indicated in equation (8.54), it immediately decays

into two 4He nuclei.
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When helium is exhausted, the next element to react is 12C; indeed the 12C + 12C
reaction has the lowest Coulomb barrier amongst the possible reactions in the gas at this
point. This takes place at temperatures around 5− 10× 108 K. There is a whole range of
possible end products of this reaction:

12C + 12C→



24Mg + γ ,
23Mg + n ,
23Na + p ,
20Ne + 4He ,
16O + 2 4He .

(8.65)

Following the 12C exhaustion, the next lowest Coulomb barrier is in the reaction between
two 16O, which occurs at temperatures exceeding 109 K:

16O + 16O→



32S + γ ,
31P + p ,
31S + n ,
28Si + 4He ,
24Mg + 2 4He .

(8.66)

A detailed discussion of these reactions, as well as of the reactions involved in the helium
burning, was given by Clayton (1968).

In fact, even before this point complications set in, leading to departures from the
orderly sequence of fusion of ever heavier elements; this involves a totally different type
of reaction, namely photodisintegration and subsequent α capture. The reason is that the
temperature gets so high that a substantial fraction of the photons in the gas have energies
in the MeV range; these may be absorbed in nuclei, causing them to break up, typically
in an α decay. Thus, after the end of 12C burning, at a temperature of T ' 109 K,
photodisintegration of 20Ne sets in:

20Ne + γ → 16O + 4He ; (8.67)

the resulting 4He is probably captured in the remaining 20Ne, to form 24Mg:

20Ne + 4He→ 24Mg . (8.68)

This process may be termed Ne burning; as indicated in Figure 1.3 it takes place before
the oxygen burning reactions in equation (8.66).

Following oxygen burning, photodisintegration and α capture dominate entirely, as
a result of the very high Coulomb barrier for nuclei heavier than oxygen. The 4He so
released are absorbed in other nuclei, leading to the gradual build-up of heavier nuclei;
this may continue until the iron group of elements, where the binding energy per nucleon
is largest. This process, which is somewhat loosely called Si burning, is discussed in more
detail in Chapter 14.
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Chapter 9

Numerical calculation of stellar
structure and evolution

9.1 Introduction

The equations of stellar structure and evolution are far too complicated to permit analyt-
ical solution. There are a few, highly simplified exceptions (in Chapter 4 we considered
the linear model, and polytropes of indices 0 and 1). In the general case, when solving
the full set of equations with realistic physics, a numerical solution is unavoidable.

9.2 Equations and boundary conditions

One almost always considers the evolution of a star of a given mass. Hence it is convenient
to rewrite the equations of stellar structure with the mass m = m(r) as the dependent
variable. This may be done by noting that for any quantity φ

dφ
dm

=
dφ
dr

dr
dm

=
1

4πρr2
dφ
dr

, (9.1)

by using equation (4.5).
By transforming equations (4.4), (5.27), (5.8) and (6.20) in this manner, and including

equation (8.1) for the rate of change of X, we obtain the following set of equations:

dr
dm

=
1

4πr2ρ
(9.2)

dP
dm

= − Gm

4πr4
(9.3)

dL
dm

= ε−
[

d
dt

(
u

ρ

)
− P

ρ2

dρ
dt

]
(9.4)

dT
dm

=


− 3κ

4ac̃T 3

L

16π2r4
radiative energy transport

Γ2 − 1
Γ2

T

P

dP
dm

convective energy transport

 (9.5)

dX
dt

= rX . (9.6)
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Here rX is the change per unit time in X as a result of the nuclear reactions, and the
remaining quantities have their usual meaning. For simplicity we have included only
an equation for the change in the hydrogen abundance; in reality there are equations
corresponding to equation (9.6) for each of the elements which take part in the nuclear
reactions.

The differential equations (9.2) – (9.6) are formulated in terms of the dependent vari-
ables {r, P, L, T,X}. Hence we must be able to express the right-hand sides of the equa-
tions in terms of these variables. To do so requires expressions for ρ, u, Γ2, κ, ε and rX ,
as functions of P , T and the chemical composition. As we have seen, these expressions
are obtained from thermodynamics, atomic physics and nuclear physics.

The differential equations (9.2) – (9.6) must be supplemented by suitable boundary
conditions. Obviously

r = 0
L = 0

}
for m = 0 . (9.7)

We can choose the surface of the model as the point where T = Teff . Furthermore we can,
for example, use the simple relation for the pressure given in equation (5.21). Then the
surface boundary conditions are

L = 4πσR2T 4

P =
(a+ 1)GM

κR2

 for m = M . (9.8)

Here as usual R = r(M) is the surface radius of the star. Finally, we need an initial
model. This can be obtained from more or less detailed studies of the early phases of
stellar evolution, starting from the contraction of the original interstellar cloud. A simple
alternative is to neglect the early history of the star, and assume that it is initially chemi-
cally homogeneous (i.e., with the same chemical composition everywhere), and in thermal
equilibrium, so that the terms in d/dt in equation (9.4) can be neglected. Fortunately
it turns out that the later evolution of the star is quite insensitive to the assumed initial
conditions.

Advanced numerical techniques have been developed to solve these equations. Here
we give a very simplified description of the numerical solution of differential equations. It
illustrates the principal features of the solution methods, but is totally inadequate for a
proper computation of stellar models. More detailed descriptions can be found in books
on stellar evolution theory1 or in works on numerical analysis.

9.3 Numerical solution of differential equations

We consider the very simple ordinary differential equation

dy
dx

= f(x, y) . (9.9)

As indicated we assume that the derivative is a function of both x and y. We also assume
that the solution y0 = y(x0) is known at an initial point x = x0. Now consider a small

1See for example Clayton (1968) or Kippenhahn & Weigert (1990).
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increment ∆x in x, to the point x1 = x0 + ∆x; we have approximately that

y(x1)− y(x0)
∆x

' f(x0, y0) , (9.10)

and hence
y1 ≡ y(x1) ' y0 + ∆xf(x0, y0) . (9.11)

Notice that the approximation gets increasingly accurate if ∆x is reduced. More generally,
if xi = xi−1 + ∆x and yi = y(xi), we have that

yi ' yi−1 + ∆xf(xi−1, yi−1) . (9.12)

In this way we can calculate an approximate solution at all x. This method is the most
primitive method for solving a differential equation, and it is rather inaccurate. However,
the main principle of many solution methods is the same as the one discussed here: the
derivative is approximated by a difference, yielding a set of difference equations which is
solved to obtain the approximate solution to the original differential equation. A more
accurate, but still fairly simple, method is an example of the so-called predictor-corrector
techniques: given yi−1 = y(xi−1) we first compute a “predicted” value y(p)

i for y(xi) as

y
(p)
i = yi−1 + ∆xf(xi−1, yi−1) , (9.13)

and then the corrected value as

yi = yi−1 +
1
2
∆x[f(xi−1, yi−1) + f(xi, y

(p)
i )] . (9.14)

For simplicity we have here considered the case with a single differential equation; but
the methods can be immediately generalized to a system of equations.

Exercise 9.1:

Solution of the Lane-Emden equation. (Requires access to a computer, or a
programmable pocket calculator).

Consider the Lane-Emden equation (equation (4.42))

d
dξ

(
ξ2

dθ
dξ

)
= −ξ2θn .

It can be written as a system of two first-order differential equations by intro-
ducing

y = θ ,

z = ξ2
dθ
dξ

.

Then we have the equations

dy
dξ

=
z

ξ2
,
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dz
dξ

= −ξ2yn .

The equation is a little unpleasant (singular) at ξ = 0, so vi start the integration
at the point ξ = ∆ξ. One can show that for small ∆ξ

y(∆ξ) ' 1− (∆ξ)2

6
,

z(∆ξ) ' −(∆ξ)3

3
.

Find the numerical solution to these equations by means of equation (9.12), e.g. for
a polytrope of index n = 3, and using different values for the step ∆ξ. Compare the
results with Tables 4.1 and 4.2. Possibly also try to use the method described by
equations (9.13) and (9.14). Compare the convergence of the solution, with decreasing
∆ξ, for the two methods.

9.4 Computation of stellar models

For a chemically homogeneous star in thermal equilibrium we can in principle integrate
equations (9.2) – (9.5) by means of the techniques discussed above. Specifically, we wish
to compute a model of given mass, and assuming that the chemical composition is known
and is the same throughout the star. Then the differential equations are completely
defined. A remaining problem, however, is that we do not know all the initial conditions.
It is true that equations (9.7) provide the initial values for r and L, but to start the
integration we also need the central values Pc and Tc of P and T . Similarly equations
(9.8) only provide two relations amongst r, P , T and L at m = M , and this is insufficient
to determine these quantities at the surface. The problem considered in section 9.3 was
an initial value problem. In contrast, the equations and boundary conditions for stellar
structure constitute a boundary value problem, where the solution has to satisfy conditions
at both ends of the interval of integration. There are efficient techniques for solving such
problems. Here we consider a very simple approach which cannot be used in practice, but
which nevertheless illustrates the basic principles in some of the methods used for actual
calculations.

If we had known Pc and Tc we could have integrated equations (9.2) – (9.5) from m
= 0. Therefore we begin by “guessing” values for Pc and Tc, and integrate from m = 0
towards m = M . If the solution satisfies equation (9.8), we have obviously solved the
problem; but in general that will not be the case. Therefore we have to guess new values
for Pc and Tc to try to get a solution that is closer to satisfying the surface boundary
conditions. In this way we can gradually work towards the correct solution.

The guesswork can be made more systematic by considering

F1(Pc, Tc) = L(M)− 4πσR2T (M)4 ,

F2(Pc, Tc) = P (M)− (a+ 1)GM
κ(M)R2

. (9.15)
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For each choice of (Pc, Tc) we obtain a value of F1 and F2, and they can therefore, as
indicated, be regarded as functions of Pc and Tc. Hence the problem is reduced to finding
a common zero for F1(Pc, Tc) and F2(Pc, Tc).

The determination of zeros is another very common numerical problem. It is most
simply illustrated in one dimension. We consider the equation

f(x) = 0 , (9.16)

where f is a known function of x. A simple, but not very efficient, method to find a zero
x0 is the binary chop: one starts by locating two values of x, x1 and x2, where f has
different sign, e.g.

f(x1) < 0 , f(x2) > 0 . (9.17)

Letting x3 = 1
2(x1 + x2) the next approximation to x0 is obtained as

x4 =

{
1
2(x1 + x3) if f(x3) > 0 ,
1
2(x3 + x2) if f(x3) < 0 ,

(9.18)

and so on. In this way one determines a sequence xn which converges towards the solution.

Exercise 9.2:

Use this method to solve
cosx = 0 .

Start for example with x1 = 0, x2 = 3.

In realistic computations the solution of equations (9.15) is carried out by means of more
advanced methods; a description of them is beyond the scope of these notes, however.

9.5 The evolution with time

In section 9.4 we discussed the computation of a static model of a chemically homogeneous
star. However, we must also follow the changes in time of the star. We assume that we have
calculated a model at time t, so that r(m, t), P (m, t), T (m, t), L(m, t) and the chemical
composition, specified by X(m, t), are known. The goal is to calculate a model at a later
time t + ∆t. In particular this requires a determination of the chemical composition at
the later time. This is found by approximating equation (9.6) in the same way as we
approximated equation (9.9) by equation (9.10). Hence we obtain the approximation

X(m, t+ ∆t) ' X(m, t) + ∆t rX(m, t) . (9.19)

Having determined X(m, t + ∆t) in this way, we can compute the new model by
solving equations (9.2) – (9.5) as before. However, we still need to approximate the time
derivatives in equation (9.4). This can be done, again as in equation (9.10), by e.g. setting

dρ
dt
' ρ(m, t)− ρ(m, t−∆t)

∆t
, (9.20)
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where we assume that we already know the solution at the time t−∆t.
We have here assumed a fixed step ∆t in time, and similarly a fixed step ∆m in mass

between the meshpoints where the solution is calculated. In practice ∆t must be chosen
such that the changes in the model are reasonably small between one point in time and the
next; this requires very short timesteps during the contraction towards the main sequence,
or in late evolutionary stages, where the structure changes rapidly, whereas the timestep
can be longer during main sequence evolution. Similarly one has to use a small ∆m
near the centre and surface of the model, where conditions within the star change rapidly
with m, whereas a larger step can be used in the intermediate parts of the model. The
determination of ∆m and ∆t must take into account the need for reasonable precision in
the solution, without leading to an excessive computing time. Such complications make
the development of a stellar evolution programme a major project; they also explain why
existing standard packages for the solution of differential equations are rarely used: such
packages do not adequately take into account the special features of this problem.

9.6 Concluding remarks

The description of numerical techniques in this chapter was intended to make plausible
that the evolution of a star of a given mass can be followed numerically. The result of the
calculation is that one obtains the variation in the stellar surface luminosity and effective
temperature with time; this may be used to illustrate the evolution in a Hertzsprung-
Russell diagram. Furthermore, the calculations yield tables of the variation of r, P, T, L
and X as functions of m, at each of the time steps. The remainder of these notes describes
results of such calculations and tries to explain their main features.



Chapter 10

Evolution before the main
sequence

10.1 Introduction

Stars are formed out of interstellar gas clouds, which become unstable to gravitational
collapse. During the collapse the cloud is heated up by the release of gravitational potential
energy. When the temperature gets sufficiently high in the core of the star, nuclear burning
starts, and the star settles down on the main sequence.

This brief sketch hides a mass of complex detail, which is far from understood (for
discussions, see Boss 1985; Stahler 1991, 1994; Ray 2000). The initial collapse of the gas
cloud is a hydrodynamical process, which depends critically on the initial motion in the
cloud, particularly its rotation, on the possible presence of interstellar magnetic fields, and
on the chemical evolution of the cloud and the energy loss through radiation. After the
proto-star reaches hydrostatic equilibrium, the evolution still depends on possible mass
loss or accretion of matter, on the rotation, which again would be strongly affected by
mass loss or accretion, and on the energy transport in the star. Hence current models of
the early stellar evolution are at best indicative of the processes that might be going on,
and of the overall trends in the evolution.

Observationally, major recent developments have resulted from observations in the
infrared from ground-based observatories and from satellites, including the IRAS, ISO
and Spitzer missions, as well as in the radio region where much of the radiation from
star-forming clouds and early stars is emitted. Given this, and the ongoing theoretical
efforts, there is some hope of improving our knowledge about this important phase of
stellar evolution. This might also throw some light on the fascinating question of the
probability of formation of planetary systems, and the likely properties of such systems,
and on the initial distribution of stars according to mass, which is of great importance for
studies of the evolution of the Galaxy.

Here we consider some simple aspects of the problem of star formation and early
evolution, partly on the basis of numerical results. Here and in the subsequent chapters
we largely base the discussion of numerical results on extensive calculations carried out
by Icko Iben in the sixties. These were among the first comprehensive stellar evolution
calculations, covering a variety of stellar masses and extending to quite late evolutionary
stages. Although later calculations have improved on Iben’s results, they have often not
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changed the conclusions in a qualitative way. Furthermore, Iben presented substantially
more detail about the results than has been common since then; this is very useful for
attempts to understand the behaviour of stars as they evolve. Reviews of the calculations
were given by Iben (1967a, 1985, 1991). It might also be noted that Novotny (1973) gave
detailed tables for several of the models computed by Iben.

10.2 The Jeans instability and star formation

An essential question is the condition for the gravitational instability which causes the
initial collapse of the gas cloud. This can be treated in varying degrees of hydrodynamical
detail. However, the main result can be obtained from a very simple argument.

We consider a gas cloud of mass M and typical size R. The density in the cloud is ρ,
so that mass and size are related by

M ' ρR3 , (10.1)

The gravitational potential in the cloud is GM/R. Hence the total energy of a hydrogen
atom in the cloud is

Etot ' kBT −
GMmu

R
, (10.2)

where the first term is the kinetic energy, and the second term is the gravitational potential
energy. The condition that the cloud is gravitationally bound, and hence potentially
unstable towards collapse, is that Etot < 0, or

GMmu > RkBT . (10.3)

Using equation (10.1), this may also be written

R > RJ ≡
(
πkBT

Gρmu

)1/2

, (10.4)

where we introduced the Jeans length RJ; in writing down equation (10.4) we included a
factor π in the definition of RJ which comes out in more precise stability analysis. This
condition may also be written as

M > MJ =
4
3
πρR3

J ' 5× 10−10

(
T 3

ρ

)1/2

M� , (10.5)

whereMJ is the Jeans mass. Typical values for the temperature and density in the relevant
gas clouds are T = 100K, ρ = 10−22 g cm−3; hence we obtain MJ ' 5× 104M�.

It is obvious that this value is inconsistent with the upper bound on stellar masses
which was discussed in Chapter 4, and it does not immediately explain the presence of
a range of stellar masses. On the other hand, the estimate is reasonably consistent with
the masses of open clusters of stars. Hence it is tempting to speculate that the initial
gravitational instability leads to the collapse of a cloud of gas which eventually breaks up
into the stars in a cluster. Indeed this breakup may be caused by several mechanisms.
In the initial phases of the collapse the gas is so thin that radiation escapes immediately
from the cloud. Consequently, the temperature of the cloud is roughly constant. It follows
that the critical mass MJ decreases as the cloud contracts and the density increases. Thus
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as long as the cloud is roughly isothermal, it becomes unstable to gravitational collapse
on smaller and smaller scales as it contracts. This may lead to the break-up into masses
that are closer to stellar mass. An additional contribution to the break-up may come from
rotational instability. If the cloud is isolated from its surroundings, its original angular
momentum (which comes from the participation of the cloud in the rotation of the Galaxy)
is conserved. Thus

L 'MR2ωrot , (10.6)

where ωrot is the angular velocity of the cloud, is constant. It follows that ωrot increases
rapidly as the cloud contracts. As a result, the ratio between the centrifugal acceleration
grot and the gravitational acceleration, ggrav,

grot

ggrav
' Rω2

rot

GM/R2
∝ R−1 , (10.7)

increases during the contraction, possibly to the point where the cloud becomes unstable
to rotational breakup. This process may then repeat itself, again perhaps leading to the
point where clouds of stellar mass are formed1.

10.3 Hydrostatic contraction

10.3.1 Reaching hydrostatic equilibrium

In the initial collapse, while the temperature is held roughly constant, the pressure does
not increase sufficiently rapidly to balance the increasing gravitational force. Indeed, when
T is constant it follows from the ideal gas law that the force from the pressure gradient is∣∣∣∣dPdr

∣∣∣∣ ' P

R
∝ ρ

R
' M

R4
, (10.8)

while the gravitational force is
GMρ

R2
' GM2

R5
, (10.9)

which clearly increases more rapidly with decreasing R than does the force from pressure2.
However, when the density becomes so high that the gas becomes opaque to radiation,
the contraction changes to being effectively adiabatic. Then (once the gas is heated up
sufficiently that it is dissociated into individual atoms) P ∝ ρ5/3, and instead of equation
(10.8) we obtain ∣∣∣∣dPdr

∣∣∣∣ ∝ M5/3

R6
, (10.10)

which increases with decreasing R more rapidly than does the gravitational force. Al-
though hardly compelling, this argument suggests that when the gas becomes approxi-
mately adiabatic, pressure may increase sufficiently to balance gravity, so that hydrostatic
equilibrium can be achieved.

When the star is approximately in hydrostatic equilibrium, the virial theorem (cf.
section 4.4) is satisfied. Assuming that the gas is non-relativistic, so that pressure and

1one might speculate that the last step in such a sequence of rotational break-ups could result in the
formation of a close binary star.

2This argument should be compared with the estimate of stellar internal pressure in section 4.1.1.
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internal energy are related by equation (3.1), the total gravitational potential energy Ω,
the total thermal energy Utot and the total energy E of the star are then related by

E = Ω + Utot = −Utot =
1
2
Ω (10.11)

(cf. equation [4.22]). Thus, as the star contracts half of the gravitational potential energy
which is released is converted into thermal energy, hence in general increasing the temper-
ature of the star. Also, the luminosity of the star is approximately related to the change
in its radius by

LG = −1
2

dΩ
dt
' −1

2
GM2

R2

dR
dt

(10.12)

(cf. equation [4.23]).
To obtain a more precise idea about the properties of the star, the estimate (4.8) of

the internal pressure may be used; if the gas satisfies the ideal gas law, the temperature
can then be estimated from equation (4.9):

Tc =
µcmuPc

kBρc
' GµcmuM

kBR
. (10.13)

Since the radius of the contracting star is still quite large, the temperature is low; it follows
from section 5.3 (particularly the Kramers law [5.14]) that the opacity is high, and hence,
according to equation (6.19), that there is a tendency for convective instability. Thus we
would expect the star to evolve initially down the Hayashi track (cf. section 7.2.1), at
almost constant effective temperature. This is confirmed by numerical calculations. Fig-
ure 10.1 shows Iben’s results for pre-main-sequence evolution plotted in a (log Teff , logLs)
diagram; the computed duration of the different evolutionary phases is given in Table
10.1. During the initial phases of the hydrostatic contraction the star is almost entirely
convective, and lies close to the Hayashi track. An important consequence of the convec-
tive instability during the contraction is that the stars are mixed very efficiently; thus one
normally assumes that stars are chemically homogeneous when the nuclear burning starts.

More recent calculations have modified this simple description somewhat, particularly
for stars above 2M�. These have shown a fairly complex interaction between the con-
tracting central part of the star and the surrounding cloud which continues to accrete
onto the forming star. As a result, the stars emerge as well-defined and observable ob-
jects only somewhat later in the formation process, along the so-called stellar birthline (cf.
Fig. 10.2). This appears to be consistent with observations of star-forming regions. For
lower-mass stars, including the early stages of solar evolution, there is still a considerable
phase of evolution along the Hayashi track, however.

10.3.2 The minimum mass of a star

The subsequent evolution of the star depends crucially on whether or not the temper-
ature in its core rises sufficiently for nuclear reactions to set in. It is evident that as
long as equation (4.9) is valid, the temperature increases as the star contracts; the same
conclusion follows from the virial theorem, since for an ideal gas the internal energy is
proportional to temperature. However, it is not obvious that the gas remains ideal. It
follows from equation (3.62) that the gas becomes degenerate if the ratio ρ/T 3/2 is too
large. Assuming equation (10.1) for ρ and equation (4.9) for T , this ratio changes with R
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Figure 10.1: Evolutionary tracks in the Hertzsprung-Russell diagram for pre-main-
sequence evolution of models of mass M/M� = 0.5, 1.0, 1.25, 1.5, 2.25, 3, 5, 9 and
15. The luminosity Ls is in units of 3.86 × 1033 erg sec−1, and Te is the effective
temperature in K. The composition of the models is X = 0.708, Z = 0.02. (From
Iben 1965.)
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Figure 10.2: Theoretical pre-main-sequence evolution tracks, labelled by stellar
mass in M�. Selected isochrones are shown by the dotted lines, labelled by age. For
each track, evolution starts at the birthline (upper solid line) and ends on the zero-age
main sequence, which is also indicated. (From Palla & Stahler 1999.)

Table 10.1

Evolutionary lifetimes (in years) for the models shown in Figure 10.1. The table lists the
time required for the model to reach the various points indicated in the figure, from the
start of the calculation (which roughly corresponds to the time where the model gets into
hydrostatic equilibrium). (From Iben 1965.)
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as R−3/2; hence the star moves towards being degenerate as it contracts. Once the gas is
degenerate, the increase in pressure caused by contraction no longer leads to an increase
in temperature (since the pressure of a strongly degenerate gas only depends on density),
and the temperature may never get high enough that nuclear burning is initiated3.

The condition for nuclear burning to start is that the temperature becomes sufficiently
high before degeneracy sets in. To get a rough estimate of the limits on stellar parameters
imposed by this condition, we assume that the central temperature is given by equation
(4.9), that the central density is given by equation (10.1), and require that at the centre
the pressure from degenerate electrons, given by equation (3.61), is less than the total
ideal gas pressure:

1
5

(
3
8π

)2/3 h2

mem
5/3
u

(
ρc

µe

)5/3

<
kBTcρc

µmu
. (10.14)

As argued above, the left-hand side of this inequality increases more rapidly during the
contraction than does the right-hand side. The condition for start of nuclear burning is
that the condition is still satisfied when the temperature reaches the value Tig required
for ignition of the hydrogen burning. Hence it is convenient to describe the contraction
in terms of the central temperature. In fact, R may be written in terms of Tc by means
of equation (4.9). When substituted into equation (10.1) this leads to a relation for ρc in
terms of Tc:

ρc '
(
kBTc

Gµmu

)3

M−2 . (10.15)

Hence equation (10.14) may be written

1
5

(
3
8π

)2/3 h2

me(µemu)5/3
M−4/3

(
kBTc

Gµmu

)2

<
kBTc

µmu
. (10.16)

This condition may be rearranged, to yield

µ5/4
e µ3/4 M

M�
>

[
3
8π

h3(kBTc)3/2

m4
u(5me)3/2G3M2

�

]1/2

' 5× 10−3T
3/4
c,6 , (10.17)

where, as usual, Tc,6 = Tc/(106 K).
This relation was derived under the assumption that the temperature was given by

the ideal gas law. If during contraction T exceeds the limit given in equation (10.17),
degeneracy sets in, and the temperature no longer increases. The equation therefore
provides an estimate of the maximum temperature that can be reached before matter
becomes degenerate. Conversely it defines the minimum mass of a star that can reach a
given temperature before becoming degenerate. If the ignition temperature Tig for a given
nuclear reaction is used, we obtain the minimum mass of a star where this process can
occur. To ignite hydrogen burning, a temperature of a few million degrees is required;
hence it follows from equation (10.17) that hydrogen burning will never set in if the mass
of the proto-star is less than of order 0.01M�.

3Again the same conclusion is reached from the virial theorem: in a strongly degenerate (non-relativistic)
gas the internal energy per unit volume is given by equation (3.57), and is independent of temperature;
hence the increase in the thermal energy which accompanies the gravitational contraction does not lead to
an increase in the temperature.
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The derivation leading to equation (10.17) is obviously extremely rough. In particular,
equation (10.1) provides a substantial underestimate of the central density, leading to an
underestimate of the critical mass in equation (10.17). Also, one must take into account
that as the star contracts there is a gradual transition from the ideal gas law to degenerate
electrons being dominant. As discussed in exercise 10.1, these effects may be treated
approximately, to obtain a more realistic estimate of the minimum mass.

Exercise 10.1:

As a (fairly rough) approximation to the equation of state of a partially degenerate gas
we assume that the pressure may be obtained as the sum of the ideal gas contribution
and the contribution from degenerate electrons:

P =
kBTρ

µmu
+

1
5

(
3
8π

)2/3 h2

mem
5/3
u

(
ρ

µe

)5/3

. (10.18)

Furthermore, we assume that the star is on the Hayashi track, so that its structure is
that of a polytrope of index n = 3/2.
Determine the central temperature Tc as a function of M and R. Show that Tc has a
maximum as a function of R, and determine the maximal value of Tc.
Use the results to show that equation (10.17) for the minimal mass corresponding to
a given ignition temperature should be replaced by

µ5/4
e µ3/4 M

M�
>

 3
π

h3(kBTc)3/2Q 4
3/2

m4
u(5W 2

3/2me)3/2G3M2
�

1/2

' 0.039T 3/4
c,6 . (10.19)

Here Wn (with n = 3/2 in the present case) was defined in equations (4.52) and (4.53),
and we have introduced Qn such that

ρc = Qn
M

R3
i.e., Qn =

3
4π

ρc

ρ
; (10.20)

Wn and ρc/ρ are tabulated in Table 4.1.

For a chemical composition X = 0.7, Z = 0.02, and assuming that ignition of hydrogen
burning requires a temperature in excess of 2 × 106 K, equation (10.19) shows that the
minimum mass for hydrogen burning is about 0.09M�.

Detailed calculations of low-mass stellar evolution (see, for example, D’Antona &
Mazzitelli 1985) generally confirm the results of this exercise. In particular, the physi-
cal principle determining the minimum mass, viz. the onset of degeneracy with increasing
contraction, is broadly speaking the same as was used to obtain the estimate. One finds
that for a given mass the central temperature has a maximum as a function of R. The
condition for ignition is then that this maximum temperature is sufficiently high. This
leads to a condition with the same functional form, and a similar numerical value, as equa-
tion (10.19). The results show that the minimum mass where a star can burn hydrogen
in thermal equilibrium (i.e., without a substantial part of the energy being supplied by
contraction) is about 0.08 M�, in excellent agreement with the estimate obtained here.



10.4. THE APPROACH TO THE MAIN SEQUENCE 137

Objects with even lower masses may radiate for a substantial length of time due to
the release of gravitational energy caused by contraction. Thus calculations show that a
“star” with a mass of 0.04 M� can maintain an effective temperature higher than 1000
K for about 2 × 109 years in this way. Such objects are known as brown dwarfs. They
are extremely faint and therefore difficult to detect. Even so, since 1995 a substantial
number have been observed, although their number density in the Galaxy, relative to
‘normal’ stars, is still uncertain. A brief overview of the properties of brown dwarfs was
given by Basri (2000a); a detailed review of the then current observational situation was
provided by Basri (2000b), Burrows et al. (2001) discussed models of brown dwarfs, while
Jayawardhana (2004) gave a brief discussion of their formation.

Ongoing systematic surveys of the sky are likely over the next few years to provide
further insight into the number and properties of the brown dwarfs.

10.4 The approach to the main sequence

From Figure 10.1 it is evident that the 0.5M� star continues on the Hayashi track down
to the point where it is established on the main sequence. In fact, stars of such low
masses have very extensive outer convection zones, even during the hydrogen burning
phase. At somewhat higher mass, the star eventually departs from the Hayashi track and
evolves towards higher effective temperature. The reason for this is fairly obvious: as the
temperature increases in the core of the star, the opacity decreases, and a point is finally
reached where the core becomes stable towards convection. When the radiative core grows
sufficiently, the luminosity is predominantly determined by the condition that it can be
carried by radiation in the interior of the star; hence it is approximately given by the
mass–effective-temperature–luminosity relations for radiative stars, i.e.,

Ls ∝ T 0.8
eff M

4.4 for low mass , (10.21)

and
Ls ∝M3 for high mass (10.22)

(cf. section 7.1). It follows that as the star contracts, its effective temperature increases,
leading either to an increase, or an approximately constant value, of the luminosity, de-
pending on whether equation (10.21) or equation (10.22) is the better approximation.

Exercise 10.2:

Verify the preceding statements.

The transition to predominantly radiative transport is illustrated in more detail in Fig-
ure 10.3, which shows the time dependence of a number of quantities during the contraction
of the 1M� star in Figure 10.1. To fit these rather different variables onto a single fig-
ure, they have been scaled so as to have unit range. The actual ranges of the variables
are given in the figure caption4. During the Hayashi-track part of the contraction, the

4Several other diagrams of this nature are shown in Chapter 12. They are collectively known as Iben
diagrams, and take a little effort to get used to.
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Figure 10.3: The variation with time t (in seconds) of important quantities during
the contraction of a 1M� star towards the main sequence. The figure illustrates the ef-
fective temperature Te (in units of K), luminosity Ls (in units of 3.86×1033 erg sec−1),
stellar radius R (in units of 6.96×1010 cm), central over mean density ρc/ρ, and mass
fraction QRC in the radiative interior. The total range of the figure corresponds to
the following ranges of the variables: 3.58 < log Te < 3.78; −0.4 < logL < 0.6;
−0.4 < logR < 0.6; 0.0 < log ρc/ρ < 2.0; and 0 < QRC < 1. (From Iben 1965.)

effective temperature is essentially constant; so is ρc/ρ, corresponding to the value for an
n = 3/2 polytrope. However, once the mass fraction QRC = mRC/M , where mRC is the
mass contained in the radiative core, exceeds about 0.8, the star starts to depart from
the Hayashi track, the effective temperature and ρc/ρ increase rapidly, and the luminosity
increases somewhat.

The contraction is stopped when hydrogen burning begins. This is marked in the evo-
lution tracks in Figure 10.1 by a drop in luminosity, apparently a somewhat paradoxical
result! In fact, in most stars the initial nuclear reactions are those involved in the burning
of 12C to 14N (cf. equation [8.59]). Because of the high temperature sensitivity of these
reactions, the energy transport in the core has to take place by convection. The establish-
ment of the convective core leads to an expansion of the core, as visible in the ratio ρc/ρ̄
in Figure 10.3. The energy required to overcome the gravitational potential energy during
the core expansion causes the drop in luminosity, despite the continuing contraction of the
outer parts of the star and the energy released by the nuclear reactions.

In the 1M� star, equilibrium nuclear burning is established during the burning of 12C,
and the star settles down on the main sequence at the end of the drop in luminosity.
For masses greater than 1.5M�, however, nuclear burning essentially stops once the 12C
has been consumed. The star then resumes gravitational contraction, increasing its ef-
fective temperature, luminosity and core temperature, until it reaches the point where
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the principal reactions in the hydrogen burning become effective. At that point there is
another expansion of the core, and hence of the rest of the star, with a consequent drop
in luminosity; and the star finally reaches equilibrium on the main sequence.

Generally speaking the contraction must occur on the Kelvin-Helmholz time defined
in equation (1.5),

tKH =
GM2

RLs
, (10.23)

since the star derives its luminosity from the release of gravitational energy. As the lumi-
nosity increases strongly with increasing mass (cf. Figure 10.1), the contraction is much
faster for high-mass stars than for low-mass stars. This is in agreement with the com-
puted duration of the various phases of the pre-main-sequence contraction as shown in
Table 10.1; it is obvious that the speed of evolution does indeed depend strongly on the
stellar mass. Furthermore, the timescale for a 1M� star is obviously roughly consistent
with equation (1.6). In particular, the pre-main-sequence phase is quite brief compared
with the main-sequence phase, which for a 1M� star lasts of order 1010 years (see Chap-
ter 11).

Exercise 10.3:

Attempt to make a more quantitative comparison between equation (10.23) and the
values given in Table 10.1, using also the information available in Figure 10.1.
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Chapter 11

The main sequence

11.1 Introduction

Apart from very late stages of evolution stars spend most of their life burning hydrogen
on the main sequence1. Hence it is of considerable interest to understand the properties
of main-sequence stars, and to describe the changes that occur as a result of hydrogen
burning. A main-sequence star of somewhat special interest is the Sun: this is partly
motivated by our desire to understand an object of such importance to our daily life; a
more interesting consideration is that changes in the properties of the Sun over its life
may have had an effect on conditions on Earth (changes in the Sun as it evolves towards
the red giant stage, in approximately 7× 109 years, will certainly have dramatic effects).
From the point of view of astrophysics, the proximity of the Sun, and hence our ability to
observe it in very great detail, makes it extremely important as a test of stellar evolution
theory. For these reasons we return to the Sun towards the end of this chapter, after
considering more general properties of main-sequence stars.

11.2 The zero-age main sequence

The zero-age main sequence (or ZAMS) may be defined, somewhat loosely, as the location
of stars that have just settled down to hydrogen burning2. Figures 11.1 – 11.3 illustrate
the relation between mass, luminosity, radius and effective temperature for such stars,
comparing the numerical results with observed properties of binary stars (cf. section 2.7).
The most striking feature is the rapid increase in luminosity with stellar mass, as was
also predicted by the mass-luminosity relations in section 7.1. Indeed, as indicated in the
figure, these relations show some similarity with the computed behaviour; in particular
there is a tendency towards a steepening of the slope for masses below solar3. In contrast,
the radius increases only roughly proportionally with M . Hence the effective temperature
also increases substantially with increasing mass, as shown in Figure 11.1.

1Properly speaking the hydrogen main sequence. One sometimes talks about other “main sequences”,
particularly for helium burning; cf. Chapter 12.

2Computationally, such models may approximately be obtained by solving numerically the equations
of stellar structure (9.2) – (9.6), without the time-derivative terms in equation (9.4), for a homogeneous
composition.

3At even lower masses, this trend is reversed; here, however, the stars have very extensive outer con-
vection zones, and the applicability of the radiative mass-luminosity relation is certainly questionable.

141
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Figure 11.1: Hertzsprung-Russell diagram of the zero-age main sequence computed
for the composition X = 0.685, Y = 0.294. The location of several models with
masses between 0.1 and 22M� are indicated below the sequence (From Kippenhahn
& Weigert 1990.)

Figure 11.2: The line shows the mass-radius relation for the zero-age main se-
quence plotted in Figure 11.1. For comparison measured properties of binary stars
are indicated by the symbols (From Kippenhahn & Weigert 1990.)
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Figure 11.3: The continuous line gives the mass-luminosity relation for the zero-age
main-sequence models shown in Figure 11.1. The symbols show measured properties
of binary stars. For comparison, the dashed lines indicate the simple mass-luminosity
relations (7.7) (assuming that R ∝M) and (7.8) derived in Chapter 7. (Adapted from
Kippenhahn & Weigert 1990.)

Figure 11.4 gives an indication of the interior structure of main-sequence stars. Each
value of the abscissa corresponds to a given total mass of the star; a vertical slice through
the diagram at that point describes the interior structure for that star. The “cloudy” areas
show the location of convection zones in the models; in addition, the masses corresponding
to 0.25R and 0.5R, and to 0.5Ls and 0.9Ls, are shown by means of continuous and dashed
curves, respectively. (For example, in the star with logM/M� = −0.4, there is a convective
envelope extending over approximately the outer 30 per cent of the mass; half of the total
luminosity is generated within the inner 10 per cent of the mass, corresponding to a
quarter of the radius). As discussed in Chapter 6, in low-mass stars there are extensive
outer convective envelopes, which in this calculation grow to encompass the entire star
at a mass of about 0.25M�. Stars of masses larger than the solar mass have convective
cores, the extent of which grow rapidly with increasing mass. The reason is the increasing
importance of the CNO cycle in the energy generation: because of the resulting high
temperature sensitivity of the energy generation rate the energy production gets highly
concentrated towards the centre (as is also evident from the 0.5Ls and 0.9Ls curves), and
this leads to convective instability [cf. equation (6.19)].

11.3 Evolution during core hydrogen burning

11.3.1 The evolution in the HR diagram

Evolution tracks, from Iben’s calculations, for the evolution after the ZAMS are shown
in Figure 11.5. The duration of the different phases of evolution, as indicated by the
numbered points on the tracks, is given in Table 11.1. Here we concentrate on the initial
parts of the tracks, roughly between points 1 and 2, which correspond to the phase of
hydrogen burning in the core.
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Figure 11.4: The mass valuesm from centre to surface are plotted against the stellar
mass M for the zero-age main-sequence models which were shown in Figures 11.1 –
11.3. “Cloudy” areas indicate the extent of the convection zones inside the models.
Two solid lines give the mass values at which r is 1/4 and 1/2 of the total radius R.
The dashed lines show the mass values inside which 50 per cent and 90 per cent of
the total luminosity Ls are produced. (From Kippenhahn & Weigert 1990.)

A general tendency at all masses is that the luminosity increases during the central
hydrogen burning. This may be understood in terms of the changes that take place in
the core of the star. As hydrogen is converted into helium, the hydrogen abundance X
decreases; hence, according to equation (3.27)4 the mean molecular weight µ increases.
Since the pressure has to be sufficient to balance the weight of the overlying material and
hence cannot decrease, it follows from the ideal gas law, equation (3.24), that ρT must
increase to compensate for the increase in µ. In fact, the core contracts, thus increasing
ρ. The contraction releases gravitational potential energy which, according to the virial
theorem, goes partly towards increasing the internal energy of the gas; as a result the
temperature increases. This tends to increase the nuclear energy generation rate, as does
the increase in density; furthermore, the increase in temperature increases the radiative
flux of energy, partly through the resulting reduction in opacity [cf. equations (5.6) and
(5.14)]. The result is that the luminosity of the star increases.

The steep increase in luminosity with increasing mean molecular weight was in fact
already predicted in equations (7.7) and (7.8). There it followed exclusively from the
changes in the radiative energy transport. In fact, there must be a balance between the

4or common sense: helium is heavier than hydrogen.
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Figure 11.5: Evolutionary tracks in the Hertzsprung-Russell diagram for the evo-
lution following the main sequence. The unit of luminosity Ls is 3.86× 1033 erg sec−1,
and the effective temperature Te is in K. The models were computed with the com-
position X = 0.708, Z = 0.02. Tracks are shown for models of mass M/M� = 0.5,
1.0, 1.25, 1.5, 2.25, 3, 5, 9 and 15. Dashed portions of the evolutionary tracks are
estimates. (From Iben 1967a.)
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Table 11.1

The duration (in years) of different phases in the evolutionary tracks illustrated in Fig-
ure 11.5. The numbers refer to the points indicated in that figure, and the entries give
the duration of the corresponding interval. Numbers in parenthesis beside each entry give
the power of ten with which that entry is to be multiplied. For example, the duration of
the evolution from point 1 to point 2 for a 1M� star is 7× 109 years. (From Iben 1967a.)

energy production and the energy transport, which determines the equilibrium structure
of the star; also, equations (7.7) and (7.8) essentially assumed a uniform chemical com-
position, whereas in fact the nuclear burning, and hence the change in µ, predominantly
take place near the centre. Thus the dependence of luminosity on µ derived in section
7.1 cannot be used directly for an evolving star; however, the principles underlying the
derivation in that section are rather similar to the discussion given above of the changes
in the star as it evolves.

Exercise 11.1:

Review the derivation in section 7.1, and compare it with the discussion given here.

While the change in luminosity may be understood in fairly simple terms, as discussed
above, the reasons for the variation in the other global properties of the star, i.e., radius
and effective temperature, are less obvious. In all cases the surface radius of the star
expands as the star evolves, but at very different rates. For low masses the expansion is
relatively modest; as a result the increase in luminosity leads to an increase in effective
temperature [see equation (5.12)]. For higher mass, however, the expansion is more rapid,
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and the effective temperature decreases. The trend that core contraction is associated
with surface expansion may be an example of a more general principle, as discussed in
Chapter 12. There is no doubt about the correctness of the numerical results; however, the
behaviour is so regular that one might expect an underlying mechanism that is sufficiently
simple to be understandable, at least qualitatively.

Currently, no generally accepted explanation exists. However, to my mind, the most
reasonable suggestion has been given by Douglas Gough, in an unpublished set of lecture
notes. It was argued above that the virial theorem predicts the core contraction to lead
to heating of the core. This, however, is strictly speaking an incorrect application of the
virial theorem to just the core. In fact we need to consider the changes in the entire
star, and the result provides a measure of the change of the total thermal energy, and
hence some average of the temperature, rather than the change in the core temperature.
It seems likely that if the entire star were to contract as a result of the core contraction,
the decrease in the gravitational potential energy, and hence the increase in the thermal
energy, would be so large that the core temperature would increase too much; the result
would be an increase in the energy generation rate beyond what could be transported out
through the star. Hence the outer parts of the star have to expand, to compensate for the
contraction of the core, and hence keep the increase in core temperature at an acceptable
level. Some support for this idea comes from the difference between low- and high-mass
stars: for high-mass stars the energy generation is dominated by the highly temperature-
sensitive CNO cycle; hence the acceptable increase in core temperature is smaller than at
low stellar mass, and the required expansion is consequently larger.

This is clearly not a very compelling argument5, but it does provide a possible ex-
planation for computed behaviour. Furthermore, the explanation might in principle be
tested by analyzing the computed models in detail. In fact, surprisingly little work has
been done towards trying to understand the results of stellar evolution calculations in this
manner. This would appear to be an interesting line of research.

11.3.2 The changes in the hydrogen abundance

The details of the way in which hydrogen is used up during core hydrogen burning have
substantial effect on the subsequent evolution of the star. Because of the temperature
sensitivity of the nuclear reactions, hydrogen is consumed most rapidly at the centre. In
a star with radiative energy transport in the core, it is normally assumed that there is
no core mixing6. It follows that helium produced by hydrogen burning remains where
it is created, and hence the hydrogen abundance decreases most rapidly at the centre.
The result is a variation of the hydrogen abundance with time and with location in the
star such as is illustrated in Figure 11.6. In evolved stars X increases gradually from the
centre, and complete exhaustion of hydrogen first occurs precisely at the centre.

Massive stars have convective cores, which are mixed on a timescale very short com-
pared with the evolutionary timescale (cf. section 6.4.3). Hence within the convective
cores the chemical composition can be assumed to be uniform at all times. As a result,

5I once attended a mathematics lecture in which an argument was described as being “not strong enough
to hang a man”. The present argument is barely sufficient for handing out a parking ticket.

6While not unreasonable, this assumption is not entirely obvious. It is possible that there are other
sources of, possibly very slow, mixing, which could affect the composition of the cores of low-mass stars.
On the other hand, there is no evidence for such mixing in the case of the Sun.
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Figure 11.6: Hydrogen profiles showing the gradual exhaustion of hydrogen in a
star of 1M�. The homogeneous initial model consists of a mixture with a hydrogen
abundance by mass of 0.699. X as a function of the mass fraction m/M is plotted for
nine models which correspond to ages of 0, 2.0, 3.6, 5.0, 6.2, 7.5, 9.6, 11.0 and 11.6
times 109 years, after the onset of hydrogen burning. The model at 5.0 × 109 years
corresponds roughly to the present Sun, whereas the last two models are in the shell
hydrogen burning phase, which is discussed in Chapter 12.

the fusion of hydrogen to helium, which still predominantly takes place near the centre
where the temperature is highest, leads to a uniform reduction in the hydrogen abundance
in the convective core. The computations also show that the extent of the core generally
shrinks as the star evolves; the most important reason for this is the reduction in the opac-
ity, which may be assumed to be dominated by electron scattering, with the reduction in
the hydrogen abundance [cf. equation (5.15)]. The result is the evolution in the hydrogen
profile which is illustrated in Figure 11.7.

Figure 11.4 shows that for masses exceeding about 3M� the convective core extends
substantially beyond the region where the energy generation takes place. Hence, hydrogen
is exhausted simultaneously throughout the nuclear-burning core. The consequences of
this for the subsequent evolution of the star are discussed in Chapter 12.

11.3.3 The evolution timescale

The duration of the core hydrogen-burning phase is determined by the amount of hydrogen
available for burning, and by the luminosity of the star. If qc is the fraction of the stellar
mass which takes part in the nuclear burning, and Qeff is the average amount of energy
produced per generated helium atom, it follows from a relation similar to equation (8.49)
that the duration of main-sequence phase may be estimated as

tMS '
qcX0Qeff

4AHmu

M

Ls
, (11.1)
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Figure 11.7: Hydrogen depletion in a 2.5M� star with a shrinking convective
core. The homogeneous initial model has X = 0.699. The lines show the hydrogen
profiles for models of age 0, 1.5, 3.1, 4.0, 4.4, 4.6, and 4.8 times 108 years. Note
that since hydrogen burning is negligible at the edge of the convective core during
the main-sequence phase, the hydrogen profile established during this phase reflects
the decrease in the extent of the core. In contrast, the last model is in the hydrogen
shell-burning phase, the helium core having grown substantially beyond the smallest
extent of the convective core.

where X0 is the initial hydrogen abundance. Assuming that qc and Qeff are roughly
independent of stellar mass, and that the mass-luminosity relation can be represented as
Ls ∝Mν , we obtain7

tMS ∝M−(ν−1) . (11.2)

From the estimates given in section 7.1 the exponent ν is 3 – 5 (see also Figure 11.4); hence
the main-sequence lifetime decreases steeply with increasing mass. This is confirmed by
the computed values given in Table 11.1.

11.4 The evolution of the Sun

11.4.1 Introduction

The computation of solar models follows the procedures discussed for other stars. How-
ever, a particular feature of the solar calculations is that the models should match the

7In fact, the assumption of constant core mass fraction is rather dubious. In particular, it follows from
Figure 11.4 that the extent of the convective core, and hence the fraction of the mass which may contribute
fuel to the hydrogen burning, increases substantially with increasing stellar mass. A further uncertainty in
estimates of the main-sequence lifetime is the extent of overshoot from the convective core: it is virtually
certain that convective motion does not stop at the boundary of the convectively unstable region, but
penetrates somewhat into the surrounding stable region; this increases the amount of hydrogen available
for burning, but the extent of the penetration is very uncertain.
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observed radius and luminosity of the present Sun, which are known with considerable
precision. In fact, agreement with the observed values could have been regarded as a test
of the computed models, were it not for the fact that the computations effectively contain
two parameters, which are not known ab initio with sufficient precision: the abundance
of helium in the initial Sun8, and a parameter determining the efficiency of convection
near the solar surface, where convection cannot be assumed to be essentially adiabatic.
Given assumptions about the other physical parameters characterizing the solar model (in
particular the opacity tables) these two parameters are adjusted until the model fits the
observed radius and luminosity, at the age of the present Sun; the age has been estimated
on the basis of radioactive age determinations for meteorites.

A typical example of a model of the present Sun is shown in Table 11.2. It differs from
the models discussed so far by including also the effect of element diffusion and settling;
in particular, there is a tendency for heavier elements including helium to sink towards
the centre while hydrogen rises towards the surface. This effect is fairly weak in the Sun;
even so, it causes a significant increase in the hydrogen abundance X in the convection
zone, seen in Table 11.2, relative to the original abundance, X0 = 0.709. As discussed in
Section 11.5.2, this effect has been confirmed by observations of solar oscillations.

11.4.2 Changes during the evolution of the Sun

It is evident from Figure 11.5 that the 1M� star shares the general trend of an increase
in luminosity as the star evolves. To illustrate this in more detail, and to investigate
the simplified analysis of the reasons for the increase which was given in section 11.3.1,
Figure 11.8 shows the changes in a number of quantities during the evolution of a solar
model from the ZAMS to the present age. The driver of the evolution is the decrease in
the central hydrogen abundance Xc, from the initial value of 0.709 to the value of 0.335
in the present Sun. As argued in section 11.3.1 the resulting increase in the central mean
molecular weight forces a core contraction, hence increasing the central density. This leads
to an increase in the central temperature Tc. It is interesting, however, that the effect on
the central energy generation rate εc is fairly modest; the increase in Tc should cause a
substantially larger increase in εc due to the comparatively high temperature sensitivity
of nuclear reactions; but this is largely compensated for by the decrease in the hydrogen
abundance [since the energy generation is dominated by the PP chains, ε ∝ X2; cf.
equation (8.52)]. Also, there is a substantial reduction in the central opacity κc, caused
by the increase in the temperature and the decrease in the hydrogen abundance. The
combined effect of the increase in ε and the decrease in κ finally leads to the increase in
the surface luminosity Ls; the results show that Ls was approximately 30 per cent lower
on the ZAMS than at present.

11.4.3 Climatic effects of solar evolution?

An obvious question is whether the climate of the Earth may have been affected by this
increase in the luminosity of the Sun since it arrived on the main sequence. A simple

8The helium abundance cannot be measured spectroscopically in the case of the Sun, because the solar
photospheric spectrum does not contain helium lines. It is true that helium was first discovered in the
Sun, but only in lines formed in the upper parts of the solar atmosphere; here conditions are so uncertain
that the measured line strengths cannot be used for a reliable abundance determination. In contrast, fairly
accurate observations have been made of the abundances of most other important elements in the Sun.
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Table 11.2
r
R

m
M

Lr
Ls

X log P log T log ρ κ ε Ne
Ne,0

0.000 0.000 0.000 0.335 17.371 7.195 2.188 1.24 16.99 1.000
0.020 0.001 0.007 0.350 17.359 7.191 2.174 1.26 16.54 1.000
0.040 0.007 0.053 0.385 17.326 7.180 2.135 1.30 15.07 1.000
0.060 0.020 0.153 0.434 17.274 7.163 2.080 1.36 12.96 1.000
0.080 0.044 0.293 0.488 17.208 7.142 2.013 1.44 10.58 1.000

0.100 0.076 0.452 0.540 17.131 7.117 1.941 1.54 8.20 1.000
0.120 0.118 0.602 0.585 17.045 7.090 1.866 1.65 6.04 1.000
0.140 0.166 0.729 0.622 16.952 7.061 1.789 1.77 4.23 1.000
0.160 0.220 0.826 0.650 16.852 7.032 1.710 1.90 2.82 1.000
0.180 0.277 0.894 0.670 16.747 7.002 1.628 2.05 1.82 1.000

0.200 0.336 0.938 0.684 16.637 6.972 1.543 2.21 1.13 1.000
0.250 0.482 0.988 0.702 16.346 6.900 1.319 2.69 0.33 1.000
0.300 0.610 0.999 0.708 16.041 6.832 1.081 3.31 0.05 1.000
0.350 0.712 1.000 0.712 15.734 6.769 0.837 4.10 0.01 1.000
0.400 0.790 1.000 0.713 15.433 6.709 0.595 5.10 0.00 0.999
0.450 0.848 1.000 0.715 15.141 6.653 0.359 6.29 0.00 0.996

0.500 0.890 1.000 0.716 14.861 6.600 0.131 7.71 0.00 0.993
0.550 0.921 1.000 0.717 14.591 6.548 -0.087 9.42 0.00 0.991
0.600 0.944 1.000 0.718 14.331 6.495 -0.295 11.54 0.00 0.991
0.650 0.960 1.000 0.719 14.076 6.439 -0.494 14.49 0.00 0.991
0.700 0.973 1.000 0.732 13.820 6.367 -0.681 19.26 0.00 0.991
0.750 0.983 1.000 0.737 13.547 6.260 -0.848 31.59 0.00 0.990
0.800 0.990 1.000 0.737 13.232 6.135 -1.038 50.94 0.00 0.989
0.820 0.992 1.000 0.737 13.089 6.079 -1.124 61.32 0.00 0.988
0.840 0.994 1.000 0.737 12.932 6.017 -1.218 74.83 0.00 0.988
0.860 0.996 1.000 0.737 12.757 5.947 -1.323 94.31 0.00 0.987
0.880 0.997 1.000 0.737 12.559 5.869 -1.442 1.2× 102 0.00 0.986

0.900 0.998 1.000 0.737 12.328 5.777 -1.581 1.7× 102 0.00 0.985
0.910 0.999 1.000 0.737 12.195 5.725 -1.660 2.1× 102 0.00 0.984
0.920 0.999 1.000 0.737 12.048 5.667 -1.749 2.7× 102 0.00 0.984
0.930 0.999 1.000 0.737 11.881 5.602 -1.849 3.8× 102 0.00 0.982
0.940 1.000 1.000 0.737 11.688 5.526 -1.964 5.9× 102 0.00 0.980
0.950 1.000 1.000 0.737 11.459 5.437 -2.102 1.1× 103 0.00 0.977
0.960 1.000 1.000 0.737 11.176 5.328 -2.273 2.4× 103 0.00 0.970
0.970 1.000 1.000 0.737 10.802 5.189 -2.500 8.0× 103 0.00 0.954
0.980 1.000 1.000 0.737 10.256 4.998 -2.842 2.5× 104 0.00 0.911

0.990 1.000 1.000 0.737 9.237 4.660 -3.489 1.3× 105 0.00 0.800
0.992 1.000 1.000 0.737 8.875 4.565 -3.737 1.3× 105 0.00 0.726
0.994 1.000 1.000 0.737 8.398 4.460 -4.084 7.4× 104 0.00 0.617
0.996 1.000 1.000 0.737 7.741 4.343 -4.588 2.4× 104 0.00 0.468
0.998 1.000 1.000 0.737 6.768 4.206 -5.368 4.1× 103 0.00 0.280
0.999 1.000 1.000 0.737 6.063 4.115 -5.937 9.7× 102 0.00 0.157
1.000 1.000 1.000 0.737 4.881 3.762 -6.699 0.34 0.00 0.000

Model of the present Sun (Model S of Christensen-Dalsgaard et al. 1996). The columns
show: (1) distance from the centre in units of the surface radius; (2) mass in units of
the total mass; (3) luminosity in units of the surface luminosity; (4) hydrogen abundance;
(5) pressure P ( dyn cm−2); (6) temperature T ( K); (7) density ρ ( g cm−3); (8) opacity
κ ( cm2 g−1); (9) the rate of energy generation ε ( erg g−1 sec−1); (10) the ratio between
the number Ne of free electrons, and the total number of electrons Ne,0, per gram; this
illustrates the transition from almost no ionization near the surface, where the ratio is
zero, to complete ionization in the interior, where the ratio is 1.
The model was adjusted to have the observed surface radius of 6.96 × 1010 cm and the
surface luminosity 3.846 × 1033 erg sec−1 at the age of the present Sun, which was taken
to be 4.6× 109 years. The model has an outer convection zone extending from just below
the surface to r/R = 0.711.
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Figure 11.8: Variation in the surface luminosity and in properties at the cen-
tre during the evolution of a solar model. All variables have been normalized with
their value in the present Sun. The heavy lines show the surface luminosity Ls

( ), the central energy generation rate εc ( ), and the central
opacity κc ( ). The thin lines show the central density ρc ( ), the
central pressure Pc ( ), the central temperature Tc ( ), and the
central hydrogen abundance Xc ( ).

estimate suggests that this may be possible. To maintain equilibrium, there must be a
balance between the amount of heat received by the Earth from the Sun, and the amount
of heat radiated by the Earth (if we neglect the heat generated by radioactive processes in
the Earth’s interior). If we assume that the Earth absorbs all the energy it receives, that
the energy is redistributed evenly over the surface of the Earth (due to the rotation of the
Earth, and the effects of winds and ocean currents), and that the Earth radiates as a black
body with temperature TE, the equilibrium terrestrial temperature may be estimated as

TE =
(

L�
16πd2σ

)1/4

=
(
R�
2d

)1/2

Teff,� , (11.3)
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where d is the distance between the Sun and the Earth.

Exercise 11.2:

Prove this relation. What is the predicted average temperature of the Earth?

According to equation (11.3), the initial average temperature of the Earth should have
been about 7 per cent, or 20K, lower than the present temperature, which is about 290 K.
This suggests that the Earth may initially have been frozen over, in conflict with geological
evidence which indicates development of life, almost certainly requiring liquid water, at
least 3.5 × 109 years ago. Furthermore, with a substantial ice cover, the Earth would
have reflected a large fraction of the incoming solar heat, further reducing the average
temperature. Simple estimates of this effect suggest that if the Earth had at any time
in its history been covered with ice, even an increase in the solar luminosity to a value
substantially higher than the present would have been unable to melt the ice.9

This so-called “faint early Sun” problem caused some discussion around the middle of
the seventies, and attempts were made to produce solar models that did not display an
increase in luminosity during main-sequence evolution. However, this increase is one of
the most robust predictions of stellar evolution theory. As was discussed in sections 11.3.1
and 11.4.2, it results from the changes in structure caused by the depletion of hydrogen
in the solar core. Even if the Sun were assumed to be completely mixed, thus increasing
the supply of nuclear fuel and hence presumably decreasing the effects of evolution, a
luminosity increase of about 20 per cent is still predicted. Under this assumption the
dependence given in equation (7.7) of luminosity on mean molecular weight may be used
to estimate the change in luminosity over the solar lifetime.

Exercise 11.3:

Assuming that the Sun has been fully mixed during its evolution, estimate the change
in the hydrogen abundance from the ZAMS to the present. Then use equation (7.7)
to estimate the change in the solar luminosity, assuming that the change in R can be
ignored. The initial hydrogen abundance may be taken to be X0 = 0.7, and the heavy
element abundance is Z = 0.02.

Models with a constant solar luminosity can be constructed, but only by involving
fairly drastic modifications in the basic physics. One proposal which has been studied in
some detail is to invoke a change with time in the gravitational constant G, and possibly
the solar mass (e.g., Maeder 1977). Such changes have received no independent support,
however, and are probably inconsistent with very accurate measurements of the motion
in the solar system. On the other hand Sackmann & Boothroyd (2003) showed that a
modest mass loss in early stages of solar evolution would involve a slightly more massive,

9This argument is based on somewhat simplified models of the Earth’s climate. There have recently
been suggestions that the Earth has in fact passed through episodes of nearly complete ice cover, which
were reversed by a run-away greenhouse effect caused by volcanic release of CO2; see, for example, Hoffman
& Schrag (2000).
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and hence brighter, young Sun; such models can apparently not be ruled out by current
observations, including the detailed helioseismic inferences discussed in section 11.5.2.

It should be noted, however, that the estimate given above of the change in the Earth’s
temperature was extremely naive, in that it ignored all the complications of terrestrial
climatology. In particular, it did not take into account the so-called greenhouse effect:
the atmosphere of the Earth is largely transparent to radiation at wavelengths where
most of the Sun’s energy is radiated; but because the temperature of the Earth is much
lower, it radiates predominantly at much longer wavelengths [cf. equation (2.18)], and at
these wavelengths there is strong absorption in the atmosphere, particularly due to certain
molecules, such as water vapour and carbon dioxide (CO2). Hence the energy is partially
trapped in the Earth’s atmosphere, the degree of trapping depending on the abundance
of CO2

10.
It is now clear that if there has been a suitable reduction in the abundance of CO2 in

the Earth’s atmosphere during solar evolution, the decreasing efficiency of the greenhouse
effect might have compensated for the increase in solar luminosity, keeping the temperature
at the Earth’s surface approximately constant. That this should be so could seem as an
incredible coincidence. However, there are mechanisms which may link the absorption of
release of CO2 to the surface temperature of the Earth, in such a way that CO2 is bound
up, e.g. in rocks, if the temperature gets too high, thereby decreasing the efficiency of
the greenhouse effect; and CO2 is released if the temperature gets too low. There have
even been speculations that these mechanisms could be of a biological nature, involving
the photosynthesis in the plants and the metabolism in animals11. On the other hand,
there appears to be also inorganic mechanisms which may provide the required feedback.
A very interesting discussion of these questions was given by Kasting, Toon & Pollack
(1988); they also analyzed the reasons for the striking differences between the climates of
Venus, the Earth and Mars.

Computations of solar evolution show, as also indicated in Figure 11.5, that the solar
luminosity will continue to increase. Hence, to maintain the same surface temperature
the efficiency of the greenhouse effect should be reduced even further, by reducing the
CO2 abundance in the Earth’s atmosphere. There is an obvious limit to how far this
reduction may go. In fact Lovelock & Whitfield (1982) estimated that in approximately
150 million years the acceptable CO2 abundance may become too low for photosynthesis to
be possible. While this is no immediate cause for worry, the time estimate is nevertheless
very short compared with the age of the Earth. There is a much more serious concern,
however: currently the atmospheric CO2 abundance is rising fairly rapidly, as a result of
the burning of fossil fuel (coal and oil) and the reduction in the tree cover. As discussed
by Schneider (1989) this may already have had effects on the Earth’s climate, and it is
virtually certain to lead to a significant increase in the temperature of the Earth over our
lifetime, with very serious economical and sociological consequences. How to deal with
this problem is one of the major challenges, to all of us, of the present time.

There is mounting evidence that the Sun affects the climate of the Earth (beyond the
obvious effects) on shorter time scales also. This appears to be related to the magnetic

10A similar mechanism is responsible for the heating up of a greenhouse: glass is transparent to solar
radiation, but absorbs and hence traps the radiation from the interior of the greenhouse.

11This idea underlies the Gaia hypothesis, which has been proposed by J. E. Lovelock and L. Margulis;
according to it, the entire biosphere should be regarded as a “living being”, which adjusts condition so
that they are optimal.
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activity of the Sun, leading to the appearance of sunspots the number of which varies
roughly cyclically with a period around 11 years. During the period 1640 – 1710, how-
ever, where there were already fairly systematic observations of the Sun, the sunspots
apparently almost disappeared; interestingly, this so-called Maunder minimum in solar
activity coincides with the ‘little ice age’, an unusually cold period12. More quantitative
evidence for a climatic effect has been obtained through careful analyses by Labitzke &
van Loon (1993) and by Friis-Christensen & Lassen (1991); the latter authors found an
apparently strong correlation between the period of the solar cycle and the temperature
on the northern hemisphere, over the past few centuries. The physical mechanisms behind
these correlations are not yet completely understood. An interesting possible cause was
found by Svensmark & Friis-Christensen (1997) (see also Svensmark 1998), who showed
that the cloud cover was strongly positively correlated with the intensity of the galactic
cosmic rays; the propagation of cosmic rays through the solar system is affected by the
solar wind and hence by solar activity, in such a way that the intensity of cosmic rays is
decreased at periods of high solar activity.

These results have raised the question whether the consequences of the increasing
greenhouse effect resulting from burning fossil fuel have already been seen in the Earth’s
climate, or whether any possible climatic changes in the past century can be blamed solely
on the Sun (for a rather one-eyed, but enjoyable, presentation of the latter view, see Calder
1997). This debate is far from over. However, in any case it seems likely that both the Sun
and human activities on Earth have the potential to affect the climate; thus restraint in
the burning of fossil fuels and other production of greenhouse gasses seems well justified.

11.5 Tests of solar models

11.5.1 Introduction

In general it is difficult to obtain sufficiently detailed observations of an individual star to
permit a careful test of computed models of the star. Hence much of the testing of stellar
evolution calculations has been based on “statistical” properties of large groups of stars,
particularly stars in open clusters. We return to this in Chapter 13. However, in the case of
the Sun much more information is available. Here we present a brief discussion of two types
of observations which, at least in principle, give information about the solar interior: the
solar five-minute oscillations and the solar neutrinos. The results of using these data to test
the computed models long appeared contradictory: the observed oscillation frequencies
indicated that there are no major problems with our models of the Sun, while there were
substantial differences between the computed and observed flux of neutrinos from the Sun.
As is now known, this discrepancy was an indication that modifications were required in
our description of the neutrino.

11.5.2 Solar oscillations

It is not possible here to present more than a very brief overview of the properties of solar
oscillations, and what they have taught us about the solar interior. For more detailed

12An unfortunate consequence of the cold winters was the ability of the Swedish army to cross the Danish
belts over the ice during the war from 1657 – 1660, contributing significantly to the Danish defeat and
hence to the loss of Scania (Sk̊ane).
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descriptions the reviews by, for example, Leibacher et al. (1985), Libbrecht (1988), Gough
& Toomre (1991), Harvey (1995) and Christensen-Dalsgaard (2002) may be consulted.

An oscillating string has many different eigenmodes, characterized by the number n of
nodes, or places where the string does not move. Similarly there is a large number of dif-
ferent modes of oscillation of a star. However, while the oscillations of a one-dimensional
object like a string can be characterized by a single number n, the characterization of
the oscillations of a three-dimensional star requires three numbers. It may be shown that
the variation of a mode of oscillation with co-latitude θ and longitude φ can be described
in terms of a spherical harmonic Y m

l (θ, φ); hence two of the three wave-numbers charac-
terizing the mode are the degree l and the azimuthal order m of the spherical harmonic.
The third wavenumber, the radial order n, describes the variation of the mode with the
distance r to the centre of the star. To each mode of oscillation corresponds an eigenfre-
quency νnlm, such that for the mode the velocity, say, at a given point in the star varies
with time as

sin(2πνnlmt) . (11.4)

In general the frequency depends on all three wave-numbers. However, it turns out that
if rotation of the star is neglected, the frequencies are independent of m13; we make this
approximation and regard the frequencies νnl as being determined by just n and l.

It is straightforward to compute precise oscillation frequencies for a given stellar model.
An example, for a model of the present Sun, is shown in Figure 11.9. The modes fall into
three different categories:

• The p modes which are standing sound waves.

• The f modes which are essentially surface gravity waves.

• The g modes which are essentially internal gravity waves.

The frequencies depend on the structure of the model. For example, since the p modes
are sound waves, their frequencies are largely determined by the speed of sound c in the
stellar interior, which is given by

c2 =
Γ1P

ρ
' γkBT

µmu
; (11.5)

the last approximation assumes the ideal gas law. Thus, frequencies of p modes may
in principle give information about the temperature in stellar interiors; in practice, this
requires some additional constraints on the chemical composition, and hence the mean
molecular weight.

Of course, Figure 11.9 just shows the modes of oscillation that are possible in a given
star (in the same way as for a string an infinite number of eigenmodes are possible).
Whether any of these oscillations are actually seen in a given star depends on the mecha-
nisms that excite and damp the oscillations. As discussed in section 2.8, in the case of the
Sun a large number of modes are in fact excited, namely apparently modes in the frequency
range between approximately 1500 and 5000 µHz, corresponding to periods between about

13Rotation introduces a splitting after m of the frequencies, rather similar to the Zeeman splitting of
the energy levels of an atom in a magnetic field. This rotational splitting may be used to get information
about the rotation in stellar interiors.
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Figure 11.9: Computed frequencies of a solar model, as functions of the degree
l. For clarity, points corresponding to a given value of the radial order n have been
connected. Selected values of n are indicated.

10 and 3 minutes, at all degrees from 0 to greater than 1000. The distribution of mode
amplitude with frequency is largely independent of the degree l, and hence corresponds to
the spectrum shown in Figure 2.9.

The observed frequencies νnl provide a very rich material against which to test the
computed solar models. The analysis of these data, which in many ways are similar to
seismic data for the Earth, is referred to as helioseismology. The results are somewhat
surprising: for recent models the differences between computed and observed frequencies
are generally less than 10 µHz. This is still considerable more than the estimated errors in
the observations, which in some cases are less than 0.01 µHz; but the agreement between
computations and observations indicates that there are probably at least no gross errors
in our computation of solar models. Hence we may also have some confidence in models
of other main-sequence stars. Furthermore, the results of the comparison are quite sen-
sitive to the details of the physics in the models. For example, the inclusion of Coulomb
interaction in the equation of state led to a very significant improvement in the agree-
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Figure 11.10: Relative difference in squared sound speed between the Sun and two
solar models, obtained from analysis of observed frequencies of five-minute oscillations;
the differences are shown in the sense (Sun) – (model). The open circles show results
using a model without diffusion and settling, whereas the solid symbols were obtained
with Model S (cf. Table 11.2) where diffusion and settling of helium and heavy
elements were taken into account. The vertical error bars (barely visible) indicate
the formal errors in the differences, based on the errors in the observed frequencies,
whereas the horizontal bars provide a measure of the resolution in the determination.

Figure 11.11: Relative difference in density between the Sun and Model S, obtained
from analysis of observed frequencies of five-minute oscillations.
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ment between computations and observations, Also, a ten per cent change in the assumed
opacity in part of the Sun has a noticeable effect on the computed frequencies; analysis of
the oscillation frequencies has indicated that the tabulated opacity near the base of the
solar convection zone was too low, a result which has later been confirmed by new opacity
computations. Thus observations of this nature may lead to improvements in the physics
used in computing stellar models.

However, it is possible to go further than merely comparing observed and computed
frequencies. By applying inverse analysis one may determine differences between the
properties of the Sun and the model, from the differences between observed and com-
puted frequencies. As examples Figures 11.10 and 11.11 show the relative differences in
sound speed and density between the Sun and the model given in Table 11.2; in addition,
sound-speed results for a model neglecting diffusion and settling are also shown. Without
going into the detailed interpretation of the results, it is obvious that the sound speed
in the model agrees quite precisely with the Sun; also, it is striking that the inclusion of
settling, which in the past has often been neglected in solar modelling, leads to such a
dramatic improvement in the agreement between the model and the Sun. The differences
in density are somewhat larger than those in sound speed, especially in the convection
zone. Nonetheless, given the simplifications made in computing the model it is perhaps
surprising that it is so close to reality.

11.5.3 Solar neutrinos

As discussed in section 8.5, the production of one 4He nucleus necessarily leads to the
generation of two neutrinos. Since the neutrinos are virtually certain to escape for the
Sun they may, at least in principle, be detected on the Earth. The measurement of the
flux of neutrinos would then provide a direct measure of the rate of nuclear reactions in
the core of the Sun.

To carry out this simple principle in practice involves numerous difficulties, however.
The main problem is again the very small cross section of the neutrino, which makes
it extremely hard to detect. Furthermore, the results that have been obtained over the
past three decades have consistently been lower than the theoretically predicted values.
This solar neutrino problem has led to a very large effort towards trying to modify the
solar models with a view towards bringing the predicted neutrino flux into agreement with
observations. A comprehensive discussion of the observations and model computations,
and of the possible solutions to the problem, was given by Bahcall (1989). For more recent
reviews, see, for example, Bahcall et al. (1995), Bahcall (1996), Castellani et al. (1997)
and Kirsten (1999).

Here we give a summary of the principal features.
It follows from the analysis in section 8.5 that the neutrinos may be emitted in a num-

ber of different reactions, with very different energies. The distribution of the neutrinos
depends on the branching ratios between the PP-I, PP-II and PP-III chains, and on the
relative importance of the CNO cycle. Since the sensitivity of the neutrino detectors de-
pends strongly on the neutrino energy, the observed number of neutrinos depends on the
details of the neutrino spectrum. An example of a computed neutrino spectrum is shown
in Figure 11.12.

The longest-running experiment to detect solar neutrinos, was established by R. Davis
in the Homestake Gold Mine, South Dakota, in 1970 (for a overview of the results, see
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Figure 11.12: The energy spectrum of neutrinos predicted by a normal model of
the present Sun. The neutrino fluxes from continuous sources are given in units of
cm−2 sec−1 MeV−1 at one astronomical unit; the line fluxes are in units of cm−2 sec−1.
The spectra from the PP chains are shown with continuous lines: pp refers to
the reaction 1H(1H, e+νe) 2D, 7Be to the reaction 7Be(e−, νe) 7Li, 8B to the reac-
tion 8B(e+νe) 8Be, pep to the reaction 1H(1H e−, νe) 2D, and hep to the reaction
3He(1H, νe) 4He (note that the last two reactions were not discussed in section 8.5).
In addition, modest contributions are made by the reactions in the CNO cycle. The
shadings and the bars at the top of the figure indicate the ranges of sensitivity of the
different techniques for detecting the neutrinos. (Adapted from Bahcall 1989.)

Cleveland et al. 1998); it uses the reaction

νe + 37Cl→ e− + 37Ar (11.6)

(cf. section 2.10). This reaction is in principle sensitive to neutrinos with energies ex-
ceeding about 0.8 MeV. In practice the predicted capture rate is dominated by the 8B
neutrinos, with the 7Be neutrinos also making a significant contribution. On the other
hand, the experiment is insensitive to the neutrinos emitted in the PP-I chain, which
dominates the energy generation in the Sun. The predicted capture rates for this exper-
iment from the different sources of neutrinos are listed in Table 11.3. The unit is Solar
Neutrino Unit, or SNU which is defined as 10−36 captures per target atom in the detector
per second. The total predicted capture rate is quoted by Bahcall (1989) as

Predicted capture rate = 7.9(1± 0.33) SNU , (11.7)

where the indicated uncertainty takes into account the uncertainties in the model com-
putations. More recent model calculations, including effects of settling and diffusion, give
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Table 11.3
Neutrino source Capture rate

(SNU)
pp 0.0
pep 0.2
hep 0.03
7Be 1.1
8B 6.1
13N 0.1
15O 0.3
17F 0.003

Total 7.9 SNU

The predicted capture rates for neutrinos from a normal solar model in the 37Cl detector.
(From Bahcall 1989.)

Figure 11.13: Observational results from the chlorine solar neutrino experiment.
The line at 7.9 SNU across the top of the figure represents the prediction of a normal
solar model. (Adapted from Bahcall 1989.)

similar results: Bahcall & Pinsonneault (1995) found a rate of 9.3 SNU, whereas the
prediction for Model S (cf. Table 11.2) is 8.2 SNU.

The measured capture rate is shown in Figure 11.1314. An average over these data
gives an observed capture rate of (2.05±0.3) SNU; including more recent data the average
is 2.56 SNU (Cleveland et al. 1998). Thus the predicted rates are clearly inconsistent with
the measurements. This inconsistency constitutes the solar neutrino problem.

There have been suggestions that the measured rate might show a systematic, almost
14It should be noted that the left-hand axis gives the argon production rate per day, as typically 0.5

atoms per day. In practice, the experiment is run for two months at a time, and the resulting roughly 30
argon atoms are collected and counted. Careful tests have shown that the methods used for extraction
and counting are in fact able to detect such a small number of argon atoms accurately.
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periodic, variation with time. This appeared to be anti-correlated with the solar cycle,
such that the observed capture rate is large at solar minimum and small at solar maximum
(e.g. Bahcall & Press 1991). It is likely that the correlation is spurious, however. It is
very difficult to imagine how the variations during the solar cycle, which are normally
assumed to take place in the solar convection zone, could influence the production rate of
neutrinos. Also, statistical analyses of more extended data (Walther 1997, Wilson 2000)
have failed to confirm the significance of the correlation. Finally, no significant variations
of this nature have been found in other types of neutrino observations.

A second type of experiment to detect solar neutrinos uses scattering of the neutrinos
on electrons in water. Since the electrons are predominantly scattered in the direction in
which the neutrino arrives, this type experiment provides information about the direction
to the source of neutrinos. Figure 11.14 shows the observed distribution as a function
of the direction θsun to the Sun, compared with the predictions of a normal solar model;
the measurements were made with the Super-Kamiokande detector in Japan, utilizing a
tank of 50 000 tons of water buried deep in a mine. This provides the first evidence that
neutrinos are actually coming from the Sun. The experiment is only sensitive to neutrinos
of energy exceeding 6.5 MeV, i.e., largely to the 8B neutrinos. The results again show
that the observed neutrino rate is smaller than the predicted rate (Fukuda et al. 1998a);
a recent value for the ratio between measurements and predictions is 0.47.

These measurements of solar neutrinos led to the award of the 2002 Nobel prize in
physics to Raymond Davis and Masatoshi Koshiba, for establishing, respectively, the 37Cl
and the Kamiokande experiments;15 they shared the prize with Riccardo Giacconi, who
got his share for work in X-ray astronomy.

It should be noted that the neutrinos observed in these two experiments all come from
the PP-II and PP-III chains. The electron-scattering experiment is only sensitive to the 8B
neutrinos from the PP-III chain, which also dominate the detections in the 37Cl detector
(cf. Table 11.3). Hence the predicted flux is very sensitive to the branching ratios between
the PP-I, the PP-II and the PP-III chain, which in turn are highly sensitive to the central
temperature of the Sun (see also exercise 8.8). Thus, to reduce the predicted capture rate
to the observed value only requires a reduction in the core temperature of the Sun by
about 5 per cent, while of course maintaining the correct total integrated energy genera-
tion rate and hence surface luminosity. It is possible to construct such models, although
only by making fairly drastic modifications to the normal assumptions or parameters of
stellar evolution calculations. However, in all cases considered so far the resulting models
have oscillation frequencies which are inconsistent with the observed values (cf. section
11.4.3). As an example may be mentioned the suggestion that part of the energy transport
in the solar core is carried out through the motion of hypothetical elementary particles,
the so-called “Weakly Interacting Massive Particles” (or WIMPs). This would reduce the
temperature gradient required to maintain radiative energy transport, and hence reduce
the central temperature of the Sun. By a suitable choice of parameters it is possible to
construct models which do indeed have the observed neutrino capture rate; furthermore,
the effect on the structure of the model is fairly subtle, and hence, at the time where
the suggestion was made, it was not obviously inconsistent with the observed oscillation
frequencies. However, more careful observations (e.g. Elsworth et al. 1990) have con-
vincingly demonstrated that while normal solar models are consistent with the observed

15See Davis (2003; Rev. Mod. Phys., 75, 985) and Koshiba (2003; Rev. Mod. Phys., 75, 1011).
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Figure 11.14: The distribution in cos θsun (where θsun is the angle to the direction
to the Sun) of neutrinos detected in an electron-scattering experiment. The histogram
is the calculated distribution based on the predicted neutrino flux from a normal solar
model. (See Fukuda et al. 2001.)

frequencies, models with WIMPs are not. More generally, the excellent agreement between
the sound speed in standard solar models and the Sun, found from helioseismology and
extending well into the core where nuclear reactions take place (cf. Fig. 11.10) strongly
suggests that the neutrino predictions of standard solar models are reasonably reliable
(e.g. Bahcall et al. 1997).

It is obviously of great interest to carry out measurements that are sensitive to the
basic pp neutrinos. Such measurements may be based on the reaction

νe + 71Ga→ e− + 71Ge , (11.8)

which is sensitive to neutrinos of energy exceeding 0.23 MeV. Two such experiments have
been carried out, using 30 and 60 tons of gallium (corresponding to a large fraction of the
total World reserve). One of the experiments is the GALLEX experiment at the Gran Sasso
in Italy (e.g. Anselmann et al. 1995); a recent compilation of the results of this experiment
showed a capture rate of 78 ± 8 SNU (Kirsten 1999). The second experiment, the SAGE
experiment at the Baksan Neutrino Observatory, found a capture rate of 67 ± 10 SNU
(Abdurashitov et al. 1999), consistent with the GALLEX result. This is substantially
below the total predicted value of around 135 SNU (e.g. Bahcall & Pinsonneault 1995),
but consistent with the rate coming from the low-energy neutrinos produced in the PP-I
chain.

Given the increasing precision of the solar oscillation measurements, it is difficult to
imagine that a solar model can be found which is both consistent with the oscillation
frequencies and with the neutrino capture rate. In view of the amount of oscillation
data, and the ability to use these data to infer detailed properties of the Sun which



164 CHAPTER 11. THE MAIN SEQUENCE

are largely in agreement with the models, it appears most reasonable to assume that the
structure of solar models is basically correct, and that the solution to the neutrino problem
must be found elsewhere. A possible solution was the Mikheyev-Smirnov-Wolfenstein (or
MSW) effect; it predicts that the electron neutrinos generated in hydrogen fusion may
be transformed into neutrinos of different types, which were not detected in the initial
experiments. The basis for this effect is the existence of two additional types of neutrinos,
in addition to the electron neutrino νe which has been considered so far: the muon neutrino
νµ and the tau neutrino ντ . Neutrinos are normally considered to be massless; however, if
the neutrinos have masses, and if the mass of the νe differs from that of the other types, it is
possible that the νe neutrino may be transformed into a νµ or ντ through interaction with
matter in the Sun. Of the experiments discussed so far, the electron-scattering experiment
is predominantly sensitive to the νe, although with some sensitivity to the other types,
whereas the 37Cl and 71Ga experiments are exclusively sensitive to νe. Thus, conversion
of a substantial fraction of the νe to the other types may explain the observed deficit. The
magnitude of the effect depends on the mass differences, and on parameters describing
the interaction; however, it was possible to choose parameters such that the predictions
were consistent with the observations (for an overview, see Bahcall, Krastev & Smirnov
1998). Some evidence for neutrino oscillations, involving the muon neutrinos, has been
obtained from measurements of neutrinos produced in the Earth’s atmosphere by reactions
involving cosmic rays (e.g. Fukuda et al. 1998b; Kearns, Kajita & Totsuka 1999); this
lent credence to the MSW effect as an explanation of the solar neutrino deficit.

Decisive tests of the mechanism have recently come from the Sudbury Neutrino Ob-
servatory (SNO) which has started operations in Canada (see Boger et al. 2000). SNO
measures solar high-energy (8B) neutrinos through reactions with deuterium (2H) in heavy
water as well as through electron scattering. Of the two relevant reactions with 2H, one
(the so-called charged-current reaction) is sensitive exclusively to νe, whereas the second
(the neutral-current reaction) has comparable sensitivity to all three types. The rate mea-
sured with the charged-current reaction may therefore be compared with the rate from
previous electron-scattering measurements to deduce the number of νµ and ντ , to which
the electron-scattering experiments also have some modest sensitivity. This provides a
measure of the extent to which neutrino conversion has taken place and therefore allows
an estimate of the original neutrino production rate in the solar core. The striking result
is that the answer agrees, to within errors, with the predictions of standard solar models
(Ahmad et al., 2001). The decisive demonstration of neutrino conversion was obtained by
Ahmad et al. (2002), who used SNO to measure the neutrino flux with the neutral-current
reaction. The results yielded a flux at the Earth of νe of (1.76 ± 0.1) × 106 cm−2 sec−1

and a flux of other neutrino types (νµ and ντ ) of (3.41 ± 0.66) × 106 cm−2 sec−1. This is
again consistent with solar models, and furthermore provides strong constraints on the
parameters controlling the neutrino conversions.

In parallel with these efforts to study neutrino conversion from solar observations, ter-
restrial experiments are carried. In a recent experiment, Eguchi et al. (2003) measured
the flux of electron antineutrinos νe from commercial nuclear reactors, and found strong
evidence for neutrino oscillations. Other experiments are being developed that will direct
beams of neutrinos from accelerators towards neutrino detectors, over distances of several
hundred kilometers. However, the size of the Earth sets a natural limit to the scale of
such experiments. Thus, observations of solar neutrinos remain a very important possi-
bility for studying the properties of the neutrino experimentally, provided that conditions
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in the solar core can be determined with sufficient accuracy, from observations of solar
oscillations, that the Sun can be regarded as a well-calibrated neutrino source.16

16Unfortunately, neutrino experiments suffered a serious setback in November 2001 when the Japanese
Super-Kamiokande neutrino detector, measuring electron scattering in 50,000 tons of water, was seriously
damaged (see Nature, 414, 381; 2001). However, the detector is now up and running again.
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Chapter 12

Evolution after the main sequence

12.1 Introduction

When hydrogen is exhausted near the centre, the star is left with a core consisting of helium
and a small amount of heavy elements. Initially the temperature of the core is far below the
108 K required for helium ignition, and hence there is no nuclear energy generation in the
core. Although there may still be some release of energy due to gravitational contraction
(see below) the luminosity in the core is generally very low. It then follows from equation
(5.8) that the temperature gradient is small, i.e., the core is almost isothermal.

Surrounding the core is a region containing hydrogen where the temperature is still
high enough for hydrogen burning to proceed. This region, which is known as a hydrogen
shell source, provides the energy from which the luminosity of the star is derived. As
the hydrogen is converted into helium in the shell source, the mass of the inert helium
core increases. This leads to contraction of the core. As usual the contraction releases
gravitational potential energy, part of which goes towards increasing the thermal energy of
the core. As long as the core is not degenerate the increase in thermal energy leads to an
increase in temperature1, up to the point where the temperature of the core is sufficiently
high for helium burning to begin. Very roughly the process is then repeated: the star
burns helium in the core (while still maintaining a hydrogen shell source) until helium
is exhausted; the star then has a contracting core consisting of 12C and 16O (cf. section
8.6), surrounded by a helium shell source and a hydrogen shell source; the contraction of
the core may proceed up to the point where the temperature is high enough for carbon
ignition; and so on.

This rough sketch ignores a large amount of fascinating detail. Particularly important
is the response of the observable properties of the star to the changes in the core. This
response can to a large extent be understood in terms of a very simple principle, which
may be called

The shell-burning law: When the region within a burning shell contracts,
the region outside the shell expands; and when the region inside the shell
expands, the region outside the shell contracts.

As discussed in section 12.2, this rule appears to apply also in some cases where there are
two shell-burning regions present.

1Compare with the discussion of the evolution of a proto-star towards hydrogen ignition in section
10.3.2.
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The shell-burning law is undoubtedly confirmed by numerical computations; in partic-
ular, during the hydrogen shell-burning phase the star expands to such an extent that it
becomes a red giant. Despite many attempts2, there has been no convincing arguments,
in simple terms, for why this should be the case. A problem for such an explanation is
obviously that all parts of the star interact with each other, and hence it is not easy from
the numerical results to see which part of the change in structure is the dominant cause
of the evolution, and which parts are secondary effects. An example of the complications
that one may get into when investigating this question is given in Figure 12.1; one might
hope, perhaps a little naively, that a simpler picture may eventually emerge.

Here we take the simpler attitude of accepting the shell-burning law and on that basis
trying to interpret the results of numerical calculations. To illustrate this, let us consider
the evolutionary tracks shown in Figure 11.5. The change in effective temperature and
luminosity may be understood by noting that, as long as the star has a substantial region
dominated by radiative energy transport, mass, radius and luminosity must be related by
equations (7.7) or (7.8), depending on the dominant source of opacity. This corresponds
to the situation for the contracting star before it reached the main sequence; hence, as the
star expands, it reverts the evolution before the main sequence: the effective temperature
decreases and the luminosity either decreases somewhat or stays constant, depending on
the appropriate mass-luminosity relation. As argued in section 7.1, the high temperature
sensitivity of the nuclear reactions (which in the shell are probably dominated by the
CNO cycle) makes it possible for the luminosity to adjust itself to match the requirements
for equilibrium. Once the effective temperature gets so low that the star approaches the
Hayashi track, the star develops a very deep outer convection zone. Furthermore, as
mentioned in section 7.2.1, the region to the right of the Hayashi track is “forbidden”.
Hence, as the star continues to expand, it is forced to move up the Hayashi track, with a
resulting strong increase in the luminosity; again, it is possible to achieve this luminosity
increase with a fairly modest increase in the temperature in the shell-burning source3.

An important feature of the evolution of stars with masses more than a few solar
masses is the occurrence of loops in the (log Teff , logLs) diagram. As discussed in the
following, these are associated with the onset or burn-out of different sources of nuclear
energy and can to a large extent be understood in terms of the shell-burning law and the
relation between effective temperature and luminosity. When the surface radius of the
star decreases, the effective temperature increases, and the star moves to the left in the
(log Teff , logLs) diagram. The opposite is true when the surface radius increases. The
behaviour of the surface radius is ultimately controlled by the evolution of the stellar core,
the connection being established through the shell-burning law. The presence of loops
is important for comparisons with observed properties of stars (see also section 13.3).
Furthermore, the loops are essential for understanding the Cepheid pulsating stars. These
stars, which are observed to execute radial oscillations, are found in a narrow strip in the
HR diagram which crosses the loops. Hence most of the observed Cepheids are in late
evolutionary stages. By studying them one may hope to get information about complex

2See, for example, Höppner & Weigert (1973); Eggleton & Faulkner (1981); Iben & Renzini (1984);
Weiss (1989). A short summary was given by Tayler (1988).

3This argument is sometimes reversed: it is stated that the increase in luminosity moves the star up the
Hayashi track, and hence forces the expansion. However, it seems more satisfactory, particularly in view of
the ease with which the star may increase its nuclear energy generation, to assume that the same principle
is operating both before and after the star reaches the Hayashi track, and hence to take the expansion as
the primary effect.
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Figure 12.1: An attempt, made by Whitworth (1989), to illustrate the hierarchy
of cause and effect which leads to stars becoming red giants. For further detail, and
explanation of the notation, reference should be made to the original paper.
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Figure 12.2: Evolutionary track of a Population I star of 5M� in the Hertzsprung-
Russell diagram. The luminosity is given in units of 3.86 × 1033 erg sec−1, and the
effective temperature Te is in K. The evolution time between the labeled points is
given in years. (From Iben 1967a.)

aspects of stellar evolution theory.
In the remainder of this chapter we discuss in more detail the evolution through the

shell helium-burning phase, for stars of low and moderate mass; the principal feature
distinguishing between the two cases is whether or not the star develops a strongly degen-
erate core. The evolution of more massive stars, which get into even later nuclear-burning
phases, is discussed in Chapter 14.

12.2 Evolution of a moderate-mass star

This case may be exemplified by the evolution of a 5M� star, as shown in Figure 11.5,
and in more detail in Figure 12.2.

A notable feature as the star leaves the main sequence is the “hook” in the evolutionary
track, towards higher effective temperature. This is a result of the convective cores in
moderate- and high-mass stars. As discussed in section 11.3.2, hydrogen is exhausted
throughout the core at the same time. This would tend to decrease the energy production,
since, at least initially, the temperature outside the core is too low for significant hydrogen
shell burning to take place. When the hydrogen abundance gets very low, the star attempts
to maintain the energy production by increasing the central temperature. This is achieved
through an overall contraction; as usual, the contraction results in a release of gravitational
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energy, half of which is converted into thermal energy and contributes to the heating of the
core. As a result, the direction of evolution turns towards higher effective temperature.
Hence in a sense the star reverts to the direction of evolution of its early childhood, but
most of the energy production is still provided by the central nuclear burning, with only a
relatively modest contribution from the release of gravitational energy. At the same time
a hydrogen-burning shell is gradually established. However, only when central hydrogen
has virtually disappeared does the shell source become dominant. At that point the shell-
burning law takes over, and the core contraction is accompanied by an expansion of the
outer parts of the star, leading to evolution towards lower effective temperature. From
Figure 11.5 it is evident that stars of mass as low as 1.25M� display a hook; this is
consistent with Figure 11.4, which show the presence of a convective core, at least on the
zero-age main sequence, in such stars.

It may be shown that, assuming the ideal-gas law, there is an upper limit to the mass of
an isothermal core which can be in hydrostatic and thermal equilibrium: the mass fraction
qc = mc/M in the core must be smaller than the so-called Schönberg-Chandrasekhar limit
qSC ' 0.1 (Schönberg & Chandrasekhar 1942; for a simple discussion of this limit, see
Kippenhahn & Weigert 1990). As the 5M� star leaves the main sequence, the mass of
the helium core, corresponding to the previously convective core, is already very close to
this limit (see also Figure 12.3); with the growth of the core during shell burning the limit
is quickly exceeded. The core then contracts, essentially on a thermal timescale, and the
outer parts of the star expand, moving the star towards and then up the Hayashi track.
The comparatively great speed of this phase of evolution is evident in Table 11.1 and
in Figure 12.2; observationally it means that the probability of seeing a star during this
phase in its evolution is very small, and consequently the corresponding region in the HR
diagram, which is known as Hertzsprung gap, is sparsely populated with stars.

The changes in the interior of the star are illustrated in Figure 12.34. The format
is very similar to Figure 11.4, except that the abscissa is now age, rather than mass5;
here, however, regions with substantial nuclear energy generation are indicated by heavy
hatching, and the regions where composition has been modified are indicated by dots.
The figure clearly shows the shrinking convective core, which extends beyond the region of
nuclear burning, during the main-sequence phase, and the onset of hydrogen shell burning.
It should be noted also that just before the onset of core helium burning (discussed further
below) the convective envelope extends very deep into the star; this clearly corresponds
to the ascent of the star up the Hayashi track.

Further information about the internal structure of the star during this phase is given
in the Iben diagram in Figure 12.4; here the variables have been scaled to fit within a
common range, the actual ranges being given in the figure caption. This model essentially
corresponds to point 6 in Figure 12.2, just before the star begins to move up the Hayashi
track. The variation in L is particularly interesting. It is clear that almost all the energy
is generated in a very thin shell, at m/M ' 0.12. It should be noted, however, that there
is also a small amount of energy generation very near the centre; this is due to helium
burning which has already started at this point. The decrease in L in the outer parts of
the star reflects the expansion: a significant fraction of the energy generated by nuclear

4Note that this comes from a different evolution calculation from Iben’s, which was shown in Figure 12.2,
and hence differs from that figure in the details; the overall features are very similar, however.

5Both figures can be regarded as cuts through a three-dimensional diagram illustrating structure as a
function of stellar mass and age.
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Figure 12.3: Panel a) shows the evolution of the internal structure of a 5M� star.
The format is similar to that used in Figure 11.4: The abscissa is the age of the star
(note the change of scale, to resolve the increased speed of evolution, at 5.5×107 years
and 8× 107 years). At each point in time the internal structure is represented on the
ordinate in terms of the mass fraction m/M ; only the inner 60 per cent by mass of
the star is included. The “cloudy areas” indicate the extent of the convection zones.
Heavily hatched regions indicate where the nuclear energy generation rate ε exceeds
103 erg g−1 sec−1. Regions of variable chemical composition are dotted. The letters
A . . .K above the upper axis indicate the corresponding points in the evolutionary
track, which is shown in panel b) (reproduced from Kippenhahn & Weigert 1990).
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Figure 12.4: The variation with mass fraction of a number of quantities in a
5M� model just before the first ascent on the Hayashi track (roughly at point 6
in Figure 12.2). XH gives the hydrogen abundance, whereas X3, X12 and X14 indicate
the abundances of 3He, 12C and 14N; the curve labelled R shows the variation of the
distance r to the centre. The other symbols have their usual meaning. The variables
have been rescaled to fit within the same range. The actual ranges are 0 ≤ P ≤
5.18×1019 dyn cm−2; 0 ≤ T ≤ 1.03×108 K; 0 ≤ ρ ≤ 7.7×103 g cm−3; 0 ≤ L ≤ 876L�;
0 ≤ r ≤ 47R�; 0 ≤ XH ≤ 0.708; 0 ≤ X3 ≤ 1.30 × 10−4; 0 ≤ X12 ≤ 3.61 × 10−3; and
0 ≤ X14 ≤ 1.44× 10−2. The surface radius of the model is 51R�. (From Iben 1966.)

reactions is used to work against gravity to expand the star. The variation in the hydrogen
abundance reflects the profile left behind by the contracting convective core during the
main-sequence phase (cf. Figure 11.7), but cut off by the expanding shell source. Finally,
because of the generation of energy at the centre, a temperature gradient is required in the
core to transport the energy, and hence the core is no longer isothermal; but the variation
of temperature through the core is much slower than the variation of pressure and density.

The core contraction and expansion of the surface continue to the point where core
helium burning becomes efficient. The release of energy in the core causes it to expand.
Since the hydrogen shell-burning source is still active, the outer parts of the star contract,
in accordance with the shell-burning law. Hence the direction of evolution is reversed; the
star moves down the Hayashi track and, when the convective envelope shrinks sufficiently,
towards higher effective temperature. Once the star becomes dominated by radiative en-
ergy transport, the luminosity is again approximately determined by equation (7.7); hence
the evolution occurs along a track which is roughly parallel with that of the contraction
before the main sequence, or the expansion during evolution away from the main sequence.

Due to the high temperature sensitivity of the triple-alpha reaction, helium burning
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Figure 12.5: The variation with mass fraction of luminosity L, temperature T
and distance from the centre (here labelled R) in a 5M� model during the double
shell-burning phase (roughly at point 12 in Figure 12.2). The variables have been
rescaled to fit within the same range. The actual ranges are 0 ≤ T ≤ 1.84 × 108 K;
0 ≤ L ≤ 1.94× 103L�; and 0 ≤ r ≤ 24R�. The surface radius of the model is 44R�.
(From Iben 1966.)

occurs in a convective core, as is evident from Figure 12.3. As was the case on the
hydrogen-burning main sequence, the convective core shrinks somewhat as the helium
abundance decreases.

Once the helium burning is well established, the expansion of the core and the contrac-
tion of the surface stops, and the star enters a relatively extended period of core helium
burning. Even during this phase, however, the hydrogen shell source contributes a sub-
stantial part of the energy. As helium is converted into carbon and oxygen (cf. section
8.6), the mean molecular weight of material in the core increases. The effect is the same
as during the core hydrogen burning: the core contracts and heats up. Again the shell-
burning law operates, causing the envelope to expand and the star to move back towards
the Hayashi track. When helium is exhausted in the core, helium burning is established
in a shell, while the hydrogen shell burning continues; hence the star now has two shell
sources (cf. Figure 12.3).

Just as the exhaustion of hydrogen left a helium core, the exhaustion of helium leaves
a core consisting of carbon and oxygen, in which the temperature is too low for the next
type of nuclear reaction, viz. carbon burning, to take place. The core therefore contracts
and heats up, at least initially. But now there are two shell sources. The effect of the
shell-burning law as applied to the helium shell source is to reverse the contraction of the
core, and hence lead to an expansion of the region between the two shells; applying again
the shell-burning law to the hydrogen shell it then follows that the outer parts of the star
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Figure 12.6: Tracks in the density-temperature plane followed by matter at the
centres of stars of masses 1, 2, 7 and 15 M�. The density is in units of g cm−3, and
the temperature is in K. The points where hydrogen, helium and carbon burning are
ignited are sketched. Also indicated is the line where the electron Fermi energy equals
10kBT ; this roughly marks the point where electron degeneracy becomes important.
(From Iben 1985.)

contract, and the star yet again moves towards higher effective temperature, again roughly
following the relation (7.7) between effective temperature and luminosity. This behaviour
is evident in Figure 12.2.

To illustrate the internal properties of the star during this phase, Figure 12.5 shows the
temperature, radius and luminosity of a star with two shell sources. These are visible as the
sharp jumps in luminosity. The luminosity inside the innermost shell comes exclusively
from the gravitational contraction of the core. Between the two shells the luminosity
decreases; the expansion of this region requires energy to do work against gravity (compare
with the behaviour of L in the outer parts of the model shown in Figure 12.4). In contrast,
the contraction outside the hydrogen shell releases gravitational potential energy, thus
causing the luminosity to increase.

One might now expect a repetition of the story, the core contraction leading to suf-
ficiently high temperatures for carbon burning to set in. However, stars of mass smaller
than about 10M� never get this far. As in the contraction before the main sequence, the
problem is degeneracy. The carbon-oxygen core becomes degenerate before the tempera-
ture reaches the temperature required for carbon ignition, and at that point the increase
in temperature stops. This is illustrated in Figure 12.6, which shows the evolution of
stars of various masses in a (log ρc, log Tc) diagram (the 5M� star which is discussed
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Figure 12.7: Evolution track for a 4M� model, from the zero-age main sequence to
the asymptotic giant branch. As discussed in the text, the behavior in the diagram
can be understood in terms of changes in the regions of nuclear energy generation.
The insert shows the last phases in more detail, to illustrate the oscillations caused by
the thermal instability between the hydrogen and helium shell sources. (Data kindly
provided by A. V. Sweigart.)

here behaves quite similarly to the 7M� star shown in the figure). Also shown are the
temperature-density lines corresponding to the various stages of nuclear burning, and a
line separating the region where degeneracy is important from the region where the ideal-
gas law is valid. A star below the minimum mass for hydrogen ignition of about 0.08M�
would have appeared substantially below and to the right of the line for 1M�, crossing
into the region of degeneracy and beginning to decrease the central temperature before
reaching the conditions required for hydrogen burning.

It is clear from Figure 12.2 that some time after helium shell-burning has been estab-
lished the direction of evolution is reversed again, the star moving back towards and up
the Hayashi track. The reason for this is that the region between the two shells expands
so much that the temperature in the hydrogen-burning shell decreases to the point where
the shell is extinguished. The star then has only one shell source; the continuing core
contraction therefore leads to expansion of the surface, and hence to the decrease in the
effective temperature until the Hayashi track is reached, and then to another ascent of the
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Figure 12.8: The evolution from the Asymptotic Giant Branch towards the white
dwarf stage (the figure illustrates the evolution of a 2M� star, but is also qualitatively
correct for the 5M� star considered here). At the end of the AGB phase, the star
undergoes thermal pulses, schematically indicated by points 2 . . . 10. The star then
suffers strong mass loss, leading to rapid evolution towards higher effective tempera-
ture. The evolution times, in years, are indicated relative to a zero-point which has
arbitrarily been taken as the point where the star crosses the main sequence. The
numbers in brackets indicate the mass left in the hydrogen-rich envelope at that point
of evolution. (From Iben 1985.)

Hayashi track. This phase of evolution is called the Asymptotic Giant Branch (or AGB)
phase, to distinguish it from the initial ascent of the Hayashi track before helium ignition.
As shown in Figure 12.3, the star develops an extremely deep convective envelope during
this phase, reaching down well into the layers that have undergone nuclear burning. The
resulting mixing (or “dredge-up”) to the stellar surface of material that has been processed
in nuclear reactions changes the surface composition of the star. The distribution of abun-
dances among the elements, including the ratios between different isotopes, provides very
important clues to the nuclear reactions that have occurred in the interior of the star.

Although Iben’s results, as just presented, provide a beautiful illustration of the oper-
ation of the shell-burning law, they have not been fully confirmed by more recent calcula-
tions.6 These indicate that the hydrogen shell source is extinguished essentially immedi-
ately after the beginning of the helium shell-burning phase; as discussed above, this results
from the expansion of the region between the two shell sources and the resulting decrease
in the temperature at the edge of the helium layer. Thus the star moves up the asymp-
totic giant branch. The subsequent evolution is complex, as illustrated in Figure 12.7. A

6Although it might have been preferable to base the full presentation on up-to-date calculations, this
is difficult because of the unavailability of comprehensive results of such calculations in the literature.
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Figure 12.9: The variation with mass fraction of a number of quantities in a
1M� model shortly after hydrogen is exhausted at the centre (just after point 3 in
Figure 11.5). XH gives the hydrogen abundance, whereas X3, X12 and X14 indicate
the abundances of 3He, 12C and 14N; the curve labelled R shows the variation of
the distance r to the centre. The other symbols have their usual meaning. The
variables have been rescaled to fit within the same range. The actual ranges are
0 ≤ P ≤ 1.31 × 1018 dyn cm−2; 0 ≤ T ≤ 1.91 × 107 K; 0 ≤ L ≤ 2.13L�; 0 ≤ r ≤
1.27R�; 0 ≤ XH ≤ 0.708; 0 ≤ X3 ≤ 5.15 × 10−3; 0 ≤ X12 ≤ 3.61 × 10−3; and
0 ≤ X14 ≤ 1.15 × 10−2. The surface radius of the model is 1.35R�. (From Iben
1967b.)

thermal instability develops in the helium shell source, causing thermal pulses where the
star alternates between having a hydrogen and a helium shell source. As illustrated in the
figure (see the insert) the pulses lead to a very large number of excursions in the surface
luminosity and temperature; the changes in the structure of the interior, with intermittent
convective regions, lead to nuclear reactions producing very heavy elements through neu-
tron capture (see Chapter 15), subsequently brought to the surface by convective mixing
and observed in the spectra of these stars. At the same time the luminosity of the star
increases greatly, as does its radius. Possibly as a result of the increase in radius and lu-
minosity, the thermal pulses, or instabilities in the outer layers of the star, the star begins
to lose mass at a fairly rapid rate7. The result appears to be that the star eventually loses
essentially all the material outside the degenerate carbon-oxygen core, evolving rapidly
across the HR diagram as the envelope extent decreases (cf. Fig. 12.8).

The end result is a bare core which is initially extremely hot and hence quite luminous,
despite its small size. It illuminates the material which has been lost, and which for a few

7In analogy with the observed solar wind, this process has been called a “superwind”; however, the fact
that it has been given a name does not mean that the underlying physical mechanism is understood.
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thousand years forms a fairly well-defined shell around the star, and causes it to shine as
a planetary nebula. Subsequently the material is dispersed in the interstellar medium; the
degenerate core continues to shine through loss of its thermal energy. It cools gradually,
reaching an effective temperature of about 4000 K in about 1010 years. Such objects, which
are called white dwarfs, are discussed in Chapter 16.

12.3 Evolution of a low-mass star

To illustrate the features that distinguish low-mass stellar evolution from the case discussed
above, we consider the evolution of a 1M� star. A substantial difference is that such
a star does not have a convective core during the main-sequence phase. As a result,
hydrogen is initially used up only at the centre (cf. Figure 11.6), and there is a gradual
transition from core hydrogen burning to hydrogen burning in a thick shell, which initially
extends almost to the centre. This stage is illustrated in Figure 12.9. The helium core
grows gradually, as hydrogen is consumed in the shell. Initially the mass of the core is
much below the Schönberg-Chandrasekhar limit, and hence the core is stable; therefore
the timescale of evolution is determined by the speed of the nuclear burning, unlike the
case for the 5M� star, where the core contraction occurred on a thermal timescale as
a result of the instability which developed when the core mass exceeded the Schönberg-
Chandrasekhar limit. Furthermore, the density of the core is substantially higher than
for the 5M� star (see Figure 12.6); as a result the core is closer to being degenerate, and
hence the Schönberg-Chandrasekhar limit is less sharply defined.

Nevertheless, when the mass of the core exceeds about 0.1M�, the speed of the con-
traction increases, and at the same time the thickness of the shell, measured as the range
in mass where most of the energy generation takes place, decreases rapidly. This stage is
illustrated in Figure 12.10. It is evident that the shell, defined as the region where the
luminosity increases, is now quite thin. Furthermore, a slight decrease in luminosity in
the outer layers, reflecting the expansion of the envelope, is just visible; although difficult
to see, there is also a significant contribution to the luminosity from the release of gravi-
tational energy in the core (this is most visible in the fact that the luminosity requires the
temperature gradient to ensure energy transport; hence, unlike in Figure 12.9, the core is
not strictly isothermal).

As the core contraction continues, the star moves up the Hayashi track. Also, with
increasing core density matter in the core becomes increasingly degenerate. The innermost
third of the model in this phase is shown in Figure 12.11. From the ratio Pg/P of the
ideal-gas pressure to the actual pressure it is clear that degenerate electrons contribute a
large fraction of the pressure at the centre of the model8. The star has now developed
a convective envelope extending down to m/M ' 0.29. This is reflected in the sharp
change in XH and the abundance X14 of 14N at that point; the convective envelope has
reached down into the region where the hydrogen abundance has been changed by nuclear
burning on the main sequence, and the resulting mixing has reduced the surface hydrogen
abundance from the original value of 0.708 to 0.693.

With the onset of degeneracy, the core is no longer heated directly by contraction,
8Another consequence of the degeneracy is that the core is again very nearly isothermal; degenerate

electrons conduct heat quite efficiently, and hence only a small temperature gradient is required to remove
the energy released in the contraction of the core.
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Figure 12.10: The variation with mass fraction of a number of quantities in a
1M� model after the hydrogen-burning shell has become thin (roughly at point 4 in
Figure 11.5). X16 shows the abundance of 16O, and the other symbols have the same
meaning as in Figure 12.9. The variables have been rescaled to fit within the same
range. The actual ranges are 0 ≤ P ≤ 4.15 × 1019 dyn cm−2; 0 ≤ T ≤ 2.39 × 107 K;
0 ≤ L ≤ 2.82L�; 0 ≤ r ≤ 2.13R�; 0 ≤ XH ≤ 0.708; 0 ≤ X3 ≤ 5.35 × 10−3;
0 ≤ X12 ≤ 3.61 × 10−3; 0 ≤ X14 ≤ 1.26 × 10−2; and 0 ≤ X16 ≤ 1.08 × 10−2. The
surface radius of the model is 2.22R�. (From Iben 1967b.)

since the thermal energy of degenerate electrons is independent of temperature. However,
the temperature of the hydrogen-burning shell increases as the star moves up the Hayashi
track, and this causes an increase in the temperature of the core. When the temperature
reaches 108 K, helium burning sets in. Unlike the quiet transition to helium burning for the
5M� star, this occurs in a thermal run-away, the so-called helium flash. The reason is again
the degenerate core. In normal (nondegenerate) matter, the release of energy by nuclear
burning would cause an increase in the pressure, and hence an expansion and cooling of the
matter; in this way equilibrium would be reached between the energy generation and the
energy transport. However, in degenerate matter the pressure is essentially independent of
temperature; hence when nuclear burning sets in, the temperature of the gas is increased
with no change in pressure, and hence no immediate reaction of the core. The increase
of the temperature causes a further increase of the energy generation rate, and hence an
even stronger increase in the temperature; this leads to a thermal runaway, where the
local luminosity in the core increases to of order 1011L� during a few hours. This process
only stops when the temperature of the core gets so high that degeneracy is lifted [cf. the
condition (3.61)]. Then the core expands and cools until equilibrium is reached, and the
star enters a phase of quiet core helium burning.

The outer parts of the star cannot react on a timescale shorter than the dynamical
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Figure 12.11: The variation with mass fraction of a number of quantities in a 1M�
model on the Hayashi track (roughly at point 5 in Figure 11.5). Pg/P shows the ratio
between the pressure computed with the ideal-gas law and the actual pressure; the
other symbols have the same meaning as in Figure 12.10. The variables have been
rescaled to fit within the same range. The actual ranges are 0 ≤ ρ ≤ 9.12×104 g cm−3;
0 ≤ T ≤ 2.74 × 107 K; 0 ≤ L ≤ 11.4L�; 0 ≤ r ≤ 1R�; 0 ≤ XH ≤ 0.693; 0 ≤ X14 ≤
1.41 × 10−2; 0 ≤ X16 ≤ 1.08 × 10−2; and 0 ≤ Pg/P ≤ 1. The surface radius of the
model is 6.18R�. (From Iben 1967b.)

timescale, which because of the large radius of the star is of order months. Hence little of
the violent activity in the core of the star is visible on the surface. In fact, calculations
show that the helium flash only lasts a few hours; the energy it generates is absorbed in
work to expand the core and envelope of the star. The detailed changes during the helium
flash are still quite uncertain; it is likely that some mass is lost in the process. When
equilibrium is restored, the star settles down on the helium burning main sequence which
observationally corresponds to the horizontal branch, visible in the upper left-hand part
of the HR diagram in Figure 2.6a.

Exercise 12.1:

Assume that the helium flash maintains an energy generation corresponding to a local
luminosity of 1011L� for three hours. Compare the total amount of energy liberated
with the gravitational binding energy of the core, assumed to have a mass of 0.5M�
and a radius of 104 km.

The subsequent evolution of the 1M� star is probably quite similar to the 5M� star
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discussed in section 12.2: after exhaustion of helium in the core the star enters a phase with
two shells, finally leading back to the Hayashi track on the Asymptotic Giant Branch, to a
phase of thermal instability, to rapid mass loss with the formation of a planetary nebula,
and finally to the creation of a white dwarf. This, therefore, is the likely ultimate fate of
the Sun. A detailed discussion of the final stages of solar evolution was given by Jørgensen
(1991).



Chapter 13

Theoretical interpretation of
HR-diagrams for stellar clusters

13.1 Introduction

All stars in a stellar cluster can be assumed to have formed from the same interstellar gas
cloud; hence they presumably have approximately the same age and chemical composition.
Within the simple description of stellar structure that we employ here (neglecting, for
example, effects of rotation or a magnetic field), the mass is then the only parameter
that distinguishes between the stars in the cluster. Hence the observed properties in a
colour-luminosity (or HR) diagram of the cluster are predominantly determined by a single
parameter (the mass); we therefore expect the stars to form a single-parameter family of
points in the HR diagram, i.e., to fall on a single curve.

This property provides a very valuable test of the theoretical evolution calculations.
Furthermore, the results may be used to determine ages and distances to stellar clusters.

13.2 Some properties of isochrones

In Chapters 10 – 12 we presented the results of evolution calculations in terms of evolu-
tionary tracks in a (log Teff , logLs) diagram (see for example Figure 11.5). Here each curve
corresponds to models with the same mass but different age. The observed distribution
of stars in a stellar cluster, on the other hand, corresponds to stars of the same age but
different mass. Such curves can also be plotted in a (log Teff , logLs) diagram, on the basis
of the evolution calculations; they are called isochrones (after Greek iso = same, kronos
= time). Figure 13.1 shows examples of computed evolutionary tracks and isochrones.

Since the evolutionary time scale decreases very rapidly with increasing mass, at a given
age stars with sufficiently low mass are still in the phase of central hydrogen burning.
Therefore all isochrones start out on the main sequence at low masses, and hence low
log Teff . A particular isochrone follows the main sequence up to that mass where hydrogen
has just been exhausted in the core at the given age. More massive stars at this age are in
later evolutionary stages, and hence the isochrones deviate from the main sequence. The
mass where the transition away from the main sequence takes place is called the “turn-off”
mass Mt.

183



184 CHAPTER 13. HR-DIAGRAMS FOR STELLAR CLUSTERS

Figure 13.1: Theoretical evolutionary tracks (continuous lines) and isochrones
(dashed lines). The ordinate gives the absolute bolometric magnitude Mbol; it is
related to the luminosity Ls through Mbol = 4.75− 2.5 log(Ls/L�). On every second
evolutionary track log(M/M�) is indicated to the left. The isochrones are plotted at
ages ti such that the step in log ti is 0.2; the isochrones for ti = 108 years and 109

years are plotted with a dot-dashed lined, labelled by ti. (From Hejlesen 1980).

It is striking that the parts of the isochrones away from the main sequence, correspond-
ing to masses greater than Mt, are very similar to evolutionary tracks. As a result, a crude
test of late stellar evolution can be made simply by comparing the distribution of stars
in an observed HR diagram with an appropriate evolutionary track. This property of the
isochrones can be understood from the following two results of the evolution calculations
(see also Table 11.1):

i) The time the stars spend on the main sequence decreases very rapidly with increasing
mass.

ii) The largest fraction of a star’s lifetime is spent on the main sequence.
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Here i) was discussed in section 11.3.3, where we obtained as an approximation to the
main-sequence timescale

tMS(M) ∼M−(ν−1) , (13.1)

where ν = 3 – 5. After central hydrogen burning the star spends the longest time in the
phase of central helium burning. However, the amount of energy available per unit mass
from helium burning is considerably smaller than the amount available from hydrogen
burning. Furthermore the luminosity of the star is somewhat higher during this phase.
As a result the duration of the core helium burning phase is substantially shorter than
the duration of the core hydrogen-burning phase. This gives some justification for ii). It
follows from the results in Table 11.1 that if tT(M) is the total lifetime of the star, then

tT(M)− tMS(M) <∼
1
5
tT(M). , (13.2)

Hence the situation is roughly as sketched in Figure 13.2.

Exercise 13.1:

Verify the statement made above about the amount of energy available from helium
burning, by using the mass defects in Appendix B. Compare the results with the
durations of the hydrogen- and helium-burning phases in Table 11.1. If there is a
discrepancy, what might be the explanation?

We now consider an isochrone corresponding to the age ti. It has the turn-off mass
Mt, determined by tMS(Mt) = ti. The end point of the isochrone is at the mass Me, such
that tT(Me) = ti. As sketched in Figure 13.3 these two masses are very close. The part of
the isochrone departing from the main sequence corresponds to masses between Mt and
Me and is therefore between the evolutionary tracks for Mt and Me (cf. Figure 13.3). We
can estimate Me −Mt from equations (13.1) and (13.2). We have that

ti = tT(Me) = tMS(Mt) , (13.3)

or, from equation (13.2)

tMS(Mt) > tMS(Me) ≥
4
5
tT(Me) =

4
5
tMS(Mt) , (13.4)

and hence, from equation (13.1)

lnMe − lnMt ≤
1
5

1
(ν − 1)

≤ 0.1 , (13.5)

if we use that ν ≥ 3. Hence the evolutionary track for M = Mt gives a reasonable estimate
of the run of the isochrone.

This intention of this description is to give an intuitive understanding of the relation
between the evolutionary tracks and the isochrones. Section 13.4 describes an attempt at
a more formal analysis. This shows, as expected, that parts of isochrones corresponding
to very rapid phases of evolution lie even closer to evolution tracks. This is particularly
the case for the hydrogen shell-burning phase, between hydrogen core exhaustion and the
red giant branch, as illustrated in Figure 13.3.
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Figure 13.2: Schematic illustration of the dependence of the main-sequence time
tMS and the total lifetime tT on the stellar mass. In the figure are indicated the turn-
off mass Mt and the end-point mass Me for an isochrone corresponding to the age
ti.

13.3 Interpretation of observed HR diagrams

From the description of the computed isochrones it follows that the lower part of the HR
diagram for a stellar cluster consists of stars on the main sequence. Their luminosity LMS

is known as a function of the effective temperature, partly from theoretical calculations and
partly (mainly) from observations of stars that are so close that their distances, and hence
their absolute luminosities, can be determined. By measuring the apparent luminosity of
main-sequence stars at a given Teff and using the relation between apparent and absolute
luminosity (cf. equation [2.8]) it is therefore possible to determine the distance to the
cluster. This procedure can be described graphically as sliding the HR diagram for the
cluster vertically until the main sequence coincides with the known location of the main
sequence; the displacement then determines the distance module 5 log d−5, and hence the
distance d, to the cluster.

The mass of stars around the point (the turn-off point) where the HR diagram of the
cluster starts deviating from the main sequence must correspond to the turn-off mass Mt

for the isochrone corresponding to the age of the cluster. This mass cannot be observed
directly; but on the main sequence there is a relation between on the one hand the mass
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Figure 13.3: An isochrone (dashed line) lies between the evolutionary tracks for
the turn-off mass Mt and the end-point mass Me, indicated by heavy continuous
lines; here we only consider evolution to the base of the red giant branch. The age
of the isochrone is 8 × 108 years, corresponding to Mt = 2.1M� and Me = 2.15M�.
Additional evolutionary tracks are shown with thin continuous lines, for models with
a step in mass of 0.1M�.

and on the other the luminosity and effective temperature. Hence Mt, and therefore the
age of the cluster, can be determined from Teff and Ls at the turn-off point. In Figure 2.7
the ordinate on the right-hand axis is calibrated to age in this manner. A more precise
determination of the age is obtained by fitting theoretical isochrones to the observed HR
diagram. Such investigations also have to take into account the chemical composition of
the stars in the cluster, which affects the location of the isochrones.

An example of such a fit is given in Figure 13.4, from Morgan & Eggleton (1978).
The agreement between theory and observation is quite good near the turn-off point but
deteriorates somewhat at lower effective temperature, corresponding to higher (B−V)0.
A possible reason for this discrepancy could be that an inappropriate value has been chosen
for the uncertain parameter in the description of convection. The scatter in the observed
diagram is only in part caused by observational errors. A more important effect is the
presence in the data of unresolved binary stars. Such a system appears with a colour
which is an average of the colours of each component but with the combined luminosity,
and hence is displaced upwards in the HR diagram relative to the main sequence. Indeed,
Morgan & Eggleton demonstrate that with the proper assumption about the distribution
of binary stars in the data, a good fit to the observations can be obtained. It should also be
noticed that there is a clear gap in the observations just before the turn-off from the main
sequence. This evidently corresponds to the hook in the evolutionary tracks and hence in
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Figure 13.4: Observed HR diagram for the open cluster Messier 67 (left) and
theoretical isochrone for an age of 3.5 × 109 years (right); the theoretical values for
Teff and Ls have been translated into B-V and absolute visual magnitude Mv to allow
a direct comparison with the observations. On the isochrone the masses have been
indicated in units of the solar mass. In general the agreement between theory and
observation is quite good. (From Morgan & Eggleton 1978).

the isochrone, which was caused by the contraction of the core after hydrogen exhaustion
and before hydrogen shell burning sets in. Hence the turn-off gap is observational evidence
for the presence of a convective core in these stars while they were on the main sequence
(cf. section 12.2); thus indirectly it reflects a basic physical property of matter, namely
the substantial Coulomb barrier between the nuclei in the CNO cycle which leads to the
high temperature sensitivity of the energy generation rate.

Exercise 13.2:

Consider a binary system consisting of two identical stars that cannot be resolved
observationally. How much is the apparent magnitude of the system decreased relative
to the magnitude of each star?

Figure 13.5 gives a qualitative, observational illustration of almost all phases in the
evolution of relatively massive stars. By using the correspondence between evolutionary
tracks and isochrones it can be compared directly with Figure 12.2. It should be noted
in particular that the density of stars in the different parts of the diagram is related to
the timescale of the corresponding evolutionary phases. Thus most of the stars are on the
main sequence, in the hydrogen core burning phase; but there is also a substantial number
of stars in the phase of helium core burning.
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Figure 13.5: Observed HR diagram for a stellar cluster (NGC 1866 in the Great
Magellanic Cloud). In the figure are indicated evolutionary phases found by comparing
with the theoretical evolution track shown in Figure 12.2. The numbers in brackets
indicate the number of stars in each phase of evolution. (From Iben 1985).

13.4 Connection between evolution tracks and isochrones

The discussion in section 13.2 was rather inadequate, and only gave an intuitive indication
of the reason why isochrones and evolutionary tracks are similar during phases where the
evolution is rapid. This section is an attempt to give a slightly more complete description,
although proper mathematical precision is certainly not achieved. The basic ideas of the
argument are the same as in section 13.2, however.

A star can be described by a point P in the (log Teff , logLs) plane. P can be regarded
as a function of the mass M and age t of the star. Then an evolutionary track is a curve
in the plane consisting of a collection of points corresponding to a particular mass but
different ages, whereas an isochrone is a collection of points corresponding to the same age
but different mass. A difficulty in the presentation is that, as discussed above, the total
duration of the evolution of a star depends very strongly on the mass of the star. Thus
only a very restricted set of the possible pairs (M, t) corresponds to a star. To obtain
a somewhat more homogeneous description we introduce a new time-like parameter τ ,
which measures the evolutionary state of the star. We leave the definition of τ somewhat
imprecise. A reasonable convention would be to let τ = 0 on the zero-age main sequence
and τ = 1 at the termination of the evolution of the star. More importantly, we assume
that τ can be defined in such a way that a given phase of stellar evolution (e.g. the end of
central hydrogen burning) corresponds to the same value of τ , regardless of the mass of the
star. The most serious lack of precision in the present analysis is probably in the definition
of τ ; in particular we neglect the problems that would occur at masses where there are
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Figure 13.6: Sketch of an isochrone (dashed line) and two corresponding evolution
tracks (continuous lines) with mass parameters µ1 and µ2. The two points P∗1 and P2

correspond to the same evolution state.

drastic changes in the nature of the evolution1. On the other hand, this is probably not
fatal for the argument.

To work with quantities of order unity we also introduce µ ≡ log(M/M�). We now
regard the point P as a function P(µ, τ). The definitions of τ and µ have been arranged
such that we may assume P to be a “well-behaved” function of µ and τ . We make this
assumption more formal by assuming that ‖∂µP‖ and ‖∂τP‖ are of order unity. Here ∂µP
and ∂τP are the partial derivatives of P with respect to µ and τ , and ‖ · · · ‖ is a suitable
norm.

We can now regard the evolution time as a function t(µ, τ) of the mass and the evo-
lutionary state. Conversely we can obviously also consider the evolutionary state as a
function τ(µ, t) of the mass and age of the star.

We now consider an isochrone corresponding to the age t = t∗, and regard two points
P1 and P2 on this isochrone, corresponding to mass parameters µ1 and µ2 (cf. Figure
13.6). As in section 13.2 the goal is to show that the difference in mass corresponding to
the two points, i.e., |µ2 − µ1|, is small compared with the distance between the points;
this would show that the isochrone is close to the the evolution tracks corresponding to
the two masses.

The two points correspond to evolution states given by the values τ1 and τ2 of τ , such
that

t(µi, τi) = t∗ and Pi = P(µi, τi), i = 1, 2 . (13.6)

From a Taylor expansion of the first relation we obtain

0 = t(µ2, τ2)− t(µ1, τ1) '
(
∂t

∂τ

)
µ

(τ2 − τ1) +
(
∂t

∂µ

)
τ

(µ2 − µ1) , (13.7)

where, e.g., (∂t/∂τ)µ denotes the partial derivative of t(µ, τ) with respect to τ at fixed µ.

1Examples would be the transition in behaviour at the end of hydrogen burning between stars with
radiative and convective cores; or the difference between stars undergoing, and stars not undergoing, a
helium flash at the onset of helium burning.
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Thus we find that

|µ2 − µ1| '

∣∣∣∣∣
(
∂t

∂τ

)
µ

∣∣∣∣∣∣∣∣∣( ∂t∂µ
)

τ

∣∣∣∣ |τ2 − τ1| . (13.8)

In this equation |(∂t/∂µ)τ | gives the change with mass in the evolution time required
to reach a given evolution state, characterized by the fixed value of τ . As discussed in
section 13.2 (cf. equation [13.1]) this change is rapid, and hence the derivative is large.
Furthermore |(∂t/∂τ)µ| measures the time spent during a given change in evolution state,
at fixed mass; this is evidently a small quantity during phases of rapid evolution. In such
phases it follows from equation (13.8) that

|µ2 − µ1| � |τ2 − τ1| , (13.9)

and hence that the isochrone is close to the evolutionary tracks with mass parameters µ1

and µ2.
We can make this estimate slightly more precise by considering the distance ‖P2−P1‖

between the two points in the (log Teff , logLs) plane. From a Taylor expansion we obtain

‖P2 − P1‖ ' ‖∂µP (µ2 − µ1) + ∂τP (τ2 − τ1)‖
≥ ‖∂τP‖ |τ2 − τ1| − ‖∂µP‖ |µ2 − µ1| . (13.10)

By means of equation (13.8) this gives

|µ2 − µ1| ≤

∣∣∣∣∣
(
∂t

∂τ

)
µ

∣∣∣∣∣∣∣∣∣( ∂t∂µ
)

τ

∣∣∣∣ ‖∂τP‖
‖P2 − P1‖

1−

∣∣∣∣∣
(
∂t

∂τ

)
µ

∣∣∣∣∣ ‖∂µP‖∣∣∣∣( ∂t∂µ
)

τ

∣∣∣∣ ‖∂τP‖


−1

. (13.11)

To characterize the distance between the evolution tracks we finally introduce the point
P∗1 on the track for µ1 with the same evolution state as P2, i.e., P∗1 = P(µ1, τ2). Then we
find

‖P∗1 − P2‖ ' ‖∂µP‖ |µ2 − µ1|

≤

∣∣∣∣∣
(
∂t

∂τ

)
µ

∣∣∣∣∣ ‖∂µP‖∣∣∣∣( ∂t∂µ
)

τ

∣∣∣∣ ‖∂τP‖
‖P2 − P1‖

1−

∣∣∣∣∣
(
∂t

∂τ

)
µ

∣∣∣∣∣ ‖∂µP‖∣∣∣∣( ∂t∂µ
)

τ

∣∣∣∣ ‖∂τP‖


−1

� ‖P2 − P1‖ , (13.12)

since we have assumed that ‖∂µP‖ and ‖∂τP‖ are of order unity. Hence the distance be-
tween the two evolution tracks is much smaller than the distance along the isochrones; and
the faster the evolution (i.e., the smaller |(∂t/∂τ)µ|), the closer are the two evolutionary
tracks to each other. This was what we set out to demonstrate.

It is obvious that this argument is far from sufficient to hang a man. On the other
hand, it does appear (at least to me) reasonably convincing. Suggestions for improvements
would be received with gratitude.
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Chapter 14

Late evolution of massive stars
Element synthesis

14.1 Introduction

In Chapter 12 we discussed the evolution after the main sequence of stars of low and
moderate mass. It was found that the evolution proceeded through hydrogen and helium
burning, ending with a core consisting of carbon and oxygen, surrounded by helium and/or
hydrogen shell-burning sources. Further contraction of the core did not lead to heating,
because the core became degenerate; hence the temperature never got high enough to
initiate carbon burning. Subsequent instability and mass loss led to the expulsion of
essentially the entire envelope outside the core, resulting in the formation of a white
dwarf, initially surrounded by a planetary nebula.

With increasing stellar mass the tendency towards degeneracy in the core gets smaller.
As illustrated in Figure 12.6, in stars of masses exceeding about 10M� the core does not
become degenerate before carbon burning starts. The evolution can then proceed through
further nuclear burning phases in the core, alternating with gravitational contraction and
heating. The result is an onion-like structure of layers of different chemical composition,
the heaviest elements being closest to the centre, possibly separated by shell-burning
sources.

In the present chapter we analyze these processes in more detail, and discuss the
ultimate fate of such a massive star. An important goal here and in the following chapter
is to understand the synthesis of elements, and hence the distribution of elements now
observed in the Sun and the solar system (cf. Figure 14.1). The processes discussed so
far account for the production of elements up to oxygen. Heavier elements are produced
in the last stages of evolution of massive stars, but it turns out that lower-mass stars
also play a crucial role. The discussion provided here is necessarily quite schematic, with
little physical or mathematical detail. An excellent exposition of the basic principles of
nucleosynthesis was provided by Clayton (1968).

An important feature in understanding nucleosynthesis is the energetics of fusion, as
determined by the atomic mass excesses tabulated in Appendix B. A convenient represen-
tation of this is in terms of the mean binding energy per nucleon B/A, which is illustrated
in Figure 14.2. This is determined as the energy released per nucleon in a (fictitious)
process where the nucleus is assembled from its constituent nucleons.
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Figure 14.1: Abundances by number of elements in the solar system; the normaliza-
tion is such that the abundance of Si is 106. The dots represent values obtained from
spectral analysis for the Sun, whereas the line is based on abundance determinations
for meteorites. The abundance data in the figure derive from a compilation by Anders
& Grevesse (1989).

Exercise 14.1:

Verify, for a few points, that Figure 14.2 is consistent with the table in Appendix B.

As long as B/A increases with increasing mass number, fusion between two nuclei is
exothermic, i.e., releases energy. This is the case for all the reaction we have considered
so far. For nuclei of mass exceeding about 60mu, however, B/A decreases with increasing
A. Here fusion requires energy input, i.e., is endothermic1. Thus fusion between heavy

1On the other hand, this implies that fission of heavy elements is exothermic. This is the reason why
nuclear energy can be generated either by fusion of light nuclei or by fission of heavy nuclei.
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Figure 14.2: The binding energy per nucleon B/A of the most stable nucleus with
atomic weight A. The solid circles represent nuclei having an even number of protons
and an even number of neutrons, whereas the plusses represent odd-A nuclei; in the
insert, the diagonal crosses show odd-odd nuclei. (From Preston 1962.)

nuclei is extremely unlikely; it follows that processes of the nature considered so far cannot
produce nuclei heavier than those of the so-called iron group, with atomic masses between
50 and 60mu. We return to the question of how to produce even heavier elements in
Chapter 15.

14.2 Late evolution stages of massive stars

When the temperature exceeds about 5 × 108 K in the contracting core, carbon burning
sets in (cf. Figure 12.6). This was discussed briefly in section 8.6; the reaction can result
in a number of different end products, as indicated in equation (8.65):

12C + 12C→



24Mg + γ ,
23Mg + n ,
23Na + p ,
20Ne + 4He ,
16O + 2 4He .

(14.1)

Because of the high temperature, the protons and alpha particles that are produced im-
mediately react with other nuclei in the gas, producing additional elements; the neutrons,
being neutral, are not affected by the Coulomb barrier, and also react freely. After the
12C exhaustion, further core contraction and heating lead to “Ne burning”, through pho-
todisintegration and subsequent α capture of 20Ne [cf. equations (8.67) and (8.68)], before
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the reactions involving oxygen set in, at around 109 K:

16O + 16O→



32S + γ ,
31P + p ,
31S + n ,
28Si + 4He ,
24Mg + 2 4He .

(14.2)

Again reactions involving p, n and 4He lead to the production of additional elements.
After oxygen is exhausted, there is a new phase of contraction and heating. This

might be expected to end when fusion of the next major element sets in, possibly 24Mg.
Before the temperature gets high enough for this reaction, however, a totally different
type reaction becomes dominant. With the increasing temperature, the thermal energy of
photons in the gas increases. At 109 K a non-negligible fraction of the photons has energies
in the MeV range. Such energetic photons can cause photo-dissociation in the nuclei in
the gas2, such as, for example,

32S + γ → 28Si + 4He . (14.3)

The 4He released in this process may then be captured in other nuclei, including the 28Si.
Hence in fact the reaction (14.3) may go both ways, and should therefore be expressed as

28Si + 4He→← 32S + γ . (14.4)

It follows from Figure 14.2, and is indicated by the location of the γ in equation (14.4),
that energy is released in the reaction 28Si + 4He. Thus it is energetically favourable to
shift the equilibrium in equation (14.4) towards the right, so that the equation should
really be written

28Si + 4He −→← 32S + γ . (14.5)

Furthermore, given the continuing photo-dissociation of the nuclei and hence presence of
4He, there is a possibility of similar reactions involving the subsequent nuclei, such as

32S + 4He −→← 36Ar + γ ,
36Ar + 4He −→← 40Ca + γ ,

...
52Fe + 4He −→← 56Ni + γ . (14.6)

To these reactions must be added similar reversible reactions involving photo-ejection and
absorption of protons and neutrons, as well as the decay of unstable nuclei formed in the
process. The result is an extremely complex network of reactions, whose evolution must be
followed numerically. In general, however, the processes occur almost in equilibrium, with
nearly equal numbers of nuclei being dissociated and created. On a slightly longer timescale
the equilibrium is shifted towards more tightly bound and hence heavier nuclei. This set
of quasi-equilibrium processes is known, somewhat misleadingly, as silicon burning.3

2Much as far less energetic photons cause ionization in atoms.
3Strictly speaking, the most tightly bound nucleus is 62Ni which might therefore be expected to be the

end product of these reactions; however, there seems to be no efficient reaction path to this nucleus. For
a discussion of this issue, see Shurtleff & Derringh (1989).
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Figure 14.3: Schematic illustration (not to scale) of the “onion-shell” structure in
the interior of a highly evolved massive star. Along the vertical radius and below the
horizontal radius some typical values of the mass, the temperature (in K) and the
density (in g cm−3) are indicated. (From Kippenhahn & Weigert 1990.)

The process has to stop when the iron group is reached, since further addition of 4He
requires energy (cf. Figure 14.2); the last reaction in the sequence of 4He capture is the
last of equations (14.6). Hence there is a tendency to convert the original composition
into predominantly 56Ni, although the precise equilibrium composition depends on tem-
perature. How far one gets towards this point depends on the time in which the silicon
burning proceeds, as well as on the temperature. Hence, when the central region has been
converted to 56Ni, regions further out have not reached that point yet, and still contain
a mixture of the elements produced earlier in the quasi-equilibrium. Outside this region,
of course, are shells resulting from earlier nuclear-burning stages, and the stellar envelope
has more or less the original composition from when the star was formed, apart from the
effect of possible dredge-up when the star passed through red-giant phases. The resulting
“onion-shell” structure is indicated schematically in Figure 14.3.

It is worth noting that the late stages of stellar evolution are very rapid, compared with
the hydrogen- and helium-burning phases. As illustrated in Figure 1.3, oxygen burning
only lasts of order 6 months, whereas “silicon burning” is over in about a day. Hence the
chances of observing a star while in these evolutionary phases are extremely small.
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14.3 Supernova explosion4

The end of silicon burning, with the production of nuclei in the iron mass range (A ∼
60), leaves the star with a serious problem: it is unable to generate energy in the core
from nuclear reaction. Thus only further gravitational contraction remains as a means of
providing the energy required from the stellar core. As usual, this leads to a heating up
of the core in accordance with the virial theorem.

14.3.1 Physics of the collapse and the explosion

As mentioned above, at the temperatures involved (a few 109 K) nuclear reactions mediated
by the strong and electromagnetic force proceed in both directions. In fact, these reactions
occur in equilibrium. To describe conditions in the collapsing core, we can approximate
the nuclei and nucleons present in the core by an ideal nonrelativistic Maxwell-Boltzmann
gas. Furthermore, we assume that we have only two independent chemical potentials,
corresponding to conservation of charge and baryon number. If we choose these chemical
potentials to be those for protons and neutrons, µp and µn, the chemical potential for a
nucleus with charge Z and mass number A can be related to those of the nucleons as

µ(Z,A) = Z µp + (A− Z)µn . (14.7)

This is the condition for nuclear statistical equilibrium and using Maxwell-Boltzmann
statistics it allows us to express the number density n(Z,A) of a nucleus in terms of the
number densities of free nucleons

n(Z,A) =
g(Z,A)A3/2

2A

(
2πh̄2

mukBT

)3(A−1)/2

nZ
p n

(A−Z)
n exp[Q(Z,A)/kBT ] , (14.8)

where the nuclear binding energy Q(Z,A) is given by

Q(Z,A) = c̃2[Zmp + (A− Z)mn −M(Z,A)] , (14.9)

and g(Z,A) is the partition function. Here mp, mn, M(Z,A) are the masses of the proton,
neutron and nucleus, respectively.

As external conditions we have the conservation of baryon number and charge. These
can be expressed in terms of np, nn as (ni = n(Zi, Ai))∑

i

niAi =
ρ

mu
= n , (14.10)

∑
i

niZi = nYe , (14.11)

where Ye defines the number of electrons per baryon.5

In the case of nuclear statistical equilibrium, all relevant properties (composition, equa-
tion of state, etc.) can be determined, once the 3 quantities ρ, T and Ye are known.

4Major parts of this section were kindly contributed by K. Langanke.
5Note that Ye is related to the mean molecular weight µe per electron, introduced in section 3.2.2, by

Ye = 1/µe In the rest of this chapter, however, µe denotes the electron chemical potential.
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Under the core conditions, the mass is dominated by nucleons, while the pressure is
given by the electrons; these quantities are related by Ye. The electrons can be described by
a degenerate, relativistic Fermi gas. Chandrasekhar showed that the electron degeneracy
pressure can only stabilize masses smaller than

MCh ' 1.457(2Ye)2[1 + F (T )]M� (14.12)

(see also Chapter 16). This is called the Chandrasekhar limit. The factor F (T ) is a finite-
temperature correction which for massive stars can correspond to 0.2 – 0.3. Note that for
nuclei during silicon burning Ye ∼ 0.5 [the nuclei involved have (approximately) the same
number of protons and neutrons].

To understand the fate of the core we have to consider that the Fermi energy of the
electron reaches the level of nuclear energies (EF >∼ 1 MeV) at densities around 107 g cm−3.
As the core has a finite temperature (recall that kBT = 86 keV at T = 109 K), the electrons
obey a Fermi-Dirac distribution (see also section 3.5)

n(E) ∝ {exp[(E − µe)/kBT ] + 1}−1 , (14.13)

characterized by the electron chemical potential µe, such that µe/kBT corresponds to
the degeneracy parameter ψ introduced in equation (3.50). In the limit of T → 0, i.e.,
for complete degeneracy, µe → EF, introduced in equation (3.54). For nonrelativistic
degeneracy we therefore obtain, using equation (3.55), that µe ' 1.2(ρ7Ye)2/3 MeV, where
ρ7 = ρ/(107 g cm−3) defines the density in units of 107 g cm−3. Thus, the presence of
electrons with relatively high energies makes it now energetically favourable to capture
electrons by nuclei in processes like

(Z,A) + e− → (Z − 1, A) + νe . (14.14)

Since this process changes a proton into a neutron (although in a nucleus) one talks
about neutronization of the core. Electron capture has two important consequences:

1) It reduces the number of electrons: Ye gets smaller. Thus, the pressure which is
available to stabilize the gravitational contraction of the core is reduced. In other
words, the Chandrasekhar mass limit decreases as Ye decreases (cf. eq. 14.12).

2) The neutrinos produced in the reaction can leave the star. These neutrinos carry
kinetic energy (usually of a few MeV) which is lost for the core. In fact, these
neutrino losses keep the core at relatively low temperatures.6

In summary, the pressure and energy loss due to electron capture accelerates the con-
traction. It is also important to stress that the relatively low temperatures ensure the
presence of a limited number of free protons and neutrons; otherwise the electron capture
on free protons would dominate as the energy threshold is smaller than in nuclei. Pre-
supernovae simulations estimate the mass fraction of free protons Xp <∼ 10−4 at densities
ρ ∼ 5 × 109 g cm−3 (T ' 8 × 108 K). As most nucleons are still bound in nuclei, (i.e.,
with a large degree of “order”), the collapse proceeds at low entropy. Electron captures

6We note that beta decays, in which a neutron is changed into a proton inside a nucleus, can compete
with electron capture during certain stages of the final evolution of a massive star. Beta decays cool the
star by neutrino emission, but increase the value of Ye.
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have now reduced the Ye-value to about 0.44 in the centre of the core and the electron
degeneracy pressure is overwhelmed by gravitation leading to an approximately free col-
lapse in the centre. This increases the density and the electron energies enabling further
electron captures on the fast collapse time scale. Neutrino losses still cool the star until
the core matter reaches densities around 4×1011 g cm−3. At such high densities it becomes
important to consider the interaction of neutrinos with the surrounding matter. At first,
via neutral-weak-current interaction, neutrinos can scatter elastically from nuclei. This
randomizes the neutrino path out of the core and the neutrino diffusion length is about
8 km at ρ = 1012 g cm−3 during the dynamical collapse time of ∼ 1.6 ms. For the same
density, the core radius is about R = 30 km. Thus, neutrinos are unable to diffuse out of
the core: they are “trapped”.

The neutrinos also scatter inelastically on electrons. In this process, energy is trans-
ferred from neutrinos to electrons and the neutrinos are thermalized in about 1/5 of a
dynamical time scale. This finally brings also the weak interaction into equilibrium and
the inner core where the density exceeds ∼ 1012 g cm−3 collapses as a unit (called the ho-
mologous core). The mass of the homologous core can be estimated from the appropriate
Chandrasekhar mass, taking into account that progressing electron captures have reduced
the Ye-values to about Ye ' 0.36− 0.38, corresponding to MCh ∼ 0.7M�.

The collapse continues until the core reaches nuclear matter densities (ρ ∼ 1014 g cm−3).
The finite compressibility of nuclear matter brings the collapse to a halt. Note that the
sound speed in the homologous core is larger than the infall velocity. In fact, the sonic
point, at which these two velocities are equal, is the surface of the homologous core. Thus,
the sudden stop of the collapse in the centre creates a shock wave at the surface of the
homologous core. This shock wave moves outwards through the rest of the collapsing iron
core. The energy available to the shock depends on details of the nuclear equation of state
which are still somewhat uncertain. According to current knowledge, the shock energy is
of the order 1052 erg (or 10 foe, with 1 foe defined as 10 to the power fifty one erg).

The temperature in the shock is very high (kBT ∼ 10 MeV). Thus, the matter through
which the shock passes will be dissociated, at an energy cost of about 16 foe per 1M�
matter (the binding energy of Fe is about 8.8 MeV/nucleon). It follows that the success
or failure of a prompt explosion, initiated by the shock, depends crucially on the amount
of matter it has to traverse, i.e., the mass of the Fe core7 minus the mass at which the
shock starts (homologous core mass). Current estimates put the homologous core mass at
0.7M�, while the mass of the iron core is about 1.6− 1.7M� for massive stars. Thus, the
shock has insufficient energy to explode the star.

The behaviour of the core during the collapse is illustrated in Figure 14.4, which shows
the radial motion of various layers, as well as the location of the shock. This shows that
the shock stalls at a radius of around 500 km. The figure also indicates that it is revived
after about 0.5 sec, finally exploding the star. What has happened?

In the centre of the core, a neutron star is born consisting of the original homologous
core and additional mass which has fallen through the shock. This newly-born neutron
star attempts to cool as fast as possible. The most effective way is by emission of neutrino
pairs (neutrino + anti-neutrino)8, with a luminosity of up to 5 × 1052 erg sec−1 for each
neutrino family, lasting for several seconds. Additionally, there is a very short neutrino

7Once the shock reaches the oxygen burning shell, nuclear burning produces energy, helping the explo-
sion.

8For example, this may happen through the creation of an electron-positron pair followed by annihila-
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Figure 14.4: The motion in radius of mass shells in a supernova simulation, following
the core bounce which happens at time t = 0. The shock travels outwards for a short
time, gets stalled and is later revived by the neutrinos generated in the cooling of the
newborn neutron star. (From Colgate 1989.)

burst just after the bounce when the trapped νe neutrinos are released from the core. A
detailed review of neutrino processes in supernova explosions was provided by Burrows
(1990).

The cross sections for the neutrino absorption on nucleons,

νe + n → p+ e− ,

ν̄e + p → n+ e+ , (14.16)

are tiny, σ ' (Eν/1 MeV)2 × 10−43 cm2, where Eν is the neutrino energy (Eν ' 15 MeV
for νe, ν̄e neutrinos). Despite the tiny cross section, neutrino-nucleon interaction transfers
energy to the matter which has previously been dissociated by the shock. In fact, the
matter in the shock is heated within about 0.3 sec to an energy which is larger than the
gravitational potential and can therefore be expelled from the star. The explosion mech-
anism, by which the shock is revived by neutrino heating, is called the delayed supernova
mechanism.

tion:
γ + γ → e− + e+ → νe + νe , (14.15)

where νe denotes the anti-neutrino.
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Exercise 14.2:

Consider a neutron star with a mass of 1M� and a radius of 106 cm, assumed to have
uniform density. Assuming that the cross section for interaction between a neutrino
and a neutron is 10−41 cm2, what is the mean free path of the neutrino within the
neutron star?

Exercise 14.3:

Show that a star collapsing without loosing mass will eventually become opaque to
neutrinos.

Computer simulations currently strongly favour the delayed mechanism, although even
the delayed mechanism does not always generate a successful explosion. The success
depends crucially on the effectiveness of the energy transport to the shock region by the
neutrinos. Very recent investigations have shown that this energy transport is enhanced
by 1) convection, 2) an improved description of the neutrino opacities in dense matter
and perhaps 3) by preheating the matter during the early νe-neutrino burst. The high-
temperature environment related to the shock leads to explosive burning which affects the
matter composition up to the oxygen-burning shell. The matter further out is basically
unaffected and thus has the same composition as during the hydrostatic burning before
the collapse.

The explosion expels the matter outside a certain point at a mass ∼ 1.6M� (called
the mass cut) into the interstellar medium (ISM) where it is mixed with the preexisting
matter. The remnant inside the mass cut consists largely of neutrons. Because of the high
density, the neutrons are partially degenerate; the degeneracy becomes complete as the
core cools, largely through emission of neutrinos, and it settles down as a neutron star.
These are discussed in more detail in Chapter 16. Observationally, neutron stars have
been detected in the form of the pulsars, which emit pulses at very regular intervals, with
periods between a few milliseconds and a few seconds.

Core-collapse supernovae, as discussed above, are generally known as Type II super-
novae.9 We note that only for stars in a certain mass range (∼ 8 − 30M� on the main
sequence) does the explosion from a core collapse result in the generation of a neutron
star. More massive stars also end their lives as core-collapse supernovae, but instead likely
generate a black hole in the centre (see also Chapter 16). On the other hand, as discussed
in Chapter 12 stars of mass below around 8M� never reach the latest nuclear burning
stages.

The preceding discussion is obviously only a very rough sketch of the processes that
go on in a supernova explosion. However, it is largely supported by detailed numerical

9In reality the observational classification is more complex: core collapse may also result in supernovae
of Type Ib or Ic, characterized by particular features of their spectra (e.g. Filippenko 1997). A physically
distinct class are the Type Ia supernovae which are caused by the collapse of a white dwarf as a result of
mass transfer in a binary system; see Chapter 16.
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calculations; for an excellent, if somewhat outdated, summary of the results of such calcu-
lations, see Bethe & Brown (1985). They confirm the role played by both the shock waves
and the neutrino absorption in driving the explosion. Indeed, it has been a long-standing
problem that even taking into account the combined effects of neutrinos and shocks the en-
ergy deposition appeared to be marginally sufficient to drive the explosion. Bethe (1990a)
suggested that this problem may be overcome if energy transport by convection is taken
into account; some support for this suggestion has come from detailed hydrodynamical
simulations, summarized, for example, by Hayes & Burrows (1995), although more recent
hydrodynamical calculations have cast doubt on the earlier results. An interesting and
very recent suggestion (Burrows et al. 2006) is that the generation of acoustic power by
turbulence in the accretion onto the core and excitation of oscillations of the core may con-
tribute to driving the explosion. A likely consequence of this is that the explosion looses
spherical symmetry, resulting in a kick to the forming neutron star that may give it a large
spatial velocity; such high-velocity neutron stars are in fact observed (e.g., Chatterjee et
al. 2005).

Detailed reviews on the evolution of massive stars and supernovae have been given
by Bethe (1990b) and Woosley, Heger & Weaver (2002). We also note the monograph by
Arnett (1996) which provides a detailed overview of stellar evolution through to supernova
explosions as well as galactic nucleosynthesis.

14.3.2 Observations of supernovae

The energy release in the supernova explosion is enormous. At its maximum, the lumi-
nosity may be comparable with the luminosity of an entire galaxy, of order 1010L�. This
lasts for several days, followed by a gradual decay in luminosity over a period of months.
Even so, the energy emitted as visible light is only a relatively small fraction of the total
amount of energy released, which is of order 1053 erg. Most of the energy is emitted in
the form of neutrinos, while sizeable fractions are also used to expel the outer parts of
the star with high velocity, or are stored in rotational energy of the remaining core. It is
striking that this energy, and the energy required to dissociate the nuclei produced during
the preceding nuclear burning, comes entirely from the release of gravitational potential
energy of the core.

Exercise 14.4:

Estimate the energy release in gravitational collapse of a core of mass 1M�, from an
initial density of 109 g cm−3 (typical of the situation during silicon burning) to the
nuclear density of 1014 g cm−3. Compare with the total rest-mass energy of the core.

Observationally, a supernova explosion is a spectacular phenomenon. Unfortunately10

they are rare. In our own Galaxy only a few have been recorded, the last in the seven-
teenth century. An interesting example is the supernova that was recorded by Chinese
astronomers in 1054; it is now the site of a interstellar cloud (the Crab nebula), containing
a pulsar with a period of 0.033 sec, which has been observed in both radio, optical and

10Although a nearby supernova might be a little unpleasant.
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Figure 14.5: Light curve, in V -magnitude, of SN1987A in the Large Magellanic
Cloud. The abscissa is days, according to the so-called Julian date. (From Burki et
al. 1989.)

X-ray emission. Most of our detailed information on supernova explosions is based on su-
pernovae in distant galaxies, and hence difficult to observe. However, in February 1987 a
supernova, designated SN1987A, exploded in the Large Magellanic Cloud, a nearby small
galaxy. It reached a maximum apparent magnitude of 2.8, and hence was easily visible
to the naked eye. More importantly, its relative proximity and brightness permitted very
detailed observations. A discussion of the stellar evolution leading up to the explosion, and
of the observations, was given by Woosley & Weaver (1989). Chevalier (1992) summarized
the first 5 years’ investigations of the supernova.

Possibly the most interesting observation was the detection of approximately 20 neu-
trinos, in two different detectors, from the explosion; the number is in good agreement
with the predictions of the supernova models, thus for the first time indicating that the
expected nuclear reactions do in fact take place in the core of a supernova. The neutrinos
preceded the optical brightening of the star by several hours, in accordance with the re-
sponse time of the stellar envelope to the energy deposited by the shock and the neutrinos.
A summary of the neutrino data and their interpretation was given by Bahcall (1989).

The detailed observations of SN1987A have confirmed the general picture outlined
above. The models predict that about 0.15M� of 56Ni is ejected in a Type II supernova.
(Note that this material is not produced in the silicon burning phase, but within the
explosion, where nuclear statistical equilibrium for Ye = 0.5 settles predominantly into
56Ni.) 56Ni is unstable towards electron capture and decays in the following sequence to
56Fe:

e− +56 Ni→56 Co + νe (half life 6.1 days) ,
e− +56 Co→56 Fe + νe (half life 77 days) . (14.17)



14.3. SUPERNOVA EXPLOSION 205

Figure 14.6: Ratio between calculated and observed solar abundances for stable
isotopes from hydrogen to zinc. The calculations took into account contributions
from Type II and Type Ia supernovae. The dotted lines mark deviations by a factor
2 between calculation and observation. (From Timmes et al. 1995.)

These radioactive decays provide a major contribution to the energy released by the su-
pernova in the months following the explosion. This happens because the decays go to
excited states in the daughter which then deexcites fast by γ emission. The lightcurve of
SN1987A, illustrated in Figure 14.5, clearly showed the 77-days half-life decline related to
the 56Co decay, which corresponds to the long straight segment of the curve.

Exercise 14.5:

Show that if the energy is provided by radioactive decay, the magnitude of the star is a
linear function of time. Estimate the half-life of the decay from the slope of the straight
segment of the luminosity curve in Figure 14.5, and compare with the half-lives quoted
in equation (14.10).

Supernovae also produce other radioactive material, for example about 10−4M� of
44Ti. This nucleus has the interesting half-life of 60 years and its decay can be identified
by a characteristic 1 MeV γ line. In fact, the COMTEL satellite has observed this line
for two historical supernovae from 1680 and 1300. As MeV photons can traverse our
Galaxy unhindered, further observations of 44Ti and other γ lines may provide an improved
estimate of the supernova rate in our Galaxy (it is currently estimated to be about 2 per
century; most of them are optically invisible, as a result of absorption by dust in the
Galaxy). A recent interesting example are observations from the INTEGRAL satellite of
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a 1.8 MeV line from 26Al which has a half-life of 7.2×105 years (Diehl et al. 2006); this did
indeed lead to an estimate of the core-collapse supernova rate in the Galaxy of 1.9 ± 1.1
events per century.

A major event related to SN1987A, which is eagerly awaited, would be the detection
of the neutron star that has probably been formed in the collapse. Clear evidence for the
neutron star would be observation of rapid pulses in brightness, corresponding to what is
observed from pulsars. So far there have been two false alarms, which were later attributed
to instrumental problems; we are still waiting.

A dramatic phenomenon that has recently been associated with supernovae are the
γ-ray bursts (e.g. van Paradijs, Kouveliotou & Wijers 2000; Hurley 2003). These are
short bursts of γ rays, lasting from seconds to a few minutes, observed at a rate of about
once a day with uniform distribution across the sky. It is now known that they occur at
cosmological distances and hence involve huge amounts of energy. It is normally assumed
that the energy is beamed in a narrow jet, partly by relativistic effects, so that only
those bursts that happen to point towards the Earth are detected. In some cases (see,
for example, Hjorth et al. 2003) a supernova has been observed that is clearly associated
with the burst. A brief discussion of the possible, but still rather uncertain, mechanisms
causing the γ-ray bursts was provided by MacFadyen (2004), while Heger et al. (2003)
discussed the evolution that might lead to a supernova explosion causing a burst.

14.3.3 Effects on the galactic chemical evolution

The nuclear material produced in the supernova explosion is mixed into the interstellar
medium and can thus contribute to the initial composition of new generations of stars.
Thus, the galactic chemical evolution represents a “cosmic cycle”, and modelling the
observed solar and stellar abundances requires simulations of the formation of a galaxy and
of the stellar mass distribution, birth rates, evolution and lifetimes. A crucial component
of the modelling is the calculation of the abundances produced by a star of a given mass
and the amount and composition of matter ejected into the ISM by the star’s final Type II
supernova explosion. Finally, contributions must be added from the Type Ia supernovae;
these involve the formation and evolution of binary systems composed of a giant star with
a hydrogen envelope and an accreting white dwarf (see also Chapter 16).

Despite its complexity, rather consistent studies of the galactical chemical evolution
have been performed (e.g. Timmes, Woosley & Weaver 1995); an example is illustrated
in Figure 14.6. Although the simulations involve a few model assumptions, excellent
agreement is obtained with the solar abundance for isotopes from hydrogen to zinc, when
the calculation is sampled at a time 4.55× 109 y ago, and a distance of 8.5 kpc from the
galaxy centre, corresponding to the time and position of the birth of our Sun in the Milky
Way Galaxy.



Chapter 15

Nucleosynthesis through neutron
capture

15.1 Introduction

The description given in the preceding chapters can account for the production of ele-
ments up to the iron group, in relative concentrations approximately corresponding to
those observed. However, it is not possible to generate even heavier elements by simi-
lar processes. Because of the Coulomb barrier, fusion between charged particles leading
to such elements is extremely improbable at moderate temperature; at higher tempera-
ture, photo-dissociation gives rise to the quasi-equilibrium processes in the silicon burning,
which predominantly generate nuclei around the maximum in the binding energy, i.e., in
the iron group. There would appear to be no way to generate even heavier elements.

The solution to this difficulty lies in the observation that neutrons are not affected by
the Coulomb barrier. Hence, if matter is exposed to a flux of neutrons, heavier elements
can be generated through neutron capture, possibly followed by e− decay converting the
neutron into a proton. We postpone the discussion of the source of neutrons, and begin
by discussing the likely outcome of such neutron capture.

15.2 Effects of neutron capture

The absorption of a neutron in a nucleus increases its atomic weight without changing the
atomic number,

(Z,A) + n→ (Z,A+ 1) + γ . (15.1)

However, stable nuclei are concentrated in the valley of stability in the (Z,A) plane, with
the number of neutrons being slightly higher than the number of protons. Starting from
a nucleus with this property, the reaction (15.1) clearly moves the nucleus away from the
valley of stability. If the resulting nucleus is unstable it decays,

(Z,A+ 1)→ (Z + 1,A+ 1) + e− + νe , (15.2)

resulting in the production of the next element. Otherwise the nucleus may capture yet
another neutron,

(Z,A+ 1) + n→ (Z,A+ 2) + γ , (15.3)

207
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hence leading to an even heavier isotope of the original element, whose stability must then
be tested.

In reality, the situation is more complicated. The beta decay in equation (15.2) is
typically a fairly slow process; hence it is possible that even though the nucleus produced
in equation (15.1) is unstable, it has time to capture another neutron according to equation
(15.3) before it decays according to equation (15.2). To describe this, we operate with two
different types of neutron capture:

• the s process (for slow), where the neutron capture is much slower than the beta
decay.

• the r process (for rapid), where the neutron capture is much more rapid than the
beta decay.

These possibilities are illustrated schematically in Figure 15.1. The s-process path proceeds
along the bottom of the stability valley, since it only involves stable nuclei. In particular, it
is not possible to produce isotopes which are separated from the stability line by unstable
isotopes; hence some isotopes may be identified as being necessarily the result of the r
process. On the other hand, the r process produces predominantly neutron-rich nuclei.
Hence a stable isotope of a given atomic weight may “shield” an isotope of the same
atomic weight, but higher atomic number, from the r process, hence identifying the latter
as having been produced by the s process.

The abundances of elements produced by the s process can be estimated reasonably
simply. It may be expected that an approximate equilibrium is established, such that
equal numbers of a given isotope are produced and destroyed in the process. Consider
two nuclei along the s-process path, with atomic weight A − 1 and A1, let NA−1, NA
be the abundances of these nuclei, and let σA−1, σA be their average cross sections for
neutron capture. The rate of production of nucleus A from nucleus A− 1 is proportional
to σA−1NA−1, and the rate of destruction of nucleus A is proportional to σANA. To
maintain equilibrium we therefore expect that, approximately,

σA−1NA−1 ' σANA , (15.4)

i.e., that the product σANA is constant along the s-process path.
The neutron cross section depends strongly on the properties of the nucleus, as illus-

trated in Figure 15.2. This dependence is linked to the structure of the nuclei. Just as is
the case for the electrons in an atom, the nucleons in a nucleus may be regarded as occupy-
ing certain shells (with separate sets for the protons and the neutrons), each of which can
hold a specific number of nucleons. Furthermore, nucleons enter into the shells in pairs,
corresponding to the two directions of the spin. Nuclei where either a neutron shell or a
proton shell is filled are particularly stable; if a neutron shell is filled, the nucleus has little
incentive to absorb another neutron, and hence the neutron-capture cross section is very
low. In contrast, nuclei with an odd number of neutrons, and hence with an incomplete
pair, are particularly eager to complete the pair, and hence have very high cross sections.
Both effects, the low cross sections at the so-called “magic” neutron numbers (50, 82 and

1Note that there is only one isotope at each value of the atomic mass along the s-process path. Hence
an s-process nucleus is uniquely characterized by its mass.
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Figure 15.1: Schematic illustration of a portion of the chart of nuclides showing
the production of elements by the s and r processes. The s-process path of (n, γ)
reactions followed by quick beta decays enters the diagram at the lower left and
passes through each nucleus designated by the letter s. Neutron-rich matter produced
by rapid neutron capture undergoes a chain of beta decays terminating at the most
neutron-rich of the stable isobars (i.e., nuclei with the given atomic weight), which are
designated by the letter r. When such a nucleus is separated by an unstable isotope
from the nearest isotope with lower mass, the nucleus can only be produced by the
r process. Similarly some of the nuclei on the s-process path are shielded from the
r process by more neutron-rich isobars, and hence can only be produced by the s
process.

126) corresponding to filled shells, and the high cross sections for odd nuclei, are evident
in Figure 15.2. Also, it is clear that very roughly the abundances in Figure 14.1 are a
mirror image of the cross sections in Figure 15.2, in accordance with the expectation based
on equation (15.4) that NA ∝ σ−1

A .
A more accurate description has to take into account the details of the neutron expo-

sure, and the time dependence of the abundances (cf. Clayton 1968). The result is that
rather than being constant, σANA is a slowly varying function of A for nuclei created by
the s process. This is illustrated in Figure 15.3.

Estimates of the abundances resulting from r-process neutron capture are more difficult
and uncertain; they were discussed also by Clayton (1968). Roughly speaking the result
is again a dominance of magic numbers of neutrons in the very neutron-rich nuclei which



210 CHAPTER 15. NUCLEOSYNTHESIS THROUGH NEUTRON CAPTURE

Figure 15.2: Neutron cross sections for nuclei along the s-process path, for a neutron
energy around 25 keV. It is obvious that the cross sections are exceptionally low for
nuclei with closed shells, at the so-called magic values for the neutron number N (and
to a lesser extent the proton number Z). (From Clayton 1968.)

Figure 15.3: The σANA curve for s-process nuclei in the solar system. The product
of the neutron-capture cross sections times the nuclide abundance per 106 silicon
atoms is plotted against atomic mass number A. The curve is the calculated result
for a particular model for the neutron exposure. (From Clayton 1968.)



15.3. THE SOURCES OF NEUTRONS 211

are created by the neutron exposure. The subsequent beta decays towards the bottom of
the beta-stability valley then shift the neutron number towards somewhat lower values.

15.3 The sources of neutrons

According to the discussion in Chapter 8, neutrons are not produced by nuclear reac-
tions until carbon burning is reached; at this point the temperature is so high, how-
ever, that the neutron capture processes would face impossible competition from photo-
dissociation. During silicon burning large numbers of free neutrons are produced also by
photo-dissociation, but conditions are clearly even less favourable for neutron reactions to
occur on a sufficiently large scale. Hence we need to find other sources for the neutrons.

It appears that nucleosynthesis by the s process occurs in stars on the Asymptotic Giant
Branch which are thermally pulsing, alternating between having a hydrogen and a helium
shell-burning source. During the pulses matter that has taken part in hydrogen burning
(predominantly through the CNO cycle) is mixed from the region where hydrogen burning
takes place down into the region of helium burning, where neutron-producing reactions
can take place. Two such reactions are commonly considered:

13C(4He, n)16O (15.5)

(note that 13C is part of the CNO cycle); and a continuation of the reaction in equation
(8.64), where 14N undergoes a series of captures of 4He:

14N(4He, e+νe) 18O(4He, γ) 22Ne (4He, n) 25Mg . (15.6)

Both reaction sequences lead to the emission of a neutron. Each thermal pulse adds a
fresh supply of 13C and 14N and hence gives rise to an episode of neutron capture. It
appears that the observed distribution of s-process elements may be understood in terms
of such a sequence of neutron exposures. A detailed review of these processes, and the
comparison of the outcome with solar-system abundances, was given by Busso, Gallino &
Wasserburg (1999).

Evidence that such processes do occur in red giants is provided by the fact that some
red giants show very peculiar surface abundances, which may be understood in terms of
nucleo-synthesis by the s process. In fact, these stars develop surface convection zones that
are sufficiently deep to reach down into the region where the nuclear processes take place
(cf. Figure 12.3); hence the newly synthesized elements may be brought to the surface.
Particularly striking is the presence of technetium in some stars, since all isotopes of
technitium are radioactive, with halflives of less than a few million years; technetium is
in fact produced as part of the s process. By studying such abundance anomalies we may
hope to obtain a detailed test of the model for nucleo-synthesis by slow neutron capture.

The sites of the nuclear r process are still rather uncertain; possible sites were reviewed
by Woosley et al. (2002). Obviously it requires a location with extreme neutron fluxes.
The currently favoured site is the region just above the newly born neutron star in a
Type II supernova. This region is called the ‘hot neutrino bubble’ (see Fig. 14.4). As the
ν̄e neutrinos, produced by cooling of the neutron star, are on average more energetic than
νe neutrinos, neutrino absorption on nuclei drives the matter just above the neutron star
slightly neutronrich (see the cross sections for neutrino absorption following eq. (14.16)).
When the matter moves outwards, it cools and protons and neutrons combine into 4He
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(alpha-particle) and then into heavier nuclei. The excess of neutrons at the beginning
guarantees that free neutrons are still available which can be captured by the heavy nuclei
(around mass 60 – 90) to produce a nuclear r process. Woosley et al. (1994) presented a
detailed calculation of these processes.

Simulations of the r process within the ‘hot neutrino bubble’ model is still an ongoing
research area and no consistent reproduction of the observed solar r-process abundance
has been achieved. Current supernova models appear not to give the right condition to
allow for matter flux from the heavy seed nuclei up to the r-process peak around mass
A ∼ 200. This problem might actually be consistent with recent meteoritic data and
abundance observations of old stars which both appear to indicate that two distinct r-
process scenarios have contributed to the solar r-process abundance. Possible candidates
for the second r-process sites are neutron-star mergers or supermassive stars in the early
stage of our galaxy.

From an observational point of view, extensive data are available from the isotopic com-
position of solar-system material, particularly as inferred from meteorites, as well as from
observations of stellar abundances. Wasserburg, Busso & Gallino (1996) used meteoritic
data to discuss the early history of the material that was incorporated in the solar system.
Stars of very low heavy-element abundances were considered by Cowan et al. (1999); they
argued that these stars were formed so early in galactic evolution that little or no s-process
nucleosynthesis had yet taken place and therefore assumed that the observed abundances
of elements beyond barium corresponded to pure r-process material. The results seemed
consistent with the r-processes abundances inferred in the Sun, suggesting uniform condi-
tions for r-process nucleosynthesis in major parts of the history of the Galaxy. Cowan et
al. also used the observed abundance of the radioactive element thorium, compared with
the predicted initial value resulting from r-process nucleosynthesis, to infer the ages of
the stars and hence estimate the age of the Galaxy. The results are essentially consistent
with those obtained from fitting observed colour-magnitude diagrams of stellar clusters
(cf. Chapter 13), although still with fairly substantial uncertainties.



Chapter 16

Final stages of stellar evolution
(Jes Madsen, IFA)

16.1 Introduction

As described earlier in these notes, the final fate of a star depends mainly on its mass.
Stars with a mass less than 4− 8 M� finish the nuclear burning in their centre when the
nuclei in the core are carbon or oxygen (the lightest stars perhaps finish with helium and
more heavy ones with silicon). Most of their outer mass is ejected in strong stellar wind,
leading to the formation of a so-called planetary nebula; the cause of this instability is not
well understood, however. The remnant of the star becomes a white dwarf1 of typically
0.5− 1.4 M�.

As discussed in Chapter 14, stars heavier than 8 M� burn successively heavier nuclei in
their centres until their core of about 1.4 M� is made of iron-group isotopes which have the
maximum binding energy per nucleon. Then the stellar energy source by fusion terminates,
the central pressure drops catastrophically and the star’s inner core (of about 1.4 M�)
collapses in less than a second. If the nuclei in the inner core have reached densities in
excess of nuclear matter density (approx. 3× 1014 g cm−3), the equation of state becomes
‘stiff’; i.e., the pressure changes drastically due to, for example, the production of a large
number of neutrons by electron captures on nuclei and free protons (e− + p → n + νe).
The neutrons are degenerate at nuclear matter densities which induces a strong pressure
(we return to this point later). The increase in pressure stops the collapse of the iron core;
it expands slightly (like an elastic ball which has been squeezed together), and sends a
shock wave through the outer part of the star. The shock wave and the copious emission
of neutrinos from the collapsed core apparently provide enough energy (originating from
the released gravitational binding energy) to eject the outer mass of the star (> 6M�)
in a supernova explosion2. In the centre of the star there remains a compact object with
M ∼ 1.4M�, R ∼ 10 km, mass number A ∼ 2× 1057, neutron number N ∼ 2× 1057 and
proton number Z ∼ 1054. This compact remnant is called a neutron star.

If the original star was heavier than about 20 M�, its inner core has too much mass
1The name is a little misleading. The star has the size of the Earth and is therefore indeed a dwarf;

however the description as “white” is only appropriate in the hot initial phase. Later the star cools down
and is rather a red dwarf.

2However, the models have some difficulty in actually making the star explode.
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for the collapse to be stopped by the degeneracy pressure of the neutrons. In this case the
collapse continues until a black hole is formed.

In the following we discuss briefly the properties of compact objects. In particular, we
give a simple derivation of the mass-radius relation for white dwarfs and neutron stars and
some arguments why there exists a mass limit for such objects, called the Chandrasekhar
mass. Finally we briefly mention some observational consequences.

16.2 Degenerate matter in hydrostatic equilibrium

The properties of white dwarfs and neutron stars are predominantly determined by their
content of degenerate electrons and neutrons. The equation of state for degenerate matter
has been discussed in section 3.5. Hence it is sufficient to provide a brief summary here.

The number-density distribution of a fermion gas (like neutrons and electrons) can be
expressed as

n = gs

∫
f(p)

d3p
h3

, (16.1)

where f(p) is a Fermi-Dirac distribution (as a function of momentum), and gs is a statis-
tical weight (gs = 2 for electrons and neutrons as there are two possible spin directions).
The Fermi-Dirac distribution depends on the temperature T and the chemical potential
µ, but the discussion is strongly simplified in the limit T = 0, where f(p) becomes a
stepfunction:

f(p) =
{

1 for |p| ≤ pF ,
0 for |p| > pF

(16.2)

(consider that all states in momentum space are occupied up to the Fermi momentum pF

with 2 particles per phase space volume h3 and that all levels at higher momentum/energy
are empty). We shall see below (exercise 16.1) that assuming a T = 0 distribution is a
reasonable approximation, despite the fact that typical temperatures for neutron stars in
the early life are of order T = 1010 K, and 107 K is a typical temperature during the
evolution of a white dwarf.

Using the simplification in equation (16.2), one can calculate the number density and
finds n = gsp

3
F/(6π

2h̄3). The energy density of the gas can be calculated as

u = gs

∫
ε(p)f(p)

d3p
h3

, (16.3)

where ε(p) = (|p|2c̃2 + m2c̃4)1/2; similarly the pressure P can also be expressed as an
integral. In the following we shall use, however, the general results: P = 2/3u for a
non-relativistic gas and P = 1/3u for an ultra-relativistic gas (cf. exercise 3.1).

Table 16.1 summarizes the most important results for a non-relativistic (εF � mc̃2)
and ultra-relativistic Fermi (εF � mc̃2) gas at T = 0. In Table 16.1 n is the number
density, εF = ε(pF) is the Fermi energy, u is the energy density and P is the pressure.

Note that, even for T = 0, the pressure is positive. One finds P ∼ n5/3 for a non-
relativistic degenerate gas and P ∼ n4/3 for a relativistic degenerate gas.

For a white dwarf in hydrostatic equilibrium the pressure is supplied by the electron
degeneracy pressure, while the dominating part of the mass is given by nuclei of a specific
type (e.g., 12C) which we can define by their mass and charge numbers (A,Z).3 Therefore

3In general one can replace the ratio A/Z by µe in the subsequent equations.
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Table 16.1

NON-REL. REL.

n gs
p3
F

6π2h̄3 gs
p3
F

6π2h̄3

εF
p2
F

2m
=

1
2m

(
6π2h̄3n

gs

)2/3

c̃pF = c̃

(
6π2h̄3n

gs

)1/3

u 3
5nεF

3
4nεF

P
2
3
u =

2
5

1
2m

(
6π2h̄3

gs

)2/3

n5/3 1
3
u =

c̃

4

(
6π2h̄3

gs

)1/3

n4/3

Properties of non-relativistic and strongly relativistic degenerate matter.

we find for a degenerate electron gas

m = me = 511 keV/c̃2 = 9.11× 10−28 g , (16.4)

gs = 2 , (16.5)

n = ne = np =
Z

A

ρ

mH
' Z

A
6× 1027 cm−3

(
ρ

104 g cm−3

)
, (16.6)

εF = 12 keV
(

ρ

104 g cm−3

)2/3 (Z
A

)2/3

(for ρ� 2× 106 g cm−3) , (16.7)

εF = 516 keV
(

ρ

106 g cm−3

)1/3(Z
A

)1/3

(for ρ� 2× 106 g cm−3) . (16.8)

In the expression for n we can use charge neutrality to replace ne by np (ne = np),
where the proton number density np can be calculated from the mass density ρ of the
white dwarf. The reason why there are two expressions for the Fermi energy is the fact
that an electron gas becomes relativistic (εF > mec̃

2) at ρ ' 2 × 106 g cm−3. (In reality
there is, of course, a smooth transition between the two equations of state.)

For a neutron star in equilibrium the pressure is supplied by degenerate neutrons which
also contribute most of the mass. Therefore we have

m = mn = 939.6 MeV/c̃2 = 1.675× 10−24 , (16.9)

gs = 2 , (16.10)

n = nn =
ρ

mn
' 6× 1037 cm−3

(
ρ

1014 g cm−3

)
, (16.11)

εF = 30MeV
(

ρ

1014 g cm−3

)2/3

(for ρ� 6× 1015 g cm−3) , (16.12)

εF = 239MeV
(

ρ

1014 g cm−3

)1/3

(for ρ� 6× 1015 g cm−3) . (16.13)

The central density of a neutron star does not exceed a few times 1015 g cm−3 and
we find therefore that the neutron gas is non-relativistic in most neutron stars. As a
comparison, the density inside nuclei is about 3× 1014 g cm−3.
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Exercise 16.1:

Degeneracy is lifted if the temperature is too large, i.e., if kBT > εF. At which
temperatures does this happen in white dwarfs and neutron stars? Assume that ρ =
104 g cm−3 and 107 g cm−3 are typical densities for white dwarfs in the non-relativistic
and relativistic cases, and that ρ = 1014 g cm−3 is a typical density for a neutron star.

We now derive a mass-radius relation for white dwarfs and neutron stars. At first we
consider the non-relativistic case, i.e., neutron stars and white dwarfs with ‘small’ number
densities. Thus, the pressure is given by P ∼ n

5/3
e (white dwarf) and P ∼ n

5/3
n (neutron

star), and since ne ∼ ρ (or nn ∼ ρ) the equation of state has a polytropic form, P = KρΓ

with Γ = 5/3. For relativistic white dwarfs one finds P ∼ n
4/3
e ∼ ρ4/3, which again is a

polytropic form, now with Γ = 4/3.

Exercise 16.2:

Using the expressions given in Table 16.1, determine the constant K in the polytrope
equation for both white dwarfs and neutron stars. Note that the value of K depends
only on natural constants and possibly on Z/A.

We can now apply equation (4.48) to arrive at the following expressions:

M = 0.70

(
104 km
R

)3(
2
Z

A

)5

M� (white dwarf, Γ = 5/3) , (16.14)

M =
(

15.12 km
R

)3

M� (neutron star, Γ = 5/3) , (16.15)

M = 1.457
(

2
Z

A

)2

M� = M
(WD)
Ch (white dwarf, Γ = 4/3) , (16.16)

M = 5.73M� = M
(NS)
Ch (neutron star, Γ = 4/3) . (16.17)

Note that M ∼ R−3 for non-relativistic systems, but M is independent of R for ultra-
relativistic systems. In the last case, is the mass also referred to as the Chandrasekhar mass
in honour of the Indian astrophysicist who derived this result in 1931 (see Chandrasekhar
1931). Chandrasekhar showed that this is the maximal mass which is possible for a white
dwarf (naturally neutron stars have been first discussed after Chadwick discovered the
neutron in 1932 (Chadwick 1932). For his discovery, Chandrasekhar has been awarded
the Nobel Prize in Physics in 1983(!) (Chadwick won his Nobel Prize in 1935.)

We also note that the Chandrasekhar mass is nearly the same for white dwarfs and neu-
tron stars. The reason for this is that the pressure for relativistic particles is independent
of the particle mass (see Table 16.1), while the density for both white dwarfs and neutron
stars are given by the nucleonic contributions. Equation (16.17) follows from equation
(16.16) if we replace Z/A by N/A and adopt N/A = 1. (There is also a small correction
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Figure 16.1: The behaviour of the total mass Etot for masses above and below the
Chandrasekhar mass. For fixed M < MCh the energy has a minimum as a function of
R, corresponding to a stable equilibrium of the star.

arising from the fact that we have used mn and mu, respectively, in the derivation of the
two equations.)

We now give a physical argument for the mass-radius relation derived above and for
the existence of a mass limit, the Chandrasekhar mass.

The total energy of a compact star can be written in terms of two contributions,
Etot = Ekin + Epot, where Epot = −M2G/R is the potential energy and Ekin ' uR3

is the internal (kinetic) energy (we neglect here factors like 2 and π). For a relativistic
degenerate gas we have u = 3nεF/4 ∼ n4/3 and n ∼ ρ ∼ M/R3 for the particle number
density. Therefore one finds

Etot,rel = B

(
M

R3

)4/3

R3 − M2G

R
= B

M4/3

R
−GM

2

R
, (16.18)

where B is a constant.
The total energy is positive if M < (B/G)3/2. In this case Etot,rel decreases by increas-

ing the radius, with the consequence that the density and the Fermi energy are reduced
and the degenerate gas becomes non-relativistic. When this happens, we have to replace
u ∼ n4/3 by u ∼ n5/3 in our expression for the kinetic energy and the expression for total
energy then reads

Etot,nonrel = C

(
M

R3

)5/3

R3 −GM
2

R
= C

M5/3

R2
−GM

2

R
, (16.19)

where C is a constant.
Etot,nonrel becomes negative if R > C/(GM1/3), has a minimum at R = 2C/(GM1/3)

(corresponding to dEtot,nonrel/dR = 0) and tends to zero for R → ∞ (see Fig. 16.1).
The minimum corresponds to a stable equilibrium in the nonrelativistic case and hence
to a possible state of the star, with the finite radius R = (2C/G)M−1/3. In other words,
M ∼ R−3 as was also found from the polytropic models.
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If M is large (M > (B/G)3/2) one has Etot,rel < 0 and the energy can be decreased
without bound by decreasing R. There exists no equilibrium in such a situation.

The Chandrasekhar mass defined the boundary between these two situations. The
Chandrasekhar mass corresponds to an unstable equilibrium, defined by Etot,rel = 0, as
we already know from the virial theorem (section 4.4.3).

The polytropic equations of state which were used in the discussion above are only
an approximation. Realistic calculations are more complicated, in particular for neutron
stars, for which the equation of state is only insufficiently known, particularly at the high
densities in the star’s centre. Additional effects arising from general relativity have to be
considered in the stability discussion for neutron stars. If these are all taken into account
the maximum mass for neutron stars lies between 1.4 and 2.5 M�, i.e., it is significantly
smaller than the mass limit of 5.73 M� which follows from the simplified discussion given
above.

In many white dwarfs the electron gas is relativistic in the central part of the star, but
it is non-relativistic further out. This changes the mass-radius relation; but the results
derived above give the main features.

With increasing density there can be changes in the relevant physics for white dwarfs
which may possibly prevent a collapse. Computer simulations have shown that a white
dwarf, which accretes mass from its partner in a binary system and eventually exceeds
the Chandrasekhar mass, does not collapse, but explodes in what is called a Type Ia
supernova (e.g. Kahabka, van den Heuvel & Rappaport 1999). The increased density
(and temperature) leads to fast nuclear reactions which change the matter in the central
part of the star into 56Ni. The energy production grows explosively: in a degenerate
environment the energy set free in nuclear reactions is not used for expansion, but rather
for heating which again makes the nuclear reactions proceed even faster; such a process
is called a thermonuclear runaway (see also the discussion of the helium flash in section
12.3). Thus the star becomes unstable and finally explodes completely. The subsequent
radioactive decay of 56Ni and its daughter 56Co heats the expanding remains of the star
and results in nearly identical lightcurves for all Type Ia supernovae. This fact has very
important applications in cosmology: it allows Type Ia supernovae to be used as ‘standard
candles’ to probe the geometry of the Universe (e.g. Hogan, Kirshner & Suntzeff 1999).

A neutron star which increases its mass by mass accretion from its surroundings finally
collapses to a black hole if its mass exceeds the Chandrasekhar mass limit. The same is
true if the mass of the collapsing stellar core exceeds the Chandrasekhar mass. The model
calculations indicate that this is the case if the mass of original star exceeds about 20M�.

A complete description of black holes requires general relativity, and is beyond the
scope of these notes. Briefly, the gravitational field in the collapse is so strong that
no other physical forces can resist it. As a result, matter is virtually crushed “out of
existence”: the collapse continues until, at least within the framework of classical physics,
a singularity is formed. To make a proper description of this process, quantum-mechanical
effects of gravity must be taken into account, and these are currently completely uncertain.
These events cannot be observed, however. The gravitational field is so strong that no
signal, including light, can escape from the vicinity of the collapsing star. Hence the black
hole can only be detected through the effects of the gravitational field surrounding it4.

4An exception to this statement is the fact that emission of elementary particles may occur near the
“surface” of a black hole, through quantum-mechanical fluctuations. For a simple description of this
process, see Hawking (1988).
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Exercise 16.3:

Consider emission of a photon from the surface of a star of mass M and R. Assume,
incorrectly, that the effect of gravity on the photon can be described by assigning
a “mass” hν/c̃2 to the photon, where hν is the energy of the photon, ν being its
frequency, and c̃ is the speed of light. Show that the photon can only escape from the
star if the radius is greater than GM/c̃2. What is the value of this radius for 1M�?
A correct relativistic description shows that the critical radius, the Schwarzschild radius
Rg, is in fact a factor two larger, i.e.,

Rg =
2GM
c̃2

. (16.20)

The sphere with radius Rg around the black hole defines its event horizon, from inside
which no signal can escape.

16.3 Observations of compact objects

When they are formed white dwarfs and neutron stars are both quite hot (107 K and
1010 K, respectively, at the centre and somewhat cooler at the surface). Although they
do not undergo nuclear reactions, their thermal energy reservoir (in terms of the motion
of particles, i.e., nucleons) is large enough to maintain high temperatures for an extended
period. This thermal radiation has been studied for a large number of white dwarfs, but
it has not been definitely confirmed for neutron stars as here the luminosity is too small.

Exercise 16.4:

Estimate the luminosity of a typical white dwarf with surface temperature 105 K
(shortly after its formation) and 104 K (after cooling over some 100 million years).
Give a similar estimate for a neutron star with surface temperature 5 × 106 K (after
cooling for a few years). In which part of the spectrum must one look for such objects?
Can one perform the searches from the surface of the Earth?

By now white dwarfs, and particularly their thermal radiation, have been extensively
studied, and their mass-radius relation has been confirmed.

To study neutron stars one has to adopt indirect methods. Fortunately neutron stars
can be identified in two ways: as pulsars and as X-ray sources.

The first pulsar was discovered in 19675 (Hewish et al. 1968). By now more than
1200 pulsars are known. It is characteristic for these objects that they emit periodic
signals, pulses; they were initially, and are still predominantly, detected in the radiowave
frequency range, but later also in the optical, UV and X-ray frequency bands. These pulses
are extraordinarily precise, with periods between 1.55 ms and a few seconds. For some

5The supervisor of the PhD student who discovered the pulsars won the Nobel Prize for the discovery
in 1974.
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Figure 16.2: Schematic model of a pulsar. From Longair (1981).

pulsars the period has been determined with an accuracy of up to 13 digits; therefore
pulsars are amongst the most precise clocks known6. Before the grandfather clock is
replaced by a radio telescope, however, it should be kept in mind that the period of
most pulsars slowly increases (this can be modelled) and that some pulsars show so-called
glitches, in which their period suddenly decreases by a few parts in 10 000.

These changes in the period are connected with the physical mechanism behind pulsars
(see also Fig. 16.2): a rotating neutron star with a strong magnetic field (108−1013 Gauss;
the strongest magnetic fields in the laboratory are of order 105 − 106 Gauss; the Earth’s
magnetic field is about 0.5 Gauss). The dipole axis of the magnetic field forms a constant
angle with the star’s rotational axis. The strong magnetic field induces electric fields which
pull charged particles (in particular positrons) from the star’s surface. The particles spiral
out along the magnetic fieldlines with velocities close to the speed of light and emit well-
collimated and forward-directed synchroton radiation which, as in a lighthouse beam,
sweeps around due to the star’s rotation. If we happen to look inside this beam we see
the pulsar blinking once per rotation.

The strong magnetic fields can be explained by the freeze-in of the magnetic flux, i.e.,
by the conservation of the magnetic fieldlines during the collapse of the parent star on its
way to become a neutron star. As a result, the field strength varies as B ∼ R−2, strongly
increasing the field of the original star. The very rapid rotation (for milli-second pulsars

6In the binary system PSR 1913 + 16 one such perfect clock orbits another neutron star in a very tight
orbit (Hulse & Taylor 1975). In this case one can determine the orbital motion extremely precisely and in
this way obtain the masses of the stars as (1.4411 ± 0.0007)M� and (1.3873 ± 0.0007)M�. Furthermore,
the observed orbit only fits the model if the emission of gravitational waves is taken into account. This
was the first detection of this phenomenon, predicted by Einstein’s general theory of relativity. Hulse and
Taylor deservedly got the Nobel price in physics in 1993 for their discovery of this interesting system (Hulse
1994; Taylor 1994).
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Figure 16.3: Cross sections of two 1.4M� neutron stars with different equations
of states, and hence different internal structure. In the outermost part (the “outer
crust”) the atomic nuclei are in an ordered crystal structure. The composition of the
central parts is unknown. From Shapiro & Teukolsky (1983).

the rotational velocity corresponds to a large fraction of the speed of light and approaches
the limit at which the star is ripped apart) is explained by the conservation of angular
momentum during the collapse (Vrot ∼ R−1). For the fastest pulsars gas accretion from a
partner star in a binary system is also important to explain the angular momentum.

The pulsar periods increase slowly as the available rotational energy decreases (in the
first year perhaps by gravitational wave radiation, later by magnetic dipole radiation).
The star then adopts a more spherical and less oblate shape. As the outer layers consist of
a solid shell (crust) – an ionic crystal structure as sketched in Fig. 16.3 – these changes in
shape occur in sudden cracks induced by the stress in the outer crust, as in a neutron-star
quake. The related changes in the moment of inertia results in small, sudden changes in
the period which, for example, have been observed for several years in the pulsar in the
Crab Nebula (the pulsar and the nebula were created by a supernova explosion observed
by Chinese astronomers in 1054.)

Although pulsars can be explained as rotating neutron stars, and confirm therefore the
existence of neutron stars, we emphasize that many details are not yet well understood,
since neutron stars involve matter densities and magnetic fields with values which are
much larger than can be produced in laboratories. However, this also implies that the
study of neutron stars allows us to learn more about the properties of nuclear matter at
high densities and thus about the strong interaction.
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Neutron stars have also been identified as X-ray sources in binaries. These are systems
in which the neutron star is so close to its partner star that it pulls matter gravitationally
from the partner. This matter is accreted (including its angular momentum) in a disc
around the neutron star, is heated and slowly falls onto the star, accompanied by the
emission of X-rays. It is thought that some of the fastest-spinning pulsars have obtained
their angular momentum in this way.

Such binary X-ray sources are also the main candidates for black-hole searches. As the
name indicates, black holes do not emit light themselves. However, if matter falls towards
a black hole from a neighbouring star intense X-ray radiation may result; the infalling
matter typically forms an accretion disk around the black hole and is heated to very high
temperatures by the release of gravitational energy, resulting in the emission of X rays.

Here is a method to detect black holes: Find a binary X-ray source. Convince yourself
that the energy emission indicates a strong gravitational field and that the time variation
of the signal is so short that the source has to be of very small dimensions. This can then
only be a neutron star or a black hole. Determine the mass of the compact object by
applying Kepler’s law for its orbital motion. If the mass is larger than the maximum mass
for a neutron star, the object has to be a black hole. A discussion of such observations
was provided recently by Lasota (1999). In reality, this is not quite as simple as one has
to know precisely the maximum mass for neutron stars. But one has by now identified a
dozen candidates (including Cygnus X-1, A0620-00, LMC X-3) whose masses are so large
that they are very probably black holes (the mass of Cygnus X-1 is definitely larger than
3.3M�, very likely even in the range 9−15M�). Finally, strong evidence for very massive
black holes has been found from observations of the motion of stars near the centres of
galaxies, including our own (e.g. Eckart & Genzel 1999; for an overview, discussing also
activity in galactic nuclei associated with black holes, see Blandford & Gehrels 1999). In
particular, Schödel et al. (2002) observed a star in a highly eccentric orbit around the
centre of the Milkey Way Galaxy, with a period of 15.2 years; from this they estimated
the mass of the central object of the Galaxy to be 2.6 × 106M�, within a such a small
region that the only realistic possibility is a black hole.
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Höppner, W. & Weigert, A., 1973. [Central gravitational field of stars and evolution to
red giants]. Astron. Astrophys., 25, 99 – 103.

Harrington, R. S., Dahn, C. C., Kallarakal, V. V., Guetter, H. H., Riepe, B. Y., Walker,
R. L., Pier, J. R., Vrba, F. J., Luginbuhl, C. B., Harris, H. C. & Ables, H. D., 1993.
[U. S. Naval Observatory photographic parallaxes. List IX]. Astron. J., 105, 1571 –
1580.

Harvey, J., 1995. [Helioseismology]. Physics Today, 48, No. 10 (Oct.), 32 – 38.
Hawking, S. W., 1988. A brief history of time, Bantam Books, New York.
Hayashi, C., Hoshi, R. & Sugimoto, D., 1962. [Evolution of the stars]. Progr. Theor.

Phys., Suppl. No. 22, pp. 1 – 183.
Hayes, J. C. & Burrows, A., 1995. [A new dimension to supernovae]. Sky and Telescope,

90, 30 – 33 (July).
Hearnshaw, J. B., 1992. [Origins of the stellar magnitude scale]. Sky and Telescope, 84,

494 – 499 (November).



REFERENCES 227

Heger, A., Fryer, C. L., Woosley, S. E., Langer, N. & Hartmann, D. H., 2003. [How
massive single stars end their life]. Astrophys. J., 591, 288 – 300.

Hejlesen, P. M., 1980. [Studies in stellar evolution II: Age and mass calibrations for
hydrogen burning evolutionary stages]. Astron. Astrophys. Suppl., 39, 347 - 377.

Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F. & Collins, R. A., 1968. [Obser-
vation of a rapidly pulsating radio source]. Nature, 217, 709 – 713.

Hjorth, J., Sollerman, J., Møller, P., Fynbo, J. P. U., Woosley, S. E., Kouveliotou, C.,
Tanvir, N. R., Greiner, J., Andersen, M. I., Castro-Tirado, A. J., Castro Cerón, J.
M., Fruchter, A. S., Gorosabel, J., Jakobsson, P., Kaper, L., Klose, S., Masetti, N.,
Pedersen, H., Pedersen, K., Pian, E., Palazzi, E., Rhoads, J. E., Rol, E., van den
Heuvel, E. P. J., Vreeswijk, P. M., Watson, D. & Wijers, R. A. M. J., 2003. [A very
energetic supernova associated with the γ-ray burst of 29 March 2003]. Nature, 423,
847 – 850.

Hoffman, P. F. & Schrag, D. P., 2000. [Snowball Earth]. Scientific American, 282 (Jan-
uary), 50 – 57.

Hogan, C. J., Kirshner, R. P. & Suntzeff, N. B., 1999. [Surveying space-time with super-
novae]. Scientific American, 280 (January), 28 – 33.

Hulse, R. A., 1994. [The discovery of the binary pulsar]. Rev. Mod. Phys., 66, 699 – 710.
Hulse, R. A. & Taylor, J. H., 1975. [Discovery of a pulsar in a binary system]. Astrophys.

J., 195, L51 – L53.
Hurley, K., 2003. [Observational properties of cosmic γ-ray bursts]. In Supernovae and

Gamma-Ray Bursters, Lecture Notes in Physics, vol. 598, ed. K. Weiler, Springer,
Berlin, p. 301 – 316.

Iben, I., 1965. [Stellar evolution. I. The approach to the main sequence]. Astrophys. J.,
141, 993 – 1018.

Iben, I., 1966. [Stellar evolution. III. The evolution of a 5M� star from the main sequence
through core helium burning]. Astrophys. J., 143, 483 – 504.

Iben, I., 1967a. [Stellar evolution within and off the main sequence]. Ann. Rev. Astron.
Astrophys., 5, 571 – 626.

Iben, I., 1967b. [Stellar evolution. VI. Evolution from the main sequence to the red-giant
branch for stars of mass 1M�, 1.25M� and 1.5M�]. Astrophys. J., 147, 624 – 663.

Iben, I., 1985. [The life and times of an intermediate mass star – in isolation/in a close
binary]. Ql. J. Roy. astr. Soc., 26, 1 – 39.

Iben, I., 1991. [Single and binary star evolution]. Astrophys. J. Suppl., 76, 55 – 114.
Iben, I. & Renzini, A., 1984. [Single star evolution I. Massive stars and early evolution of

low and intermediate mass stars]. Phys. Rep., 105, 329 – 406.
Iglesias, C. A., Rogers, F. J. & Wilson, B. G., 1992. [Spin-orbit interaction effects on the

Rosseland mean opacity]. Astrophys. J., 397, 717 – 728.
Jayawardhana, R., 2004. [Unravelling brown dwarf origins]. Science, 303, 322 – 323.
Jørgensen, U. G., 1991. [Advanced stages in the evolution of the Sun]. Astron. Astrophys.,

246, 118 – 136.
Kahabka, P., van den Heuvel, E. P. J. & Rappaport, S. A., 1999. [Supersoft X-ray stars

and supernovae]. Scientific American, 280 (February), 28 – 35.
Kasting, J. F., Toon, O. B. & Pollack, J. B., 1988. [How climate evolved on the terrestrial

planets]. Scientific American, 258 (February), p. 46 – 53 (US p. 90 – 97).
Kearns, E., Kajita, T. & Totsuka, Y., 1999. [Detecting massive neutrinos]. Scientific

American, 281 (August), 48 – 55.



228 REFERENCES

Kippenhahn, R. & Weigert, A., 1990. Stellar structure and evolution, Springer-Verlag,
Berlin.

Kirsten, A., 1999. [Solar neutrino experiments: results and implications]. Rev. Mod.
Phys., 71, 1213 – 1232.

Kovalevsky, J., 1998. [First results from Hipparcos]. Ann. Rev. Astron. Astrophys., 36,
99 – 129.

Krane, K. S., 1988. Introductory nuclear physics, John Wiley & Sons, New York.
Labitzke, K. & van Loon, H., 1993. [Some recent studies of probable connections between

solar and atmospheric variability]. Ann. Geophys., 11, 1084 – 1094.
Lasota, J.-P., 1999. [Unmasking black holes]. Scientific American, 280 (May), 30 – 37.
Lebreton, Y., 2000. [Stellar structure and evolution: deductions from Hipparcos]. Ann.

Rev. Astron. Astrophys., 38, 35 – 77.
Leibacher, J. W., Noyes, R. W., Toomre, J. & Ulrich, R. K., 1985. [Helioseismology].

Scientific American, 253, (September) p. 34 – 43 (US p. 48 – 57).
Libbrecht, K. G., 1988. [Solar and stellar seismology]. Space Science Rev., 47, 275 – 301.
Libbrecht, K. G. & Woodard, M. F., 1991. [Advances in helioseismology]. Science, 253,

152 – 157.
Longair, M. S., 1981. High energy astrophysics, Cambridge University Press.
Lovelock, J. E. & Whitfield, M., 1982. [Life span of the biosphere]. Nature, 296, 561 –

563.
MacFadyen, A., 2004. [Long gamma-ray bursts]. Science, 303, 45 – 46.
Maeder, A., 1977. [Four basic solar and stellar tests of cosmologies with variable past G

and macroscopic masses]. Astron. Astrophys., 56, 359 – 367.
Mattauch, J. H. E., Thiele, W. & Wapstra, A. H., 1965. [1964 Atomic Mass Table]. Nucl.

Phys., 67, 1 – 31.
Mihalas, D., 1978. Stellar Atmospheres, 2nd ed., W. H. Freeman, San Francisco.
Morgan, J. G. & Eggleton, P. P., 1978. [A reappraisal of the gap in the HR diagram of

M67]. Mon. Not. R. astr. Soc., 182, 219 - 231.
Nittler, L. R., 2004. [Nuclear fossils in stardust]. Science, 303, 636 – 637.
Novotny, E., 1973. Introduction to stellar atmospheres and interiors, Oxford University

Press, New York.
Palla, F. & Stahler, S. W., 1999. [Star formation in the Orion Nebula cluster]. Astrophys.

J., 525, 772 – 783.
Parker, P. D. & Rolfs, C. E., 1991. [Nuclear energy generation in the solar interior]. In

Solar interior and atmosphere, eds Cox, A. N., Livingston, W. C. & Matthews, M.,
Space Science Series, University of Arizona Press, p. 31 – 50.

Pedersen, B. B., VandenBerg, D. A. & Irwin, A. W., 1990. [The prediction of stellar
effective temperatures from the mixing-length theory of convection]. Astrophys. J.,
352, 279 - 290.

Preston, M. A., 1962. Physics of the nucleus. Addison-Wesley Publishing Company,
Reading, Massachusetts.

Ray, T. P., 2000. [Fountains of youth: early days in the life of a star]. Scientific American,
283 (August), 30 – 35.

Reid, I. N., 1999. [The HR diagram and the galactic distance scale after Hipparcos]. Ann.
Rev. Astron. Astrophys., 37, 191 – 237.

Sackmann, I.-J. & Boothroyd, A. I., 2003. [Our Sun. V. A bright young Sun consistent
with helioseismology and warm temperatures on ancient Earth and Mars]. Astrophys.



REFERENCES 229

J., 583, 1024 – 1039.
Sandage, A., 1957. [Observational approach to evolution. II. A computed luminosity

function for K0 – K2 stars from Mv = +5 to Mv = −4.5]. Astrophys. J., 125, 435 -
444.

Schneider, S. H., 1989. [The changing climate]. Scientific American, 261 (September),
p. 38 – 46 (US p. 70 – 78).
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Appendix A

Some useful constants

Speed of light c̃ 2.99792458×1010 cm sec−1

Gravitational constant G 6.672320×10−8 dyn cm2 g−2

Atomic mass unit mu 1.6605402×10−24 g
Electron mass me 9.1093897×10−28 g
Electron charge e 1.60217733×10−19 C

4.80320680×10−10 ESU
Planck’s constant h 6.6260755×10−27 erg sec
Boltzmann’s constant kB 1.380658×10−16 erg K−1

8.6173857× 10−5 eV K−1

Radiation density constant a 7.565914×10−15 erg cm−3 K−4

Stefan-Boltzmann constant σ 5.67051×10−5 erg cm−2 sec−1 K−4

Atomic weight of hydrogen AH 1.007825
Atomic weight of helium AHe 4.002603
Ionization potential for hydrogen χH 13.595 eV
First ionization potential for helium χHe 24.580 eV
Second ionization potential for helium χHe+ 54.403 eV

Conversions:

From Ångstrom to cm: 1 Å = 10−8 cm
From barn to cm2: 1 barn = 10−24 cm2

From N to dyn: 1 N = 105 dyn
From J to erg: 1 J = 107 erg
From eV to erg: 1 eV = 1.60217733×10−12 erg
From atmosphere to dyn cm−2: 1 atm = 1.01325× 106 dyn cm−2

Year: 1 year = 3.155815× 107 sec
Astronomical unit: 1 A.U. = 1.49598× 1013 cm
Parsec: 1 pc = 3.08568× 1018 cm
Lightyear: 1 ly = 9.46053× 1017 cm

= 0.3066 pc
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Astronomical constants:
Solar radius R� 6.9599× 1010 cm
Solar mass M� 1.989× 1033 g
Solar luminosity L� 3.846× 1033 erg sec−1

Solar effective temperature Teff,� 5778 K
Solar apparent magnitudes:

V −26.74
B −26.09
U −25.96

mbol −26.82
Solar absolute magnitudes:

MV 4.83
MB 5.48
MU 5.61
Mbol 4.75

Solar spectral type: G2V

Notes:

With the exception of G, discussed below, the values of the fundamental constants are
taken from the 1986 CODATA list (cf. Cohen & Taylor 1987).

i) The CODATA value of the gravitational constant is G = (6.67259 ± 0.00085) ×
10−8 dyn cm2 g−2. G and M� are connected by

GM� = 1.32712438× 1026 dyn cm2 g−1 , (A.1)

from solar system dynamics. Thus the CODATA value of G corresponds to M� =
1.988919× 1033 g. However the value M� = 1.989× 1033, which is commonly used,
corresponds to G = 6.672320× 10−8 dyn cm2 g−2, which is well within the error bars
of the CODATA value. Thus I use this value for G, and the “usual” value for M�.

ii) Of the values given above, a and σ are not fundamental, in the sense that they are
given directly in terms of the remaining constants as

a =
8π5k4

B

15c̃3h3
, (A.2)

σ =
ac̃

4
. (A.3)

Their values are included here for convenience.



Appendix B

Atomic mass excesses

Atomic mass excesses, for computation of the energy liberated in nuclear reactions (cf.
equations [8.15] and [8.16]). Based on the scale 12C ≡ 0; 1 amu = 931.478 MeV. The data
are largely derived from the review by Mattauch, Thiele & Wapstra (1965). Terminal
zeros are generally not significant digits. (From Clayton 1968).
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