note4: September 29, 2008

Transformational properties of fields

It was relatively easy to build a covariant theory for
a scalar (one-component) field. For multi-component
fields (like the electro-magnetic field) we need to learn
their transformational properties under coordinate
transformations.

The group of coordinate transformations

The coordinate transformations  — z' = az be-
tween inertial frames form a group: the group opera-
tion is composition, the identity element is identical
transformation, and the inverse element is the inverse
transformation.

An n-component physical quantity v transforms
with some n X n matrices t,, ¥ — 9’ = t,1, which
form a group homomorphic to the group of coordi-
nate transformations, since the group operations are
apparently preserved,

taras = tarlas; ta-1 = (ta)_la te=1 =1.

(1)
The group t, is referred to as a representation of
the group of coordinate transformation.

Lie groups and Lie algebras

For rotations and velocity boosts the transformation
matrices are differentiable functions of the transfor-
mation parameters.

A group whose elements g are differentiable func-
tions of a set of continuous parameters, g(ai, ..., @n),
is called a Lie group.

An element close to 1 (assuming g(0) = 1) can be
expressed in terms of the generators I,

g(da) =141 Z I doy,
k=1

(2)

The commutation relations of the generators are
called Lie algebra,

n
Ly —Indj=iY Ch.Ii, (3)
k=1

where C]’-‘m is the so called the structure constant.
The Lie algebra largely defines the properties of a
Lie group.

Lie algebra of the rotation group

The transformation of the coordinates under a rota-
tion around z-axis over the angle 6 is given as

' cosf sinf O T
y ] = —sinf cosf 0O y 4)
z' 0 0 1 2

For an infinitesimally small angle df the rotation ma-
trix can be written as

0 —i 0
1+i| i 0 0 |dd=1+ildd, (5
0 0 0

where I, is the generator of an infinitesimal rotation
around z-axis. The corresponding generators I, and
I, are

0 0 i 00 0
I,=( 0 oo ], ,=(00 —i (6)
- 0 0 0 i 0

Direct calculation shows that these generators have
the Lie algebra

Ll =Ly =i egmIn (7)
m

where €y, is an antisymmetric tensor of rank 3.
Rotation group is denoted SO(3), which stands for
special (determinant 1) orthogonal matrix 3x3.

The Lie algebra of the Lorentz group

The Lorentz group consists of rotations and velocity
boosts. The 4-dimensional rotation generators can be
written immediately from (5) and (6) as

00 0 O 0 0 00

00 — 0 0 0 0 <

T = 04+ 0 O Ty 0 0 00

00 0 O 0 — 0 0
000 O
000 O

o = 00 0 —¢ )

00 ¢ O

The Lorentz boost matrix for an infinitesimally
small relative velocity dv along one of the axes is

1 —dv (0
(—dv 1 >_1+Z(i o)d”

Thus the three generators of velocity boosts are

9)

0 0 0 ¢ 0 0 ¢ O
00 00 00 0O
K. = 00 00 Ky = 1 00 0
t 000 00 0O
0 ¢ 00
1 00 0
K, = 0000 (10)
0000



Having the generators, one can calculate the Lie
algebra of the Lorentz group

JpJi — i Jy = izeklmjm (11)
K — K Jp, = izeklme (12)
KkKl - KlKk = (13)

—i E €kimJIm
m

The infinitesimal group element corresponding to a
rotation around the direction 77 over an angle df and
a velocity boost d¥ is given as!

g=1+iJidd + iKdv. (14)

The Lie algebra of the Lorentz group can be writ-
ten in a more symmetric way with a (complex)
parametrization

dw = 1id6 + idv. (15)
The infinitesimal Lorentz transformation is then

g =1+ iMdi + iNdw* (16)

where the (hermitian) generators M and N are linear
combinations of generators J and K

1 - -

M=§(J—z'K),J\7=§(J+iK). (17)
The Lie algebra for the new generators is
MpM; — MMy, = izeklmMm (18)
m
NyNy — N|Ny, = lz €ktmNm (19)
m
MpN, — Nj\M;, = 0. (20)

Thus the Lorentz Lie algebra is a combination of
two independent rotation Lie algebras.

Irreducible representations of the rotation
group

Canonically, instead of the generators I, I, I, we
shall use another parametrization, I, I_, I, where

1
I, =—(I,+1,), 21
+ \/i( v) (21)
with the commutation relation
LI, 1.0, =41, ,I,] —I1I,=1I,. (22)

lywhere @b = a1b1 + asba + asbs

Let us look for the representations where the I, ma-
trix is diagonal. Let it have eigenvectors |A) with
eigenvalues A,

LAy = A\ .

From the commutation relations (22) follows, that
the states I |A) are also eigenvectors of I,

(23)

L(I£[A) = A £ D(I£|N). (24)

For a finite dimension representation there must
exist the largest eigenvalue, say j, such that

Ii]5) = 0.

Similarly, there should also exist the smallest eigen-
value, such that

(25)

(1)) =0, (26)
where N is some integer number.
Thus the eigenvalues of I, is the sequence
5,9—1,73—2,...,5 —N. (27)
The trace of the generator I, is equal zero?,
trace(I,) =7+ ( —1)+...+(j — N)
Loj—Mw+1=0. (28

2

Thus j = N/2 and the eigenvalues of I, are j,j —
1,...,—j. The dimension of a representation with a
given j is 25 + 1.

Exercises

1. A group parameter ¢ is called additive if

9(p1)g(p2) = g(p1 + 2). Find the additive pa-
rameter of the Lorentz boosts along the z-axis.
Find the corresponding generator.

2. Show that if U = exp(—i)_, Jyay) is unitary
(U'U = 1) and the parameters oy, are real, then

the operators J, are hermitian (J,;r = Ji). Show
that if det(U) = 1 then trace(Jy) = 0.

3. From the commutation relations

(L, Ix] = ZZ €5xidy
1

-

find the 2x2 representation of the generators I
(assuming I3 is diagonal and I is real).

2taking trace of the commutation relation



