
1 Systems of linear equations

1.1 Introduction

A system of linear equations (or linear system) is a collection of linear equations
involving the same set of unknown variables. A general system of n linear
equations with m unknowns can be written as

A11x1 + A12x2 + · · · + A1mxm = b1
A21x1 + A22x2 + · · · + A2mxm = b2

...
...

...
...

An1x1 + An2x2 + · · · + Anmxm = bn

, (1)

where x1, x2, . . . , xm are the unknown variables, A11, A12, . . . , Anm are the (con-
stant) coefficients, and b1, b2, . . . , bn are the (constant) right-hand side terms.

The system can be equivalently written in the matrix form,

Ax = b , (2)

where A
.
= {Aij} is the n×m matrix of the coefficients, x

.
= {xj} is the size-m

column-vector of the unknown variables, and b
.
= {bi} is the size-n column-

vector of right-hand side terms.
A solution to a linear system is a set of values for the variables x which

satisfies all equations.
Systems of linear equations occur quite regularly in applied mathematics.

Therefore computational algorithms for finding solutions of linear systems are
an important part of numerical methods. A system of non-linear equations
can often be approximated by a linear system – a helpful technique (called
linearization) in creating a mathematical model of an otherwise a more complex
system.

If m = n the matrix A is called square. A square system has a unique
solution if A is invertible.

1.2 Triangular systems

An efficient algorithm to numerically solve a square system of linear equations
is to transform the original system into an equivalent triangular system,

Ty = c , (3)
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where T is a triangular matrix – a special kind of square matrix where the
matrix elements either below (upper triangular) or above (lower triangular) the
main diagonal are zero.

Indeed, an upper triangular system Uy = c can be easily solved by back-
substitution,

yi =
1

Uii

(
ci −

n∑
k=i+1

Uikyk

)
, i = n, n− 1, . . . , 1 , (4)

where one first computes yn = bn/Unn, then substitutes back into the previous
equation to solve for yn−1, and repeats through y1.

Here is a C-function implementing in-place1 back-substitution2:

#include<g s l / g s l v e c t o r . h>
#include<g s l / g s l ma t r i x . h>
void backsub ( g s l ma t r i x ∗U, g s l v e c t o r ∗c ){
for ( int i=c−>s i z e −1; i>=0; i−−){
double s=g s l v e c t o r g e t ( c , i ) ;
for ( int k=i +1;k<c−>s i z e ; k++)
s−=gs l ma t r i x g e t (U, i , k )∗ g s l v e c t o r g e t ( c , k ) ;

g s l v e c t o r s e t ( c , i , s / g s l ma t r i x g e t (U, i , i ) ) ; }}

For a lower triangular system Ly = c the equivalent procedure is called
forward-substitution,

yi =
1

Lii

(
ci −

i−1∑
k=1

Likyk

)
, i = 1, 2, . . . , n . (5)

1.3 Reduction to triangular form

Popular algorithms for reducing a square system of linear equations to a trian-
gular form are LU-decomposition and QR-decomposition.

1.3.1 QR-decomposition

QR-decomposition is a factorization of a matrix into a product of an orthogonal
matrix Q, such that QTQ = 1, where T denotes transposition, and a right
triangular matrix R,

A = QR . (6)

1here in-place means the right-hand side c is replaced by the solution y.
2the functions gsl vector get, gsl vector set, and gsl matrix get are assumed to

implement fetching and setting the vector- and matrix-elements.
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QR-decomposition can be used to convert a linear system Ax = b into the
triangular form (by multiplying with QT from the left),

Rx = QTb , (7)

which can be solved directly by back-substitution.
QR-decomposition can also be performed on non-square matrices with few

long columns. Generally speaking a rectangular n×m matrix A can be repre-
sented as a product, A = QR, of an orthogonal n ×m matrix Q, QTQ = 1,
and a right-triangular m×m matrix R.

QR-decomposition of a matrix can be computed using several methods, such
as Gram-Schmidt orthogonalization, Householder transformation [?], or Givens
rotation [?].

Gram-Schmidt orthogonalization Gram-Schmidt orthogonalization is an
algorithm for orthogonalization of a set of vectors in a given inner product
space. It takes a linearly independent set of vectors A = {a1, . . . ,am} and
generates an orthogonal set Q = {q1, . . . ,qm} which spans the same subspace
as A. The algorithm is given as

for i = 1 to m :
qi ← ai/‖ai‖
for j = i + 1 to m : aj ← aj − 〈qi|aj〉qi

where 〈a|b〉 is the inner product of two vectors, and ‖a‖ .
=
√
〈a|a〉 is the

vector’s norm. This variant of the algorithm, where all remaining vectors aj are
made orthogonal to qi as soon as the latter is calculated, is considered to be
numerically stable and is referred to as stabilized or modified.

Stabilized Gram-Schmidt orthogonalization can be used to compute QR-
decomposition of a matrix A by orthogonalization of its column-vectors ai with
the inner product

〈a|b〉 = aTb ≡
n∑

k=1

(a)k(b)k , (8)

where n is the length of column-vectors a and b, and (a)k is the kth element of
the column-vector,

for i = 1 to m :

Rii =
√

aT
i ai ; qi = ai/Rii

for j = i + 1 to m :
Rij = qT

i aj ; aj = aj − qiRij .
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After orthogonalization the matrices Q = {q1 . . .qm} and R are the sought
orthogonal and right-triangular factors of matrix A.

The factorization is unique under requirement that the diagonal elements of
R are positive. For a n×m matrix the complexity of the algorithm is O(m2n).

Householder transformation A square matrix H of the form

H = 1− 2

uTu
uuT (9)

is called Householder matrix, where the vector u is called a Householder vector.
Householder matrices are symmetric and orthogonal,

HT = H , HTH = 1 . (10)

The transformation induced by the Householder matrix on a given vector a,

a→ Ha , (11)

is called a Householder transformation or Householder reflection. The transfor-
mation changes the sign of the affected vector’s component in the u direction,
or, in other words, makes a reflection of the vector about the hyperplane per-
pendicular to u, hence the name.

Householder transformation can be used to zero selected components of a
given vector a. For example, one can zero all components but the first one, such
that

Ha = γe1 , (12)

where γ is a number and e1 is the unit vector in the first direction. The factor
γ can be easily calculated,

‖a‖2 .
= aTa = aTHTHa = (γe1)T(γe1) = γ2 , (13)

⇒ γ = ±‖a‖ . (14)

To find the Householder vector, we notice that

a = HTHa = HTγe1 = γe1 −
2(u)1
uTu

u , (15)

⇒ 2(u)1
uTu

u = γe1 − a , (16)
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where (u)1 is the first component of the vector u. One usually chooses (u)1 = 1
(for the sake of the possibility to store the other components of the Householder
vector in the zeroed elements of the vector a) and stores the factor

2

uTu
≡ τ (17)

separately. With this convention one readily finds τ from the first component
of equation (16),

τ = γ − (a)1 . (18)

where (a)1 is the first element of the vector a. For the sake of numerical stability
the sign of γ has to be chosen opposite to the sign of (a)1,

γ = −sign ((a)1) ‖a‖ . (19)

Finally, the Householder reflection, which zeroes all component of a vector a
but the first, is given as

H = 1−τuuT , τ = −sign((a)1)‖a‖− (a)1 , (u)1 = 1 , (u)i>1 = −1

τ
(a)i . (20)

Now, a QR-decomposition of an n × n matrix A by Householder transfor-
mations can be performed in the following way:

1. Build the size-n Householder vector u1 which zeroes the sub-diagonal el-
ements of the first column of matrix A, such that

H1A =


? ? . . . ?
0
... A1

0

 , (21)

where H1 = 1 − τ1u1u
T
1 and where ? denotes (generally) non-zero ma-

trix elements. In practice one does not build the matrix H1 explicitly,
but rather calculates the matrix H1A in-place, consecutively applying the
Householder reflection to columns the matrix A, thus avoiding compu-
tationally expensive matrix-matrix operations. The zeroed sub-diagonal
elements of the first column of the matrix A can be used to store the
elements of the Householder vector u1 while the factor τ1 has to be stored
separately in a special array. This is the storage scheme used by LAPACK
and GSL.
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2. Similarly, build the size-(n − 1) Householder vector u2 which zeroes the
sub-diagonal elements of the first column of matrix A1 from eq. (21). With
the transformation matrix H2 defined as

H2 =


1 0 · · · 0
0
... 1− τ2u2u

T
2

0

 . (22)

the two transformations together zero the sub-diagonal elements of the
two first columns of matrix A,

H2H1A =


? ? ? · · · ?
0 ? ? · · · ?
0 0
...

... A3

0 0

 , (23)

3. Repeating the process zero the sub-diagonal elements of the remaining
columns. For column k the corresponding Householder matrix is

Hk =

 Ik−1 0

0 1− τkuku
T
k

 , (24)

where Ik−1 is an identity matrix of size k − 1, uk is the size-(n-k+1)
Householder vector that zeroes the sub-diagonal elements of matrix Ak−1
from the previous step. The corresponding transformation step is

Hk . . .H2H1A =

[
Rk ?
0 Ak

]
, (25)

where Rk is a size-k right-triangular matrix.

After n− 1 steps the matrix A will be transformed into a right triangular
matrix,

Hn−1 · · ·H2H1A = R . (26)
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4. Finally, introducing an orthogonal matrix Q = HT
1H

T
2 . . .H

T
n−1 and mul-

tiplying eq. (26) by Q from the left, we get the sought QR-decomposition,

A = QR . (27)

In practice one does not explicitly builds the Q matrix but rather applies
the successive Householder reflections stored during the decomposition.

Givens rotations A Givens rotation is a transformation in the form

A→ G(p, q, θ)A , (28)

where A is the object to be transformed—matrix of vector—and G(p, q, θ) is the
Givens rotation matrix (also known as Jacobi rotation matrix): an orthogonal
matrix in the form

G(p, q, θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos θ · · · sin θ · · · 0
...

...
. . .

...
...

0 · · · − sin θ · · · cos θ · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


← row p

← row q
. (29)

When a Givens rotation matrix G(p, q, θ) multiplies a vector x, only elements
xp and xq are affected. Considering only these two affected elements, the Givens
rotation is given explicitely as[

x′p
x′q

]
=

[
cos θ sin θ
− sin θ cos θ

] [
xp
xq

]
=

[
xp cos θ + xq sin θ
−xp sin θ + xq cos θ

]
. (30)

Apparently the rotation can zero the element x′q, if the angle θ is chosen as

tan θ =
xq
xp
⇒ θ = atan2(xq, xp) . (31)

A sequence of Givens rotations,

G =

m∏
n≥q>p=1

G(p, q, θqp) , (32)
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(where n×m is the dimension of the matrix A) can zero all elements of a matrix
below the main diagonal if the angles θqp are chosen to zero the elements with
indices q, p of the partially transformed matrix just before applying the matrix
G(p, q, θqp). The resulting matrix is obviously the R-matrix of the sought QR-
decomposition of the matrix A where G = QT.

In practice one does not explicitly builds the G matrix but rather stores
the θ angles in the places of the corresponding zeroed elements of the original
matrix:

#include<g s l / g s l ma t r i x . h>
#include<math . h>
void g i v en s q r ( g s l ma t r i x ∗ A){ /∗ A <− Q,R ∗/
for ( int q=0;q<A−>s i z e 2 ; q++)for ( int p=q+1;p<A−>s i z e 1 ; p++){
double theta=atan2 ( g s l ma t r i x g e t (A, p , q ) , g s l ma t r i x g e t (A, q , q ) ) ;
for ( int k=q ; k<A−>s i z e 2 ; k++){
double xq=g s l ma t r i x g e t (A, q , k ) , xp=g s l ma t r i x g e t (A, p , k ) ;
g s l ma t r i x s e t (A, q , k , xq∗ cos ( theta )+xp∗ s i n ( theta ) ) ;
g s l ma t r i x s e t (A, p , k,−xq∗ s i n ( theta )+xp∗ cos ( theta ) ) ; }

g s l ma t r i x s e t (A, p , q , theta ) ; } }

When solving the linear system Ax = b one transforms it into the equivalent
triangular system Rx = Gb where one calculates Gb by successively applying
the individual Givens rotations with the stored θ-angles:

#include<g s l / g s l v e c t o r . h>
#include<g s l / g s l ma t r i x . h>
#include<math . h>
void givens qr QTvec ( g s l mat r i x ∗ QR, g s l v e c t o r ∗ v ){ /∗ v <− QˆTv ∗/
for ( int q=0; q<QR−>s i z e 2 ; q++)for ( int p=q+1; p<QR−>s i z e 1 ; p++){
double theta = g s l ma t r i x g e t (QR, p , q ) ;
double vq=g s l v e c t o r g e t (v , q ) , vp=g s l v e c t o r g e t (v , p ) ;
g s l v e c t o r s e t (v , q , vq∗ cos ( theta )+vp∗ s i n ( theta ) ) ;
g s l v e c t o r s e t (v , p,−vq∗ s i n ( theta )+vp∗ cos ( theta ) ) ; } }

The triangular system Rx = Gb is then solved by the ordinary backsubsti-
tution:

#include<g s l / g s l ma t r i x . h>
#include” g i v en s q r . h”
void g i v e n s q r s o l v e ( g s l mat r i x ∗ QR, g s l v e c t o r ∗ b){
givens qr QTvec (QR, b ) ;
backsub (QR, b ) ; }

If one needs to build the Q-matrix explicitly, one uses

Qij = eTi Qej = eTj Q
Tei , (33)
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where ei is the unit vector in the direction i and where again one can use the
succesive rotations to calculate QTei,

#include<g s l / g s l v e c t o r . h>
#include<g s l / g s l ma t r i x . h>
#include” g i v en s q r . h”
void givens qr unpack Q ( g s l mat r i x ∗ QR, g s l mat r i x ∗ Q){
g s l v e c t o r ∗ e i = g s l v e c t o r a l l o c (QR−>s i z e 1 ) ;
for ( int i =0; i<QR−>s i z e 1 ; i++){
g s l v e c t o r s e t b a s i s ( e i , i ) ;
g ivens qr QTvec (QR, e i ) ;
for ( int j =0; j<QR−>s i z e 2 ; j++)
g s l ma t r i x s e t (Q, i , j , g s l v e c t o r g e t ( e i , j ) ) ; }

g s l v e c t o r f r e e ( e i ) ; }

Since each Givens rotation only affects two rows of the matrix it is possible
to apply a set of rotations in parallel. Givens rotations are also more efficient
on sparse matrices.

1.3.2 LU-decomposition

LU-decomposition is a factorization of a square matrix A into a product of a
lower triangular matrix L and an upper triangular matrix U,

A = LU . (34)

The linear system Ax = b after LU-decomposition of the matrix A becomes
LUx = b and can be solved by first solving Ly = b for y and then Ux = y for
x with two runs of forward and backward substitutions.

If A is an n× n matrix, the condition (34) is a set of n2 equations,

n∑
k=1

LikUkj = Aij

∣∣
i,j=1...n

, (35)

for n2 + n unknown elements of the triangular matrices L and U. The decom-
position is thus not unique.

Usually the decomposition is made unique by providing extra n conditions
e.g. by the requirement that the elements of the main diagonal of the matrix L
are equal one,

Lii = 1 , i = 1 . . . n . (36)

The system (35) with the extra conditions (36) can then be easily solved row
after row using the Doolittle’s algorithm,
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for i = 1 . . . n :
Lii = 1
for j = i . . . n : Uij = Aij −

∑
k<i LikUkj

for j = i + 1 . . . n : Lji = 1
Uii

(
Aji −

∑
k<j LjkUki

)
In a slightly different Crout’s algorithm it is the matrix U that has unit

diagonal elements,

for i = 1 . . . n :
Uii = 1
for j = i . . . n : Lji = Aji −

∑
k<i LjkUki

for j = i + 1 . . . n : Uij = 1
Lii

(
Aji −

∑
k<j LjkUki

)
Without a proper ordering (permutations) in the matrix, the factorization

may fail. For example, it is easy to verify that A11 = L11U11. If A11 = 0,
then at least one of L11 and U11 has to be zero, which implies either L or U
is singular, which is impossible if A is non-singular. This is however only a
procedural problem. It can be removed by simply reordering the rows of A so
that the first element of the permuted matrix is nonzero (or, even better, the
largest in absolute value among all elements of the column below the diagonal).
The same problem in subsequent factorization steps can be removed in a similar
way. Such algorithm is refered to as partial pivoting. It requires an extra integer
array to keep track of row permutations.

1.3.3 Cholesky decomposition

The Cholesky decomposition of a Hermitian positive-definite matrix A is a
decomposition in the form

A = LL† , (37)

where L is a lower triangular matrix with real and positive diagonal elements,
and L† is the conjugate transpose of L.

For real symmetric positive-definite matrices the decomposition reads

A = LLT , (38)

where L is real.
The decomposition can be calculated using the following in-place algorithm,

Ljj =

√√√√Ajj −
j−1∑
k=1

L2
jk , Lij =

1

Ljj

(
Aij −

j−1∑
k=1

LikLjk

)∣∣∣∣∣
i>j

. (39)
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The expression under the square root is always positive if A is real and
positive-definite.

When applicable, the Cholesky decomposition is about twice as efficient as
LU-decomposition for solving systems of linear equations.

1.4 Determinant of a matrix

LU- and QR-decompositions allow O(n3) calculation of the determinant of a
square matrix. Indeed, for the LU-decomposition,

detA = detLU = detLdetU = detU =

n∏
i=1

Uii . (40)

For the Gram-Schmidt QR-decomposition

detA = detQR = detQdetR . (41)

Since Q is an orthogonal matrix (detQ)2 = 1,

|detA| = |detR| =

∣∣∣∣∣
n∏

i=1

Rii

∣∣∣∣∣ . (42)

With Gram-Schmidt method one arbitrarily assigns positive sign to diagonal
elements of the R-matrix thus removing from the R-matrix the memory of the
original sign of the determinant.

However with Givens rotation method the determinant of the individual
rotation matrix—and thus the determinant of the total rotation matrix—is equal
one, therefore for a square matrix A the QR-decomposition A = GR via Givens
rotations allows calculation of the determinant with the correct sign,

detA = detR ≡
n∏

i=1

Rii (43)

1.5 Matrix inverse

The inverse A−1 of a square n × n matrix A can be calculated by solving n
linear equations

Axi = ei

∣∣∣
i=1,...,n

, (44)
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where ei is the unit-vector in the i-direction: a column where all elements are
equal zero except for the element number i which is equal one. Thus the set of
columns {ei}i=1,...,n form the identity matrix. The matrix made of columns xi

is apparently the inverse of A.
Here is an implementation of this algorithm using the functions from the

Givens rotation chapter,

#include<g s l / g s l v e c t o r . h>
#include<g s l / g s l ma t r i x . h>
#include” g i v en s q r . h”
void g i v e n s q r i n v e r s e ( g s l mat r i x ∗ QR, g s l mat r i x ∗ B){
g s l m a t r i x s e t i d e n t i t y (B) ;
for ( int i =0; i<QR−>s i z e 2 ; i++){
g s l v e c t o r v i ew v = gs l matr ix co lumn (B, i ) ;
g i v e n s q r s o l v e (QR,&v . vec to r ) ; } }
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