
1 Ordinary least squares

1.1 Introduction

A system of linear equations is considered overdetermined if there are more
equations than unknown variables. If all equations of an overdetermined system
are linearly independent, the system has no exact solution.

An ordinary least-squares problem (also called linear least-squares problem)
is the problem of finding an approximate solution to an overdetermined linear
system. It often arises in applications where a theoretical model is fitted to
experimental data.

1.2 Linear least-squares problem

Consider a linear system
Ac = b , (1)

where A is a n×m matrix, c is an m-component vector of unknown variables
and b is an n-component vector of the right-hand side terms. If the number of
equations n is larger than the number of unknowns m, the system is overdeter-
mined and generally has no solution.

However, it is still possible to find an approximate solution — the one where
Ac is only approximately equal b — in the sence that the Euclidean norm of
the difference between Ac and b is minimized,

c : min
c
‖Ac− b‖2 . (2)

The problem (2) is called the ordinary least-squares problem and the vector c
that minimizes ‖Ac− b‖2 is called the least-squares solution.

1.3 Solution via QR-decomposition

The linear least-squares problem can be solved by QR-decomposition. The
matrix A is factorized as A = QR, where Q is n ×m matrix with orthogonal
columns, QTQ = 1, and R is an m×m upper triangular matrix. The Euclidean
norm ‖Ac− b‖2 can then be rewritten as

‖Ac− b‖2 = ‖QRc− b‖2 (3)

= ‖Rc−QTb‖2 + ‖(1−QQT)b‖2 ≥ ‖(1−QQT)b‖2 .
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The term ‖(1 − QQT)b‖2 is independent of the variables c and can not be
reduced by their variations. However, the term ‖Rc −QTb‖2 can be reduced
down to zero by solving the m×m system of linear equations

Rc = QTb . (4)

The system is right-triangular and can be readily solved by back-substitution.
Thus the solution to the ordinary least-squares problem (2) is given by the

solution of the triangular system (4).

1.4 Ordinary least-squares curve fitting

Ordinary least-squares curve fitting is a problem of fitting n (experimental)
data points {xi, yi±∆yi}i=1,...,n, where ∆yi are experimental errors, by a linear
combination, Fc, of m functions {fk(x)}k=1,...,m ,

Fc(x) =

m∑
k=1

ckfk(x) , (5)

where the coefficients ck are the fitting parameters.
The objective of the least-squares fit is to minimize the square deviation,

called χ2, between the fitting function Fc(x) and the experimental data,

χ2 =

n∑
i=1

(
F (xi)− yi

∆yi

)2

. (6)

where the individual deviations from experimental points are weighted with
their inverse errors in order to promote contributions from the more precise
measurements.

Minimization of χ2 with respect to the coefficiendt ck in (5) is apparently
equivalent to the least-squares problem (2) where

Aik =
fk(xi)

∆yi
, bi =

yi
∆yi

. (7)

If QR = A is the QR-decomposition of the matrix A, the formal least-squares
solution to the fitting problem is

c = R−1QTb . (8)

In practice of course one rather back-substitutes the right-triangular system
Rc = QTb.
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1.4.1 Variances and correlations of fitting parameters

Suppose δyi is a small deviation of the measured value of the physical observable
at hand from its exact value. The corresponding deviation δck of the fitting
coefficient is then given as

δck =
∑
i

∂ck
∂yi

δyi . (9)

In a good experiment the deviations δyi are statistically independent and dis-
tributed normally with the standard deviations ∆yi. The deviations (9) are
then also distributed normally with variances

〈δckδck〉 =
∑
i

(
∂ck
∂yi

∆yi

)2

=
∑
i

(
∂ck
∂bi

)2

. (10)

The standard errors in the fitting coefficients are then given as the square roots
of variances,

∆ck =
√
〈δckδck〉 =

√√√√∑
i

(
∂ck
∂bi

)2

. (11)

The variances are diagonal elements of the covariance matrix, Σ, made of
covariances,

Σkq ≡ 〈δckδcq〉 =
∑
i

∂ck
∂bi

∂cq
∂bi

. (12)

Covariances 〈δckδcq〉 are measures of to what extent the coefficients ck and cq
change together if the measured values yi are varied. The normalized covari-
ances,

〈δckδcq〉√
〈δckδck〉〈δcqδcq〉

(13)

are called correlations.
Using (12) and (8) the covariance matrix can be calculated as

Σ =

(
∂c

∂b

)(
∂c

∂b

)T

= R−1(R−1)T = (RTR)−1 = (ATA)−1 . (14)

The square roots of the diagonal elements of this matrix provide the estimates
of the errors ∆c of the fitting coefficients,

∆ck =
√

Σkk

∣∣∣
k=1...m

, (15)
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and the (normalized) off-diagonal elements provide the estimates of their corre-
lations.

Here is a Python implementation of the ordinary least squares fit via QR
decomposition,

def l s f i t ( f s : l i s t , x : vector , y : vector , dy : vec to r ) :
n = x . s i z e ; m = len ( f s )
A = matrix (n ,m)
b = vecto r (n)
for i in range (n ) :
b [ i ] = y [ i ] / dy [ i ]
for k in range (m) : A[ i , k ] = f s [ k ] ( x [ i ] ) / dy [ i ]

(Q,R) = gramschmidt . qr (A)
c = R. back sub s t i t u t e (Q.T()∗b)
inver se R = R. back sub s t i t u t e ( matrix . id matr ix (m) )
S = inver se R ∗ i nver se R .T( )
return ( c , S )

An illustration of a fit is shown on Figure 1 where a polynomial is fitted to
a set of data.
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Figure 1: Ordinary least squares fit of Fc(x) = c1 + c2x+ c3x
2 to a set of data.

Shown are fits with optimal coefficiens c as well as with c + ∆c and c−∆c.

1.5 Singular value decomposition

Under the thin singular value decomposition we shall understand a representa-
tion of a tall n×m (n > m) matrix A in the form

A = USVT , (16)
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where U is an orthogonal n×m matrix (UTU = 1), S is a square m×m diagonal
matrix with non-negative real numbers on the diagonal (called singular values
of matrix A), and V is a square m×m orthoginal matrix (VTV = 1).

Singular value decomposition can be used to solve our linear least squares
problem Ac = b. Indeed inserting the decomposition into the equation gives

USVTc = b . (17)

Multiplying from the left with UT and using the orthogonality of U one gets
the projected equation

SVTc = UTb . (18)

This is a square system which can be easily solved first by solving the diagonal
system

Sy = UTb (19)

for y and then obtaining c as
c = Vy . (20)

The covariance matrix (14) can be calculated as

Σ = (ATA)−1 = (VS2VT)−1 = VS−2VT . (21)

Singular value decomposition can be found by diagonalising the m×m sym-
metric positive semi-definite matrix ATA (although this method is not the best
for practical calculations, it would do as an educational tool),

ATA = VDVT , (22)

where D is a diagonal matrix with eigenvalues of the matrix ATA on the diag-
onal and V is the matrix of the corresponding eigenvectors. Indeed it is easy
to check that the sought decomposition can the be constructed as A = USVT

where S = D1/2, U = AVD−1/2.

5


