Massive spin-1 field

The lowest dimension Lorentz group representation, which contains spin-1, is $(\frac{1}{2}, \frac{1}{2})$. It transforms four-vectors $\varphi^{\mu} = \{\varphi^{0}, \vec{\varphi}\}^{1}$.

There is a problem though, namely that a four-vector also contains a spin-0 part, the rotation scalar. The extra component can be excluded by imposing some additional condition, for example, the Lorentz condition

$$\partial_{\mu}\varphi^{\mu} = 0. (1)$$

For a plane wave $\varphi^{\mu} = \epsilon^{\mu} e^{-ipx}$, where ϵ^{μ} is a four-vector and $p_{\mu}p^{\mu} = m^2$, the Lorentz condition gives $\epsilon p = 0$. In the rest frame ($\mathbf{p} = 0$) the latter leads to $\epsilon^0 = 0$ indicating that only three components of the vector $\vec{\epsilon}$ are independent, which is consistent with the concept of a spin-1 field.

Lagrangian

The suitable Lagrangian is

$$\mathcal{L} = -\partial_{\mu}\varphi_{\nu}^{*}\partial^{\mu}\varphi^{\nu} + m^{2}\varphi_{\nu}^{*}\varphi^{\nu} . \tag{2}$$

It looks very much like a sum of several Lagrangians for spin-0 field.

Euler-Lagrange equation

Each component satisfies the Klein-Gordon equation,

$$\left(\partial_{\mu}\partial^{\mu} + m^2\right)\varphi^{\nu} = 0. \tag{3}$$

Normal modes

$$\varphi = \sum_{\mathbf{k}\lambda} \frac{1}{\sqrt{2\omega_{\mathbf{k}}}} \left(a_{\mathbf{k}\lambda} \epsilon_{\lambda} e^{-ikx} + b_{\mathbf{k}\lambda}^{\dagger} \epsilon_{\lambda}^{*} e^{+ikx} \right) , \quad (4)$$

where the spin functions ϵ_{λ} are chosen in the rest frame (where $(\epsilon_{\lambda})^0 = 0$) as eigenfunction of the I_3 generator, $I_3\epsilon_{\lambda} = \lambda\epsilon_{\lambda}$, $\lambda = 1, 0, -1$. They are normalized as $\epsilon_{\lambda}^{\dagger}\epsilon_{\lambda'} = \delta_{\lambda\lambda'}$.

The generation/annihilation operators satisfy bosonic commutation relations.

Electromagnetic field

Electromagnetic field is a massless field. It can be described by a four-vector potential A^{μ} , indicating that it is a spin-1 field. The Lagrangian of the electromagnetic field in the Gauss units is

$$\mathcal{L} = -\frac{1}{8\pi} \partial_{\mu} A^{\nu} \partial^{\mu} A_{\nu} \ . \tag{5}$$

Equivalently, the Lagrangian can be written as

$$\mathcal{L} = -\frac{1}{16\pi} F^{\mu\nu} F_{\mu\nu};, \qquad (6)$$

where $F^{\mu\nu}$ is the electromagnetic tensor,

$$F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} . \tag{7}$$

The absence of the mass term leads to an important symmetry, called *gauge symmetry*. The Lagrangian is invariant under a transformation

$$A^{\mu} \to A^{\mu} + \partial^{\mu} \phi$$
 (8)

called gauge transformation, where ϕ is an arbitrary scalar function of coordinates. The Lorentz condition limits the class of arbitrary function to harmonic functions

$$\partial^{\mu}\partial_{\mu}\phi = 0. (9)$$

The Euler-Lagrange equation for the components of the four-potential is the mass-zero Klein-Gordon equation,

$$\partial^{\mu}\partial_{\mu}A^{\nu} = 0. {10}$$

Let us look for the solutions in the form of a plane wave,

$$A(k) = \sqrt{\frac{2\pi}{\omega}} e(k) e^{-ikx} , \qquad (11)$$

where $k = {\omega, \mathbf{k}}$, $\omega = |\mathbf{k}|$, $k^2 = 0$ (since photon mass is zero), and e(k) is a four-vector.

From the Lorentz condition,

$$ke = 0 (12)$$

it follows that the amplitude e(k) is not time-like $\Rightarrow e \neq 0$.

A gauge transformation with $\phi=ife^{-ikx},$ where f is a scalar, leads to a transformation of the amplitude

$$e_{\mu} \to e_{\mu} + f k_{\mu} \ . \tag{13}$$

The scalar f can always be chosen such that in a certain frame

$$e = \{0, \mathbf{e}\}\ ,\ \mathbf{ke} = 0;$$
 (14)

and

$$A_0 = 0 \; , \; \nabla \mathbf{A} = 0 \; .$$
 (15)

The gauge (15) is called "Coulomb gauge" (also known as "transverse" or "radiation" gauge)

In the transverse gauge the electromagnetic field can be represented as

$$\mathbf{A} = \sum_{\mathbf{k}\lambda} \sqrt{\frac{2\pi}{\lambda}} \left(a_{\mathbf{k}\lambda} \mathbf{e}_{\lambda} e^{-ikx} + a_{\mathbf{k}\lambda}^{\dagger} \mathbf{e}_{\lambda}^{*} e^{ikx} \right) , \quad (16)$$

¹Another low-dimension representation with spin-1 is the six-component object $(1,0)\oplus(0,1)$. However, these two objects will turn out to be related, as are four-component electromagnetic potential and six-component electromagnetic field.

where $\lambda = 1, 2$ are the two orthogonal polarizations,

$$\mathbf{e}_{\lambda}\mathbf{e}_{\lambda'} = \delta_{\lambda\lambda'} , \quad \mathbf{e}\mathbf{k} = 0 . \tag{17}$$

and the generation/annihilation operators $a_{\mathbf{k}\lambda}$, $a_{\mathbf{k}\lambda}^{\dagger}$ satisfy the bosonic commutation relations

$$\left[a_{\mathbf{k}\lambda}, a_{\mathbf{k}\lambda}^{\dagger}\right] = \delta_{\lambda\lambda'} \delta_{\mathbf{k}\mathbf{k}'} . \tag{18}$$

Spin-statistics theorem

Canonical quantum field theory predicts (with certain caveats) that integer spin fields are bosonic, half-integer spin fields are fermionic.

Exercises

1. Show that the Lagrangians

$$\mathcal{L} = -\frac{1}{8\pi} \partial_{\mu} A^{\nu} \partial^{\mu} A_{\nu}$$

and

$$\mathcal{L} = -\frac{1}{16\pi} F^{\mu\nu} F_{\mu\nu}$$

are equivalent under the Lorentz condition $\partial_{\mu}A^{\mu}=0$. Hint: the difference is a full derivative, which does not contribute to the variation of the action.

2. Show that the Lagrangian

$$\mathcal{L} = -\frac{1}{8\pi} \partial_{\mu} A^{\nu} \partial^{\mu} A_{\nu} - j^{\mu} A_{\mu}$$

is gauge invariant if j^{μ} is a conserved current $(\partial_{\mu}j^{\mu}=0)$.

3. Derive the Maxwell equation with sources from the Lagrangian

$$\mathcal{L} = -\frac{1}{8\pi} \partial_{\mu} A^{\nu} \partial^{\mu} A_{\nu} - j^{\mu} A_{\mu}$$

4. Derive the expression $q(\mathbf{E} + \mathbf{v} \times \mathbf{H})$ for the Lorentz force (the force acting on a charged point particle due to the electromagnetic field) from the action

$$S = -m \int ds - q \int dx^{\mu} A_{\mu} ,$$

where the integral is take along the trajectory of the particle, $ds^2 = dt^2 - d\mathbf{r}^2$, m and q are the mass and the charge of the particle, A_{μ} is the electromagnetic field at the point where the particle is located.