
1 Interpolation

1.1 Introduction

In practice one often meets a situation where the function of interest, f(x), is
only represented by a discrete set of tabulated points,

{xi, yi
.
= f(xi) | i = 1 . . . n} ,

obtained, for example, by sampling, experimentation, or extensive numerical
calculations.

Interpolation means constructing a (smooth) function, called interpolating
function or interpolant, which passes exactly through the given points and (hope-
fully) approximates the tabulated function between the tabulated points. Inter-
polation is a specific case of curve fitting in which the fitting function must go
exactly through the data points.

The interpolating function can be used for different practical needs like esti-
mating the tabulated function between the tabulated points and estimating the
derivatives and integrals involving the tabulated function.

1.2 Polynomial interpolation

Polynomial interpolation uses a polynomial as the interpolating function. Given
a table of n points, {xi, yi}, where no two xi are the same, one can construct
a polynomial P (x) of the order n− 1 which passes exactly through the points:
P (xi) = yi. This polynomial can be intuitively written in the Lagrange form,

P (x) =

n∑
i=1

yi

n∏
k 6=i

x− xk

xi − xk
. (1)

The Lagrange interpolating polynomial always exists and is unique.
Higher order interpolating polynomials are susceptible to the Runge’s phe-

nomenon: erratic oscillations close to the end-points of the interval, see Figure 1.

1.3 Spline interpolation

Spline interpolation uses a piecewise polynomial, S(x), called spline, as the in-
terpolating function,

S(x) = Si(x) if x ∈ [xi, xi+1]
∣∣∣
i=1,...,n−1

, (2)

1



Table 1: Polynomial interpolation in C

double p o l i n t e r p ( int n , double ∗x , double ∗y , double z ) {
double s =0,p ;
for ( int i =0; i<n ; i++) {
p=1; for ( int k=0;k<n ; k++) i f ( k!= i ) p∗=(z−x [ k ] ) / ( x [ i ]−x [ k ] ) ;
s+=y [ i ]∗p ; }

return s ; }

where Si(x) is a polynomial of a given order k. Spline interpolation avoids the
problem of Runge’s phenomenon. Originally, “spline” was a term for elastic
rulers that were bent to pass through a number of predefined points. These
were used to make technical drawings by hand.

The spline of the order k ≥ 1 can be made continuous at the tabulated
points,

Si(xi) = yi , Si(xi+1) = yi+1

∣∣∣
i=1,...,n−1

, (3)

together with its k − 1 derivatives,

S′i(xi+1) = S′i+1(xi+1) ,
S′′i (xi+1) = S′′i+1(xi+1) ,

...

S
(k−1)
i (xi+1) = S

(k−1)
i+1 (xi+1) .

∣∣∣∣∣∣∣∣∣ i = 1, . . . , n− 2 (4)

Continuity conditions (3) and (4) make kn+ n− 2k linear equations for the
(n− 1)(k+ 1) = kn+n− k− 1 coefficients of n− 1 polynomials (2) of the order
k. The missing k − 1 conditions can be chosen (reasonably) arbitrarily.

The most popular is the cubic spline, where the polynomials Si(x) are of
third order. The cubic spline is a continuous function together with its first
and second derivatives. The cubic spline has a nice feature that it (sort of)
minimizes the total curvature of the interpolating function. This makes the
cubic splines look good.

Quadratic splines—continuous with the first derivative—are not nearly as
good as cubic splines in most respects. In particular they might oscillate un-
pleasantly when a quick change in the tabulated function is followed by a period
where the function is nearly a constant. Cubic splines are somewhat less sus-
ceptible to such oscillations.

Linear spline is simply a polygon drawn through the tabulated points.

2



−6 −4 −2 0 2 4 6

x

0

0.5

1
y

data points

polynomial

cubic spline

Figure 1: Lagrange interpolating polynomial, solid line, showing the Runge’s
phenomenon: large oscillations at the edges. For comparison the dashed line
shows a cubic spline.

1.3.1 Linear interpolation

Linear interpolation is a spline with linear polynomials. The continuity condi-
tions (3) can be satisfied by choosing the spline in the (intuitive) form

Si(x) = yi + pi(x− xi) , (5)

where

pi =
∆yi
∆xi

, ∆yi
.
= yi+1 − yi , ∆xi

.
= xi+1 − xi . (6)

Note that the search of the interval [xi ≤ x ≤ xi+1] in an ordered array
{xi} should be done with the binary search algorithm (also called half-interval
search): the point x is compared to the middle element of the array, if it is less
than the middle element, the algorithm repeats its action on the sub-array to
the left of the middle element, if it is greater, on the sub-array to the right.
When the remaining sub-array is reduced to two elements, the interval is found.
The average number of operations for a binary search is O(log n).
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Table 2: Linear interpolation in C

#include<a s s e r t . h>
double l i n t e r p ( int n , double∗ x , double∗ y , double z ){

a s s e r t (n>1 && z>=x [ 0 ] && z<=x [ n−1 ] ) ;
int i =0, j=n−1; /∗ b inary search : ∗/
while ( j−i >1){ int m=( i+j ) / 2 ; i f ( z>x [m] ) i=m; else j=m;}
return y [ i ]+(y [ i +1]−y [ i ] ) / ( x [ i +1]−x [ i ] ) ∗ ( z−x [ i ] ) ;
}

1.3.2 Quadratic spline

Quadratic spline is made of second order polynomials, conveniently written in
the form

Si(x) = yi + pi(x− xi) + ci(x− xi)(x− xi+1)
∣∣∣
i=1,...,n−1

, (7)

which identically satisfies the continuity conditions

Si(xi) = yi , Si(xi+1) = yi+1

∣∣∣
i=1,...,n−1

. (8)

Substituting (7) into the derivative continuity condition,

S′i(xi+1) = S′i+1(xi+1)
∣∣∣
i=1,...,n−2

, (9)

gives n− 2 equations for n− 1 unknown coefficients ci,

pi + ci∆xi = pi+1 − ci+1∆xi+1

∣∣∣
i=1,...,n−2

. (10)

One coefficient can be chosen arbitrarily, for example c1 = 0. The other
coefficients can now be calculated recursively from (10),

ci+1 =
1

∆xi+1
(pi+1 − pi − ci∆xi)

∣∣∣
i=1,...,n−2

. (11)

Alternatively, one can choose cn−1 = 0 and make the backward-recursion

ci =
1

∆xi
(pi+1 − pi − ci+1∆xi+1)

∣∣∣
i=n−2,...,1

. (12)
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In practice, unless you know what your c1 (or cn−1) is, it is better to run
both recursions and then average the resulting c’s. This amounts to first running
the forward-recursion from c1 = 0 and then the backward recursion from 1

2cn−1.
The optimized form (7) of the quadratic spline can also be written in the

ordinary form suitable for differentiation and integration,

Si(x) = yi + bi(x− xi) + ci(x− xi)
2 , where bi = pi − ci∆xi . (13)

An implementation of quadratic spline in C is listed in Table 1.3.2

Table 3: Quadratic spline in C

#include <s t d l i b . h>
#include <a s s e r t . h>
typedef struct { int n ; double ∗x , ∗y , ∗b , ∗c ;} q s p l i n e ;
q s p l i n e ∗ q s p l i n e a l l o c ( int n , double∗ x , double∗ y ){ // b u i l d s q s p l i n e

q s p l i n e ∗ s = ( q s p l i n e ∗) mal loc ( s izeof ( q s p l i n e ) ) ; // s p l i n e
s−>b = (double∗) mal loc ( ( n−1)∗ s izeof (double ) ) ; // b i
s−>c = (double∗) mal loc ( ( n−1)∗ s izeof (double ) ) ; // c i
s−>x = (double∗) mal loc (n∗ s izeof (double ) ) ; // x i
s−>y = (double∗) mal loc (n∗ s izeof (double ) ) ; // y i
s−>n = n ; for ( int i =0; i<n ; i ++){s−>x [ i ]=x [ i ] ; s−>y [ i ]=y [ i ] ; }
int i ; double p [ n−1] , h [ n−1] ; //VLA from C99
for ( i =0; i<n−1; i ++){h [ i ]=x [ i +1]−x [ i ] ; p [ i ]=(y [ i +1]−y [ i ] ) / h [ i ] ; }
s−>c [ 0 ] = 0 ; // recurs ion up :
for ( i =0; i<n−2; i++)s−>c [ i +1]=(p [ i +1]−p [ i ]−s−>c [ i ]∗h [ i ] ) / h [ i +1] ;
s−>c [ n−2]/=2; // recurs ion down :
for ( i=n−3; i >=0; i−−)s−>c [ i ]=(p [ i +1]−p [ i ]−s−>c [ i +1]∗h [ i +1])/h [ i ] ;
for ( i =0; i<n−1; i++)s−>b [ i ]=p [ i ]−s−>c [ i ]∗h [ i ] ;
return s ; }

double q s p l i n e e v a l ( q s p l i n e ∗ s , double z ){ // eva l ua t e s s ( z )
a s s e r t ( z>=s−>x [ 0 ] && z<=s−>x [ s−>n−1 ] ) ;
int i =0, j=s−>n−1; // binary search :
while ( j−i >1){ int m=( i+j ) / 2 ; i f ( z>s−>x [m] ) i=m; else j=m;}
double h=z−s−>x [ i ] ;
return s−>y [ i ]+h∗( s−>b [ i ]+h∗ s−>c [ i ] ) ; }// i n e r po l a t i n g polynomial

void q s p l i n e f r e e ( q s p l i n e ∗ s ){ // f r e e the a l l o c a t e d memory
f r e e ( s−>x ) ; f r e e ( s−>y ) ; f r e e ( s−>b ) ; f r e e ( s−>c ) ; f r e e ( s ) ; }

1.3.3 Cubic spline

Cubic splines are made of third order polynomials,

Si(x) = yi + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3 . (14)
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This form automatically satisfies the first half of continuity conditions (3):
Si(xi) = yi. The second half of continuity conditions (3), Si(xi+1) = yi+1,
and the continuity of the first and second derivatives (4) give a set of equations,

yi + bihi + cih
2
i + dih

3
i = yi+1 , i = 1, . . . , n− 1

bi + 2cihi + 3dih
2
i = bi+1 , i = 1, . . . , n− 2

2ci + 6dihi = 2ci+1 , i = 1, . . . , n− 2 (15)

where hi
.
= xi+1 − xi.

The set of equations (15) is a set of 3n− 5 linear equations for the 3(n− 1)
unknown coefficients {ai, bi, ci | i = 1, . . . , n−1}. Therefore two more equations
should be added to the set to find the coefficients. If the two extra equations
are also linear, the total system is linear and can be easily solved.

The spline is called natural if the extra conditions are given as vanishing
second derivatives at the end-points,

S′′(x1) = S′′(xn) = 0 , (16)

which gives

c1 = 0 ,

cn−1 + 3dn−1hn−1 = 0 . (17)

Solving the first two equations in (15) for ci and di gives1

cihi = −2bi − bi+1 + 3pi ,

dih
2
i = bi + bi+1 − 2pi , (18)

where pi
.
= ∆yi

hi
. The natural conditions (17) and the third equation in (15)

then produce the following tridiagonal system of n linear equations for the n
coefficients bi,

2b1 + b2 = 3p1 ,

bi +

(
2

hi

hi+1
+ 2

)
bi+1 +

hi

hi+1
bi+2 = 3

(
pi + pi+1

hi

hi+1

) ∣∣∣
i=1,...,n−2

,

bn−1 + 2bn = 3pn−1 , (19)

1introducing an auxiliary coefficient bn.
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or, in the matrix form,
D1 Q1 0 0 . . .
1 D2 Q2 0 . . .
0 1 D3 Q3 . . .
...

...
. . .

. . .
. . .

. . . . . . 0 1 Dn




b1

...

...
bn

 =


B1

...

...
Bn

 (20)

where the elements Di at the main diagonal are

D1 = 2 , Di+1 = 2
hi

hi+1
+ 2

∣∣∣
i=1,...,n−2

, Dn = 2 , (21)

the elements Qi at the above-main diagonal are

Q1 = 1 , Qi+1 =
hi

hi+1

∣∣∣
i=1,...,n−2

, (22)

and the right-hand side terms Bi are

B1 = 3p1 , Bi+1 = 3

(
pi + pi+1

hi

hi+1

) ∣∣∣
i=1,...,n−2

, Bn = 3pn−1 . (23)

This system can be solved by one run of Gauss elimination and then a run
of back-substitution. After a run of Gaussian elimination the system becomes

D̃1 Q1 0 0 . . .

0 D̃2 Q2 0 . . .

0 0 D̃3 Q3 . . .
...

...
. . .

. . .
. . .

. . . . . . 0 0 D̃n




b1

...

...
bn

 =


B̃1

...

...

B̃n

 , (24)

where
D̃1 = D1 , D̃i = Di −Qi−1/D̃i−1

∣∣∣
i=2,...,n

, (25)

and
B̃1 = B1 , B̃i = Bi − B̃i−1/D̃i−1

∣∣∣
i=2,...,n

. (26)

The triangular system (24) can be solved by a run of back-substitution,

bn = B̃n/D̃n , bi = (B̃i −Qibi+1)/D̃i

∣∣∣
i=n−1,...,1

. (27)

A C-implementation of cubic spline is listed in Table 1.3.3
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1.3.4 Akima sub-spline interpolation

Akima sub-spline [?] is an interpolating function in the form of a piecewise cubic
polynomial, similar to the cubic spline,

A(x)
∣∣∣
x∈[xi,xi+1]

= ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3 .
= Ai(x) . (28)

However, unlike the cubic spline, Akima sub-spline dispenses with the demand
of maximal differentiability of the spline—in this case, the continuity of the
second derivative—hence the name sub-spline. Instead of achieving maximal

−4 −3 −2 −1 0 1 2 3 4

x

−1

0

1

y

data points

cubic spline

Akima sub-spline

Figure 2: A cubic spline (solid line) showing the typical wiggles, compared to
the Akima sub-spline (dashed line) where the wiggles are essentially removed.

differentiability Akima sub-splines try to reduce the wiggling which the ordinary
splines are typically prone to (see Figure 2).

First let us note that the coefficients {ai, bi, ci, di} in eq. (28) are determined
by the values of the derivatives A′i

.
= A′(xi) of the sub-spline through the

continuity conditions for the sub-spline and its first derivative,

Ai(xi) = yi, A
′
i(xi) = A′i, Ai(xi+1) = yi+1, A

′
i(xi+1) = A′i+1. (29)

Indeed, inserting (28) into (29) and solving for the coefficients gives

ai = yi, bi = A′i, ci =
3pi − 2A′i −A′i+1

∆xi
, di =

A′i +A′i+1 − 2pi

(∆xi)2
, (30)
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where pi
.
= ∆yi/∆xi, ∆yi

.
= yi+1 − yi, ∆xi

.
= xi+1 − xi.

In the ordinary cubic spline the derivatives A′i are determined by the con-
tinuity condition of the second derivative of the spline. Sub-splines do without
this continuity condition and can instead use the derivatives as free parameters
to be chosen to satisfy some other condition.

Akima suggested to minimize the wiggling by choosing the derivatives as
linear combinations of the nearest slopes,

A′i =
wi+1pi−1 + wi−1pi

wi+1 + wi−1
, if wi+1 + wi−1 6= 0 , (31)

A′i =
pi−1 + pi

2
, if wi+1 + wi−1 = 0 , (32)

where the weights wi are given as

wi = |pi − pi−1| . (33)

The idea is that if three points lie close to a line, the sub-spline in this vicinity
has to be close to this line. In other words, if |pi − pi−1| is small, the nearby
derivatives must be close to pi.

The first two and the last two points need a special prescription, for example
(naively) one can simply use

A′1 = p1, A′2 =
1

2
p1 +

1

2
p2, A′n = pn−1, A′n−1 =

1

2
pn−1 +

1

2
pn−2. (34)

Table (5) shows a C-implementation of this algorithm.

1.4 Other forms of interpolation

Other forms of interpolation can be constructed by choosing different classes
of interpolating functions, for example, rational function interpolation, trigono-
metric interpolation, wavelet interpolation etc.

Sometimes not only the values of the function are tabulated but also the
values of its derivative. This extra information can be taken advantage of when
constructing the interpolation function.

1.5 Multivariate interpolation

Interpolation of a function in more than one variable is called multivariate in-
terpolation. The function of interest is represented as a set of discrete points in
a multidimensional space. The points may or may not lie on a regular grid.
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1.5.1 Nearest-neighbor interpolation

Nearest-neighbor interpolation approximates the value of the function at a non-
tabulated point by the value at the nearest tabulated point, yielding a piecewise-
constant interpolating function. It can be used for both regular and irregular
grids.

1.5.2 Piecewise-linear interpolation

Piecewise-linear interpolation is used to interpolate functions of two variables
tabulated on irregular grids. The tabulated 2D region is triangulated – subdi-
vided into a set of non-intersecting triangles whose union is the original region.
Inside each triangle the interpolating function S(x, y) is taken in the linear form,

S(x, y) = a + bx + cy , (35)

where the three constants are determined by the three conditions that the in-
terpolating function is equal the tabulated values at the three vertexes of the
triangle.

1.5.3 Bi-linear interpolation

Bi-linear interpolation is used to interpolate functions of two variables tabulated
on regular rectilinear 2D grids. The interpolating function B(x, y) inside each
of the grid rectangles is taken as a bilinear function of x and y,

B(x, y) = a + bx + cy + dxy , (36)

where the four constants a, b, c, d are obtained from the four conditions that the
interpolating function is equal the tabulated values at the four nearest tabulated
points (which are the vertexes of the given grid rectangle).
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Table 4: Cubic spline in C

#include<s t d l i b . h>
#include<a s s e r t . h>
#include<s t d i o . h>
typedef struct { int n ; double ∗x ,∗ y ,∗b ,∗ c ,∗d ;} c u b i c s p l i n e ;
c u b i c s p l i n e ∗ c u b i c s p l i n e a l l o c ( int n , double ∗x , double ∗y )
{// b u i l d s na tura l cub ic s p l i n e

c u b i c s p l i n e ∗ s = ( c u b i c s p l i n e ∗) mal loc ( s izeof ( c u b i c s p l i n e ) ) ;
s−>x = (double∗) mal loc (n∗ s izeof (double ) ) ;
s−>y = (double∗) mal loc (n∗ s izeof (double ) ) ;
s−>b = (double∗) mal loc (n∗ s izeof (double ) ) ;
s−>c = (double∗) mal loc ( ( n−1)∗ s izeof (double ) ) ;
s−>d = (double∗) mal loc ( ( n−1)∗ s izeof (double ) ) ;
s−>n = n ; for ( int i =0; i<n ; i ++){s−>x [ i ]=x [ i ] ; s−>y [ i ]=y [ i ] ; }
double h [ n−1] ,p [ n−1] ; // VLA
for ( int i =0; i<n−1; i ++){h [ i ]=x [ i +1]−x [ i ] ; a s s e r t (h [ i ] >0) ;}
for ( int i =0; i<n−1; i++) p [ i ]=(y [ i +1]−y [ i ] ) / h [ i ] ;
double D[ n ] , Q[ n−1] , B[ n ] ; // bu i l d i n g the t r i d i a g ona l system :
D[ 0 ] = 2 ; for ( int i =0; i<n−2; i++)D[ i +1]=2∗h [ i ] / h [ i +1]+2; D[ n−1]=2;
Q[ 0 ] = 1 ; for ( int i =0; i<n−2; i++)Q[ i +1]=h [ i ] / h [ i +1] ;
for ( int i =0; i<n−2; i++)B[ i +1]=3∗(p [ i ]+p [ i +1]∗h [ i ] / h [ i +1 ] ) ;
B[0 ]=3∗p [ 0 ] ; B[ n−1]=3∗p [ n−2] ; //Gauss e l im ina t i on :
for ( int i =1; i<n ; i ++){ D[ i ]−=Q[ i −1]/D[ i −1] ; B[ i ]−=B[ i −1]/D[ i −1] ; }
s−>b [ n−1]=B[ n−1]/D[ n−1] ; //back−s u b s t i t u t i o n :
for ( int i=n−2; i >=0; i−−) s−>b [ i ]=(B[ i ]−Q[ i ]∗ s−>b [ i +1])/D[ i ] ;
for ( int i =0; i<n−1; i ++){

s−>c [ i ]=(−2∗s−>b [ i ]−s−>b [ i +1]+3∗p [ i ] ) / h [ i ] ;
s−>d [ i ]=( s−>b [ i ]+s−>b [ i +1]−2∗p [ i ] ) / h [ i ] / h [ i ] ;
}
return s ;
}
double c u b i c s p l i n e e v a l ( c u b i c s p l i n e ∗ s , double z ){

a s s e r t ( z>=s−>x [ 0 ] && z<=s−>x [ s−>n−1 ] ) ;
int i =0, j=s−>n−1;// binary search fo r the i n t e r v a l f o r z :
while ( j−i >1){ int m=( i+j ) / 2 ; i f ( z>s−>x [m] ) i=m; else j=m; }
double h=z−s−>x [ i ] ; // c a l c u l a t e the i n e r po l a t i n g s p l i n e :
return s−>y [ i ]+h∗( s−>b [ i ]+h∗( s−>c [ i ]+h∗ s−>d [ i ] ) ) ;

}
void c u b i c s p l i n e f r e e ( c u b i c s p l i n e ∗ s ){ // f r e e the a l l o c a t e d memory

f r e e ( s−>x ) ; f r e e ( s−>y ) ; f r e e ( s−>b ) ; f r e e ( s−>c ) ; f r e e ( s−>d ) ; f r e e ( s ) ; }
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Table 5: Akima sub-spline in C

#include<a s s e r t . h>
#include<s t d l i b . h>
#include<math . h>
typedef struct { int n ; double ∗x ,∗ y ,∗b ,∗ c ,∗d ;} ak ima sp l ine ;
ak ima sp l ine ∗ a k i m a s p l i n e a l l o c ( int n , double ∗x , double ∗y ){

a s s e r t (n>2); double h [ n−1] ,p [ n−1] ; /∗ VLA ∗/
for ( int i =0; i<n−1; i ++){h [ i ]=x [ i +1]−x [ i ] ; a s s e r t (h [ i ] >0) ;}
for ( int i =0; i<n−1; i++) p [ i ]=(y [ i +1]−y [ i ] ) / h [ i ] ;
ak ima sp l ine ∗ s = ( ak ima sp l ine ∗) mal loc ( s izeof ( ak ima sp l ine ) ) ;
s−>x = (double∗) mal loc (n∗ s izeof (double ) ) ;
s−>y = (double∗) mal loc (n∗ s izeof (double ) ) ;
s−>b = (double∗) mal loc (n∗ s izeof (double ) ) ;
s−>c = (double∗) mal loc ( ( n−1)∗ s izeof (double ) ) ;
s−>d = (double∗) mal loc ( ( n−1)∗ s izeof (double ) ) ;
s−>n = n ; for ( int i =0; i<n ; i ++){s−>x [ i ]=x [ i ] ; s−>y [ i ]=y [ i ] ; }
s−>b [ 0 ] =p [ 0 ] ; s−>b [ 1 ] =(p [0 ]+p [ 1 ] ) / 2 ;
s−>b [ n−1]=p [ n−2] ; s−>b [ n−2]=(p [ n−2]+p [ n−3 ] )/2 ;
for ( int i =2; i<n−2; i ++){
double w1=fabs (p [ i +1]−p [ i ] ) , w2=fabs (p [ i−1]−p [ i −2 ] ) ;
i f (w1+w2==0) s−>b [ i ]=(p [ i−1]+p [ i ] ) / 2 ;
else s−>b [ i ]=(w1∗p [ i−1]+w2∗p [ i ] ) / ( w1+w2 ) ;
}
for ( int i =0; i<n−1; i ++){

s−>c [ i ]=(3∗p [ i ]−2∗ s−>b [ i ]−s−>b [ i +1])/h [ i ] ;
s−>d [ i ]=( s−>b [ i +1]+s−>b [ i ]−2∗p [ i ] ) / h [ i ] / h [ i ] ;
}
return s ;
}
double a k i m a s p l i n e e v a l ( ak ima sp l ine ∗ s , double z ){

a s s e r t ( z>=s−>x [ 0 ] && z<=s−>x [ s−>n−1 ] ) ;
int i =0, j=s−>n−1;
while ( j−i >1){ int m=( i+j ) / 2 ; i f ( z>s−>x [m] ) i=m; else j=m;}
double h=z−s−>x [ i ] ;
return s−>y [ i ]+h∗( s−>b [ i ]+h∗( s−>c [ i ]+h∗ s−>d [ i ] ) ) ;
}
void a k i m a s p l i n e f r e e ( ak ima sp l ine ∗ s ){

f r e e ( s−>x ) ; f r e e ( s−>y ) ; f r e e ( s−>b ) ; f r e e ( s−>c ) ; f r e e ( s−>d ) ; f r e e ( s ) ; }
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