1 Eigenvalues and eigenvectors

1.1 Introduction

A non-zero column-vector v is called the eigenvector of a matrix A with the
etgenvalue A, if
Av = )v. (1)

If an n x n matrix A is real and symmetric, AT = A, then it has n real
eigenvalues Ap, ..., \,, and its (orthogonalized) eigenvectors V = {vy,...,v,}
form a full basis,

Vv =vTv=1, (2)

in which the matrix is diagonal,

A 0 - 0
VTAV = (_) Az (3)
0 Ce )\n

Matriz diagonalization means finding all eigenvalues and (optionally) eigen-
vectors of a matrix.

Eigenvalues and eigenvectors enjoy a multitude of applications in different
branches of science and technology.

1.2 Similarity transformations

Orthogonal transformations,

A—QTAQ, (4)
where QT Q = 1, and, generally, similarity transformations,

A — ST'AS, (5)

preserve eigenvalues and eigenvectors. Therefore one of the strategies to diago-
nalize a matrix is to apply a sequence of similarity transformations (also called
rotations) which (iteratively) turn the matrix into diagonal form.



1.2.1 Jacobi eigenvalue algorithm

Jacobi eigenvalue algorithm is an iterative method to calculate the eigenvalues
and eigenvectors of a real symmetric matrix by a sequence of Jacobi rotations.

Jacobi rotation is an orthogonal transformation which zeroes a pair of the
off-diagonal elements of a (real symmetric) matrix A,

A=A =3pq AJ(pq) : A=A =0. (6)

The orthogonal matrix J(p,q) which eliminates the element A,, is called the
Jacobi rotation matrix. It is equal identity matrix except for the four elements
with indices pp, pq, gp, and qq,

1
0
cos¢ -+ sing < row p
I(p,q) = : RI : (7)
—sin¢g -+ cos¢ S row g
0
L 1_
Or explicitly,
J(p, @)ij = 0i; V' ij & {pa, ap, pp, aq} ;
J(p, @)pp = cosd = J(P,q)qq ;
J(p, @)pg = sing = =J(p, @)qp - (8)
After a Jacobi rotation, A — A’ = JTAJ, the matrix elements of A’ become
Ay = AYi#pqNj#pq
A, = Al =cAy—sAuYi#pq;
Ay = Al =sApt+cAuYi#pg;
A, = Ay — 25cApy + 52 Ay ;
Ay, = §% App + 25cApg + Ay ;
A;)q = A;p = sc(App — Agq) + (02 - SQ)qu ) 9)

where ¢ = cos ¢, s = sin¢. The angle ¢ is chosen such that after rotation the
matrix element A}, is zeroed,

24,4

tan(2¢) = " i

= A, =0. (10)

qq — “ipp



A side effect of zeroing a given off-diagonal element A, by a Jacobi rotation
is that other off-diagonal elements are changed. Namely, the elements of the
rows and columns with indices p and ¢q. However, after the Jacobi rotation the
sum of squares of all off-diagonal elements is reduced. The algorithm repeatedly
performs rotations until the off-diagonal elements become sufficiently small.

The convergence of the Jacobi method can be proved for two strategies for
choosing the order in which the elements are zeroed:

1. Classical method: with each rotation the largest of the remaining off-
diagonal elements is zeroed.

2. Cyclic method: the off-diagonal elements are zeroed in strict order, e.g.
row after row.

Although the classical method allows the least number of rotations, it is
typically slower than the cyclic method since searching for the largest element
is an O(n?) operation. The count can be reduced by keeping an additional array
with indexes of the largest elements in each row. Updating this array after each
rotation is only an O(n) operation.

A sweep is a sequence of Jacobi rotations applied to all non-diagonal ele-
ments. Typically the method converges after a small number of sweeps. The
operation count is O(n) for a Jacobi rotation and O(n?) for a sweep.

The typical convergence criterion is that the diagonal elements have not
changed after a sweep. Other criteria can also be used, like the sum of absolute
values of the off-diagonal elements is small, >, . [A;;| < €, where € is the
required accuracy, or the largest off-diagonal element is small, max|A4;«;| < e.

The eigenvectors can be calculated as V = 1.J;J5..., where J; are the suc-
cessive Jacobi matrices. At each stage the transformation is

Vip — ¢cVip—sV; (11)
Vig — sVip+cVig

Alternatively, if only one (or few) eigenvector vy is needed, one can instead
solve the (singular) system (A — A\;)v = 0.
1.2.2 QR/QL algorithm

An orthogonal transformation of a real symmetric matrix, A — QTAQ = RQ,
where Q is from the QR-decomposition of A, partly turns the matrix A into



diagonal form. Successive iterations eventually make it diagonal. If there are
degenerate eigenvalues there will be a corresponding block-diagonal sub-matrix.

For convergence properties it is of advantage to use shifts: instead of QR[A]
we do QR[A —s1] and then A — RQ+s1. The shift s can be chosen as A,,,,. As
soon as an eigenvalue is found the matrix is deflated, that is the corresponding
row and column are crossed out.

Accumulating the successive transformation matrices Q; into the total ma-
trix Q = Q... Qu, such that QT AQ = A, gives the eigenvectors as columns
of the Q matrix.

If only one (or few) eigenvector vy is needed one can instead solve the (sin-
gular) system (A — Ag)v = 0.

Tridiagonalization. Each iteration of the QR/QL algorithm is an O(n?) op-
eration. On a tridiagonal matrix it is only O(n). Therefore the effective strategy
is first to make the matrix tridiagonal and then apply the QR/QL algorithm.
Tridiagonalization of a matrix is a non-iterative operation with a fixed number
of steps.

1.3 Eigenvalues of updated matrix

In practice it happens quite often that the matrix A to be diagonalized is given
in the form of a diagonal matrix, D, plus an update matrix, W,

A=D+W, (12)

where the update W is a simpler, in a certain sense, matrix which allows a
more efficient calculation of the updated eigenvalues, as compared to general
diagonalization algorithms.

The most common updates are

e symmetric rank-1 update,
W =uu’ | (13)

where u is a columnt-vector;

e symmetric rank-2 update,

W =uv? +vul; (14)



e symmetric row/column update — a special case of rank-2 update,

W= |u ... wy ... u,|=ep@u’ +uelp)?’, (15)
0O ... u, ... 0

where e(p) is the unit vector in the p-direction.

1.3.1 Rank-1 update

We assume that the size-n real symmetric matrix A to be diagonalized is given
in the form of a diagonal matrix plus a rank-1 update,

A =D +ouu’, (16)

where D is a diagonal matrix with diagonal elements {di,...,d,} and u is a
given vector. The diagonalization of such matrix can be done in O(m?) opera-
tions, where m < n is the number of non-zero elements in the update vector u,
as compared to O(n?) operations for a general diagonalization [?].

The eigenvalue equation for the updated matrix reads

(D +ouu’)q=Aq, (17)

where A is an eigenvalue and q is the corresponding eigenvector. The equation
can be rewritten as
(D—-A)q+ouu’q=0. (18)

Multiplying from the left with u” (D — )\1)71 gives
u"q+u’ (D-A1) "' ouu’q=0. (19)

Finally, dividing by u”'q leads to the (scalar) secular equation (or characteristic
equation) in A,

M2
Y T =0, (20)
i=1 ¢

where the summation index counts the m non-zero components of the update
vector u. The m roots of this equation determine the (updated) eigenvalues!.

IMultiplying this equation by [T~ (di — A) leads to an equivalent polynomial equation of
the order m, which has exactly m roots.



Finding a root of a rational function requires an iterative technique, such as
the Newton-Raphson method. Therefore diagonalization of an updated matrix is
still an iterative procedure. However, each root can be found in O(1) iterations,
each iteration requiring O(m) operations. Therefore the iterative part of this
algorithm — finding all m roots — needs O(m?) operations.

Finding roots of this particular secular equation can be simplified by utilizing
the fact that its roots are bounded by the eigenvalues d; of the matrix D. Indeed

if we denote the roots as A1, A, ..., A, and assume that \; < \; 11 and d; < d;q1,
it can be shown that
1. if o >0,
dig)\zgdi+17 Zzl, 777‘_]-’ (21)
dp < Ay < dp+ou'u; (22)
2. if 0 <0,
diflg)\igdiv 7::2,...,TL, (23)
dl + O'uTll S )\1 § dl . (24)

1.3.2 Symmetric row/column update

The matrix A to be diagonalized is given in the form

d1 e (751 e 0
A=D+epu’ +ue(p)’ = v ... dp ... unl|, (25)
0 ... Uy, ... dn
where D is a diagonal matrix with diagonal elements {d;|i = 1,...,n}, e(p) is

the unit vector in the p-direction, and u is a given update vector where the p-th
element can be assumed to equal zero, u,, = 0, without loss of generality. Indeed,
if the element is not zero, one can simply redefine d,, — d, + 2u,, u, — 0.

The eigenvalue equation for matrix A is given as

(D —N)x +e(p)ul'x +ue(p)’x =0, (26)

where x is an eigenvector and A is the corresponding eigenvalue. The component
number p of this vector-equation reads

(dy — Nz, +ulx =0, (27)



while the component number k # p reads
(dk — )\)ﬂ?k + upTy = 0, (28)
Dividing the last equation by (dx — A), multiplying from the left with >"7'_ uy,

substituting u”'x using equation (27) and dividing by x, gives the secular equa-
tion,

n 2
u
—(dp = A) + ) =0, (29)
S di =X

which determines the updated eigenvalues.

1.3.3 Symmetric rank-2 update

A symmetric rank-2 update can be represented as two consecutive rank-1 up-
dates,
uv’ 4+ vu? = aa” — bbT | (30)

where

1 1
a:ﬁ(u—kv),b:ﬁ(u—v). (31)

The eigenvalues can then be found by applying the rank-1 update method twice.

1.4 Singular Value Decomposition

Singular Value Decomposition (SVD) is a factorization of matrix A in the form
A =UDVT, (32)

where D is a diagonal matrix, and U and V are orthogonal matrices (UTU = 1
and VTV = 1).

The elements of the diagonal matrix D are called the singular values of
matrix A. Singular values can always be chosen non-negative by chaging the
signs of the corresponding columns of matrix U. Singular values are equal the
square roots of the eigenvalues of the real symmetrix matrix AT A.

One algorithm to perform SVD is the two-sided Jacobi SVD algorithm which
is a generalization of the Jacobi eigenvalue algorithm. In the two-sided Jacobi
SVD algorithm one first applies a Givens rotation to symmetrize a pair of off-
diagonal elements of the matrix and then applies a Jacobi transformation to
eliminate these off-diagonal elements.



It is an iterative procedure where one starts with Ay = A and then iterates
Ay — Ay =JEGTALT, . (33)

Just like in the Jacobi eigenvalue algorithm the iterations are performed in
cyclic sweeps over all non-diagonal elements of the matrix. At each iteration
the matrix G equalizes the correponding non-diagonal elements, and then the
Jacobi transformation zeroes them. The iteration procedure stops when the
diagonal elements remain unchanged for a whole sweep.

For a 2x2 matrix the two-sided Jacobi SVD transformation is given as follow-
ing: first, one applies a Givens rotation to symmetrize two off-diagonal elements,

s=y Joaimata= 50 SO0 D=6 e

where the rotation angle § = atan2(y — z, w + z); and, second, one makes the
usual Jacobi transformation to eliminate the off-diagonal elements,

A, = A =JTAJL

S et | A i e R R

The matrices U and V are accumulated (from identity matrices) as
Upi1 = UpGrdy, (36)
Vk+1 =ViJdg. (37)

If the matrix A is a tall n X m non-square matrix (n > m), the first step
should be the QR-decomposition,

A=QR, (38)

where Q is the n x m orthogonal matrix and R is a square triangular m x m
matrix.
The second step is the normal SVD of the square matrix R,

R=UDVT. (39)
Now the SVD of the original matrix A is given as
A =UDVT, (40)
where
U=QU’'. (41)



Table 1: Jacobi diagonalization in C using gsl matrix and gsl_vector as con-
tainers.

#include<math.h>
#include<gsl/gsl_matrix.h>
#include<gsl/gsl_vector .h>
int jacobi(gsl-matrixx A, gsl_vector* e, gsl_matrixx V){
/* Jacobi diagonalization; upper triangle of A is destroyed;
e and V accumulate eigenvalues and eigenvectors x/
int changed, sweeps=0, n=A—>sizel ;
for (int i=0;i<n;i++)gsl_vector_set(e,i,gsl_matrix_get (A,i,i));
gsl_matrix_set_identity (V);
do{ changed=0; sweeps++; int p,q;
for (p=0;p<n;p++)for (qg=p+1;q<n; g++){
double app=gsl_vector_get (e,p);
double aqgq=gsl_vector_get (e,q);
double apg=gsl_matrix_get (A,p,q);
double phi=0.5xatan2(2xapq,aqq—app);
double ¢ = cos(phi), s = sin(phi);
double appl=c*xckapp—2%s*c*apq+s*s*aqq;
double aqql=s*sxapp+2*s*cxapgtc*xc*aqq;
if (appl!=app || aqql!=aqq){ changed=1;
gsl_vector_set (e,p,appl);
gsl_vector_set (e,q,aqql);
gsl_matrix_set (A,p,q,0.0);
for (int i=0;i<p;i++){
double aip=gsl_matrix_get (A,i,p);
double aiq=gsl_matrix_get (A,i,q);
gsl_matrix_set (A,i,p,c*xaip—s*aiq);
gsl_matrix_set (A,i,q,c*xaiq+s*aip); }
for (int i=p+1;i<q;i++){
double api=gsl_matrix_get (A,p,i);
double aigq=gsl_matrix_get (A,i,q);
gsl_matrix_set (A,p,i,cxapi—s*aiq);
gsl_matrix_set (A,i,q,c*xaiq+s*api); }
for (int i=q+1;i<n;i++){
double api=gsl_matrix_get(A,p,i);
double aqi=gsl_matrix_get (A,q,i);
gsl_matrix_set (A,p,i,cxapi—s*aqi);
gsl_matrix_set (A,q,i,c*xaqi+s*xapi); }
for (int i=0;i<n;i++){
double vip=gsl_matrix_get (V,i,p);
double vig=gsl_matrix_get (V,i,q);
gsl_matrix_set (V,i,p,c*xvip—s*viq);
gsl_matrix_set (V,i,q,c*xvig+s*vip); }
} } }while(changed!=0);
return sweeps; }




