Transformational properties of fields It was relatively easy to build a covariant theory for a scalar (one-component) field. For multi-component fields (like the electro-magnetic field) we need to learn their transformational properties under coordinate transformations. ### The group of coordinate transformations The coordinate transformations $x \to x' = ax$ between inertial frames form a group: the group operation is composition, the identity element is identical transformation, and the inverse element is the inverse transformation. An *n*-component physical quantity ψ transforms with some $n \times n$ matrices t_a , $\psi \to \psi' = t_a \psi$, which form a group homomorphic to the group of coordinate transformations, since the group operations are apparently preserved, $$t_{a_1 a_2} = t_{a_1} t_{a_2}, \ t_{a^{-1}} = (t_a)^{-1}, \ t_{a=1} = 1.$$ (1) The group t_a is referred to as a representation of the group of coordinate transformation. #### Lie groups and Lie algebras For rotations and velocity boosts the transformation matrices are differentiable functions of the transformation parameters. A group whose elements g are differentiable functions of a set of continuous parameters, $g(\alpha_1, ..., \alpha_n)$, is called a *Lie group*. An element close to 1 (assuming g(0) = 1) can be expressed in terms of the *generators* I_k , $$g(d\alpha) = 1 + i \sum_{k=1}^{n} I_k d\alpha_k$$ (2) The commutation relations of the generators are called *Lie algebra*, $$I_{j}I_{m} - I_{m}I_{j} = i\sum_{k=1}^{n} C_{jm}^{k}I_{k},$$ (3) where C_{jm}^k is the so called the *structure constant*. The Lie algebra largely defines the properties of a Lie group. #### Lie algebra of the rotation group The transformation of the coordinates under a rotation around z-axis over the angle θ is given as $$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} . \tag{4}$$ For an infinitesimally small angle $d\theta$ the rotation matrix can be written as $$1 + i \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} d\theta \equiv 1 + iI_z d\theta , \qquad (5)$$ where I_z is the generator of an infinitesimal rotation around z-axis. The corresponding generators I_x and I_x are $$I_y = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}, I_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} . \tag{6}$$ Direct calculation shows that these generators have the Lie algebra $$I_k I_l - I_l I_k = i \sum_m \epsilon_{klm} I_m , \qquad (7)$$ where ϵ_{klm} is an antisymmetric tensor of rank 3. Rotation group is denoted SO(3), which stands for special (determinant 1) orthogonal matrix 3×3 . #### The Lie algebra of the Lorentz group The Lorentz group consists of rotations and velocity boosts. The 4-dimensional rotation generators can be written immediately from (5) and (6) as $$J_z = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \ J_y = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i \\ 0 & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \end{array}\right)$$ The Lorentz boost matrix for an infinitesimally small relative velocity dv along one of the axes is $$\left(\begin{array}{cc} 1 & -dv \\ -dv & 1 \end{array}\right) = 1 + i \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right) dv \; . \tag{9}$$ Thus the three generators of velocity boosts are $$K_z = \begin{pmatrix} 0 & 0 & 0 & i \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix} K_y = \begin{pmatrix} 0 & 0 & i & 0 \\ 0 & 0 & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$ algebra of the Lorentz group $$J_k J_l - J_l J_k = i \sum_m \epsilon_{klm} J_m \tag{11}$$ $$J_k K_l - K_l J_k = i \sum_m \epsilon_{klm} K_m \tag{12}$$ $$K_k K_l - K_l K_k = -i \sum_m \epsilon_{klm} J_m . \qquad (13)$$ The infinitesimal group element corresponding to a rotation around the direction \vec{n} over an angle $d\theta$ and a velocity boost $d\vec{v}$ is given as¹ $$g = 1 + i\vec{J}\vec{n}d\theta + i\vec{K}d\vec{v}. \tag{14}$$ The Lie algebra of the Lorentz group can be written in a more symmetric way with a (complex) parametrization $$d\vec{w} = \vec{n}d\theta + id\vec{v}. \tag{15}$$ The infinitesimal Lorentz transformation is then $$g = 1 + i\vec{M}d\vec{w} + i\vec{N}d\vec{w}^* , \qquad (16)$$ where the (hermitian) generators \vec{M} and \vec{N} are linear combinations of generators \vec{J} and \vec{K} $$\vec{M} = \frac{1}{2}(\vec{J} - i\vec{K}) , \ \vec{N} = \frac{1}{2}(\vec{J} + i\vec{K}) .$$ (17) The Lie algebra for the new generators is $$M_k M_l - M_l M_k = i \sum_m \epsilon_{klm} M_m \qquad (18)$$ $$N_k N_l - N_l N_k = i \sum_{m}^{m} \epsilon_{klm} N_m \qquad (19)$$ $$M_k N_l - N_l M_k = 0. (20)$$ Thus the Lorentz Lie algebra is a combination of two independent rotation Lie algebras. ## Irreducible representations of the rotation group Canonically, instead of the generators I_x , I_y , I_z we shall use another parametrization, I_+ , I_- , I_z , where $$I_{\pm} = \frac{1}{\sqrt{2}} (I_x \pm I_y),$$ (21) with the commutation relation $$I_z I_{\pm} - I_{\pm} I_z = \pm I_{\pm} , I_+ I_- - I_- I_+ = I_z.$$ (22) Having the generators, one can calculate the Lie Let us look for the representations where the I_z matrix is diagonal. Let it have eigenvectors $|\lambda\rangle$ with eigenvalues λ , $$I_z|\lambda\rangle = \lambda|\lambda\rangle$$. (23) From the commutation relations (22) follows, that the states $I_{\pm}|\lambda\rangle$ are also eigenvectors of I_z , $$I_z(I_{\pm}|\lambda\rangle) = (\lambda \pm 1)(I_{\pm}|\lambda\rangle).$$ (24) For a finite dimension representation there must exist the largest eigenvalue, say j, such that $$I_{+}|j\rangle = 0. (25)$$ Similarly, there should also exist the smallest eigenvalue, such that $$(I_{-})^{(N+1)}|j\rangle = 0,$$ (26) where N is some integer number. Thus the eigenvalues of I_z is the sequence $$j, j - 1, j - 2, ..., j - N.$$ (27) The trace of the generator I_z is equal zero². trace $$(I_z) = j + (j - 1) + \dots + (j - N)$$ = $\frac{1}{2}(2j - N)(N + 1) = 0$. (28) Thus j = N/2 and the eigenvalues of I_z are j, j1, ..., -j. The dimension of a representation with a given j is 2j + 1. ### Exercises - 1. A group parameter φ is called additive if $g(\varphi_1)g(\varphi_2) = g(\varphi_1 + \varphi_2)$. Find the additive parameter of the Lorentz boosts along the z-axis. Find the corresponding generator. - 2. Show that if $U = \exp(-i\sum_k J_k \alpha_k)$ is unitary $(U^{\dagger}U=1)$ and the parameters α_k are real, then the operators J_k are hermitian $(J_k^{\dagger} = J_k)$. Show that if det(U) = 1 then $trace(J_k) = 0$. - 3. From the commutation relations $$[I_j, I_k] = i \sum_{l} \epsilon_{jkl} I_l$$ find the 2x2 representation of the generators \vec{I} (assuming I_3 is diagonal and I_1 is real). ¹ where $\vec{a}\vec{b} \equiv a_1b_1 + a_2b_2 + a_3b_3$ ²taking trace of the commutation relation