Spin-1/2 field: Canonical quantization

Euler-Lagrange equation, current, energy

The simplest covariant Lagrangian for a spin-1/2 field is given as (the real part of)

$$\mathcal{L} = i\bar{\psi}\gamma_{\mu}\partial^{\mu}\psi - m\bar{\psi}\psi , \qquad (1$$

the Euler-Lagrange equation of which is called the Dirac equation,

$$(i\gamma_{\mu}\partial^{\mu} - m)\psi = 0. (2)$$

The conserved current is given as

$$j^{\mu} = \bar{\psi}\gamma^{\mu}\psi , \qquad (3)$$

and the energy density as

$$T_0^0 = -i\bar{\psi}\vec{\gamma}\vec{\partial}\psi + m\bar{\psi}\psi \ . \tag{4}$$

Plane-wave normal modes

Let us look for a solution in the form of a plane waves,

$$\psi(x) = \begin{pmatrix} \phi \\ \chi \end{pmatrix} e^{-ipx} \equiv \begin{pmatrix} \phi \\ \chi \end{pmatrix} e^{i\vec{p}\vec{r} - iEt} . \quad (5)$$

Substituting this into the Dirac equation gives (in the Dirac basis)

$$\begin{bmatrix} E - m & -\vec{\sigma}\vec{p} \\ \vec{\sigma}\vec{p} & -(E + m) \end{bmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix} = 0.$$
 (6)

The homogeneous system of linear algebraic equations has a non-trivial solution only when the determinant of the matrix is zero, which gives the relativistic relation between E and \vec{p} ,

$$E^2 = m^2 + \vec{p}^2 \ . \tag{7}$$

This in turn leads the existence of both positiveand negative-frequency solutions

$$u_{\vec{n}} e^{-ipx}$$
, and $v_{\vec{n}} e^{+ipx}$, (8)

where $p^{\mu} = \{E_{\vec{p}}, \vec{p}\}$ and $E_{\vec{p}}$ is the positive square root $E_{\vec{v}} = +\sqrt{m^2 + \vec{p}^2}$.

For the bispinors $u_{\vec{p}}$ and $v_{\vec{p}}$ we get from the Dirac equation.

$$u_{\vec{p}} = \begin{pmatrix} \phi \\ \frac{\vec{\sigma}\vec{p}}{E_{\vec{p}} + M} \phi \end{pmatrix}, \quad v_{\vec{p}} = \begin{pmatrix} \frac{\vec{\sigma}\vec{p}}{E_{\vec{p}} + M} \chi \\ \chi \end{pmatrix}$$
(9)

where ϕ and χ are arbitrary spinors.

There are two linearly independent spinors, which can be chosen, for example, as eigen-spinors of the $\frac{1}{2}\sigma_3$ operator in the frame where $\vec{p}=0$,

$$\frac{1}{2}\sigma_3\phi_\lambda = \lambda\phi_\lambda \ , \tag{10}$$

and similarly for the spinor χ .

Normalization to unit charge

The charge density for the spin-1/2 field is

$$j^0 = \bar{\psi}\gamma^0\psi = \psi^{\dagger}\psi \ . \tag{11}$$

Normalization to unit charge $Q = \int_{V=1} d^3x j^0$ then gives for our plane-waves

$$Q\left[ue^{-ipx}\right] = u^{\dagger}u = \phi^{\dagger}\phi \frac{2E_{\vec{p}}}{E_{\vec{p}} + m} \to 1, \quad (12)$$

$$Q[ve^{+ipx}] = v^{\dagger}v = \chi^{\dagger}\chi \frac{2E_{\vec{p}}}{E_{\vec{v}} + m} \to 1 \ (!).(13)$$

Note that unlike the scalar field the spin-1/2 field seemingly gives positive charges for both positive-and negative-frequency solutions.

Unit charge condition for a plane-wave leads to the normalizations

$$u_{\lambda}^{\dagger} u_{\lambda'} = v_{\lambda}^{\dagger} v_{\lambda'} = \delta_{\lambda \lambda'} , \qquad (14)$$

which are obtained by choosing

$$\phi_{\lambda}^{\dagger}\phi_{\lambda'} = \chi_{\lambda}^{\dagger}\chi_{\lambda'} = \frac{E_{\vec{p}} + m}{2E_{\vec{p}}}\delta_{\lambda\lambda'} . \tag{15}$$

With this normalization

$$\bar{u}_{\lambda}u_{\lambda'} = -\bar{v}_{\lambda}v_{\lambda'} = \frac{m}{E_{\vec{v}}}\delta_{\lambda\lambda'} . \tag{16}$$

Energies of the normal modes

From (4) we get that the positive-energy solution has positive energy,

$$E\left[ue^{-ipx}\right] = \bar{u}\vec{\gamma}\vec{p}u + m\bar{u}u = E_{\vec{p}} , \qquad (17)$$

while the negative-energy solution seemingly has negative energy,

$$E\left[ve^{+ipx}\right] = \bar{v}\vec{\gamma}(-\vec{p})v + m\bar{v}v = -E_{\vec{p}} . (!) \qquad (18)$$

Apparently out theory indicates that spin-1/2 fields cannot exist as classical fields (which agrees with the experiment).

Charge and Hamiltonian in the normal mode representation

An arbitrary solution to the Dirac equation can be represented as a linear combination of normal modes,

$$\psi = \sum_{\vec{p}\lambda} \left(a_{\vec{p}\lambda} u_{\vec{p}\lambda} e^{-ipx} + b_{\vec{p}\lambda}^{\dagger} v_{\vec{p}\lambda} e^{-ipx} \right) . \tag{19}$$

The charge of the field is then given as

$$Q = \sum_{\vec{p}\lambda} \left(a^{\dagger}_{\vec{p}\lambda} a_{\vec{p}\lambda} + b_{\vec{p}\lambda} b^{\dagger}_{\vec{p}\lambda} \right) , \qquad (20)$$

and the Hamiltonian,

$$H = \sum_{\vec{p}\lambda} E_{\vec{p}} \left(a_{\vec{p}\lambda}^{\dagger} a_{\vec{p}\lambda} - b_{\vec{p}\lambda} b_{\vec{p}\lambda}^{\dagger} \right) . \tag{21}$$

Anti-commutaion relations for generation/annihilation operators

The only way to make sense of the charge and Hamiltonian is to postulate *anti-commutation* relation for the spin-1/2 generation/annihilation operators,

$$a_{\vec{p}\lambda}a_{\vec{n}'\lambda'}^{\dagger} + a_{\vec{n}'\lambda'}^{\dagger}a_{\vec{p}\lambda} = \delta_{\vec{p}\vec{p}'}\delta_{\lambda\lambda'} , \qquad (22)$$

$$b_{\vec{p}\lambda}b_{\vec{p}'\lambda'}^{\dagger} + b_{\vec{p}'\lambda'}^{\dagger}b_{\vec{p}\lambda} = \delta_{\vec{p}\vec{p}'}\delta_{\lambda\lambda'}. \qquad (23)$$

Thus in canonical quantum field theory spin-1/2 particles are necessarily fermions.

With this postulates the charge and the energy take the form we wanted,

$$Q = \sum_{\vec{p}\lambda} \left(n_{\vec{p}\lambda} - \bar{n}_{\vec{p}\lambda} \right) , \qquad (24)$$

$$E = \sum_{\vec{p}\lambda} E_{\vec{p}} \left(n_{\vec{p}\lambda} + \bar{n}_{\vec{p}\lambda} \right) , \qquad (25)$$

where

$$n_{\vec{p}\lambda} = a_{\vec{p}'\lambda'}^{\dagger} a_{\vec{p}\lambda} , \qquad (26)$$

and

$$\bar{n}_{\vec{p}\lambda} = b_{\vec{p}'\lambda'}^{\dagger} b_{\vec{p}\lambda} , \qquad (27)$$

are the number-of-particle and number-of-anti-particle operators with eigenvalues 0 and 1.

Exercises

1. Show that for a classical particle with the action

$$S = \int dt L(q, \dot{q})$$

(a) the Euler-Lagrange equation is

$$\frac{\partial}{\partial t} \frac{\partial L}{\partial \dot{a}} = \frac{\partial L}{\partial a} .$$

(b) the (translation invariance) momentum is

$$p = \frac{\partial L}{\partial \dot{q}} \ .$$

(c) the (time invariance) energy is

$$E = \frac{\partial L}{\partial \dot{q}} \dot{q} - L \; . \label{eq:energy}$$

2. Show that for a classical particle with mass m the action

$$S = -m \int ds \; ,$$

where $ds^2 = dt^2 - d\vec{r}^2$ leads to the relativistic relation between energy and momentum,

$$E^2 = m^2 + \vec{p}^2$$
.

Hints:

(a) Show that the Lagrangian is

$$L = -m\sqrt{1 - \vec{v}^2}.$$

(b) Show that the momentum is

$$\vec{p} = \frac{m\vec{v}}{\sqrt{1 - \vec{v}^2}}.$$

(c) Show that the energy is

$$E = \frac{m}{\sqrt{1 - \vec{v}^2}}.$$

- 3. Calculate the current and the momentum of the positive- and negative-frequency solutions of the Dirac equation.
- 4. Find the projection operators \mathcal{P}_{\pm} on the positive and negative frequency solutions of the Dirac equation.
- 5. The spinors $\phi \in (\frac{1}{2},0)$ and $\chi \in (0,\frac{1}{2})$ are often called "left" and "right". Find out why. Hint: find the projection of the spin on the velocity vector as function of the velocity with which the spinor moves relative to the observer: consider a state with equal z-projections of the spin and then boost it along the z-axis. What happens if the spinor has zero-mass and is thus doomed to forever move with the speed of light?
- 6. Show that $\frac{d^3p}{2E_{\vec{p}}}$ is invariant.