Transformational properties of fields

It was relatively easy to build a covariant theory for a scalar (one-component) field. For multi-component fields (like the electro-magnetic field) we need to learn their transformational properties under coordinate transformations.

The group of coordinate transformations

The coordinate transformations $x \to x' = ax$ between inertial frames form a group: the group operation is composition, the identity element is identical transformation, and the inverse element is the inverse transformation.

An *n*-component physical quantity ψ transforms with some $n \times n$ matrices t_a , $\psi \to \psi' = t_a \psi$, which form a group homomorphic to the group of coordinate transformations, since the group operations are apparently preserved,

$$t_{a_1 a_2} = t_{a_1} t_{a_2}, \ t_{a^{-1}} = (t_a)^{-1}, \ t_{a=1} = 1.$$
 (1)

The group t_a is referred to as a representation of the group of coordinate transformation.

Lie groups and Lie algebras

For rotations and velocity boosts the transformation matrices are differentiable functions of the transformation parameters.

A group whose elements g are differentiable functions of a set of continuous parameters, $g(\alpha_1, ..., \alpha_n)$, is called a *Lie group*.

An element close to 1 (assuming g(0) = 1) can be expressed in terms of the *generators* I_k ,

$$g(d\alpha) = 1 + i \sum_{k=1}^{n} I_k d\alpha_k$$
 (2)

The commutation relations of the generators are called *Lie algebra*,

$$I_{j}I_{m} - I_{m}I_{j} = i\sum_{k=1}^{n} C_{jm}^{k}I_{k},$$
 (3)

where C_{jm}^k is the so called the *structure constant*. The Lie algebra largely defines the properties of a Lie group.

Lie algebra of the rotation group

The transformation of the coordinates under a rotation around z-axis over the angle θ is given as

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} . \tag{4}$$

For an infinitesimally small angle $d\theta$ the rotation matrix can be written as

$$1 + i \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} d\theta \equiv 1 + iI_z d\theta , \qquad (5)$$

where I_z is the generator of an infinitesimal rotation around z-axis. The corresponding generators I_x and I_x are

$$I_y = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}, I_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} . \tag{6}$$

Direct calculation shows that these generators have the Lie algebra

$$I_k I_l - I_l I_k = i \sum_m \epsilon_{klm} I_m , \qquad (7)$$

where ϵ_{klm} is an antisymmetric tensor of rank 3.

Rotation group is denoted SO(3), which stands for special (determinant 1) orthogonal matrix 3×3 .

The Lie algebra of the Lorentz group

The Lorentz group consists of rotations and velocity boosts. The 4-dimensional rotation generators can be written immediately from (5) and (6) as

$$J_z = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \ J_y = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i \\ 0 & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \end{array}\right)$$

The Lorentz boost matrix for an infinitesimally small relative velocity dv along one of the axes is

$$\left(\begin{array}{cc} 1 & -dv \\ -dv & 1 \end{array}\right) = 1 + i \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right) dv \; . \tag{9}$$

Thus the three generators of velocity boosts are

$$K_z = \begin{pmatrix} 0 & 0 & 0 & i \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix} K_y = \begin{pmatrix} 0 & 0 & i & 0 \\ 0 & 0 & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

algebra of the Lorentz group

$$J_k J_l - J_l J_k = i \sum_m \epsilon_{klm} J_m \tag{11}$$

$$J_k K_l - K_l J_k = i \sum_m \epsilon_{klm} K_m \tag{12}$$

$$K_k K_l - K_l K_k = -i \sum_m \epsilon_{klm} J_m . \qquad (13)$$

The infinitesimal group element corresponding to a rotation around the direction \vec{n} over an angle $d\theta$ and a velocity boost $d\vec{v}$ is given as¹

$$g = 1 + i\vec{J}\vec{n}d\theta + i\vec{K}d\vec{v}. \tag{14}$$

The Lie algebra of the Lorentz group can be written in a more symmetric way with a (complex) parametrization

$$d\vec{w} = \vec{n}d\theta + id\vec{v}. \tag{15}$$

The infinitesimal Lorentz transformation is then

$$g = 1 + i\vec{M}d\vec{w} + i\vec{N}d\vec{w}^* , \qquad (16)$$

where the (hermitian) generators \vec{M} and \vec{N} are linear combinations of generators \vec{J} and \vec{K}

$$\vec{M} = \frac{1}{2}(\vec{J} - i\vec{K}) , \ \vec{N} = \frac{1}{2}(\vec{J} + i\vec{K}) .$$
 (17)

The Lie algebra for the new generators is

$$M_k M_l - M_l M_k = i \sum_m \epsilon_{klm} M_m \qquad (18)$$

$$N_k N_l - N_l N_k = i \sum_{m}^{m} \epsilon_{klm} N_m \qquad (19)$$

$$M_k N_l - N_l M_k = 0. (20)$$

Thus the Lorentz Lie algebra is a combination of two independent rotation Lie algebras.

Irreducible representations of the rotation group

Canonically, instead of the generators I_x , I_y , I_z we shall use another parametrization, I_+ , I_- , I_z , where

$$I_{\pm} = \frac{1}{\sqrt{2}} (I_x \pm I_y),$$
 (21)

with the commutation relation

$$I_z I_{\pm} - I_{\pm} I_z = \pm I_{\pm} , I_+ I_- - I_- I_+ = I_z.$$
 (22)

Having the generators, one can calculate the Lie Let us look for the representations where the I_z matrix is diagonal. Let it have eigenvectors $|\lambda\rangle$ with eigenvalues λ ,

$$I_z|\lambda\rangle = \lambda|\lambda\rangle$$
 . (23)

From the commutation relations (22) follows, that the states $I_{\pm}|\lambda\rangle$ are also eigenvectors of I_z ,

$$I_z(I_{\pm}|\lambda\rangle) = (\lambda \pm 1)(I_{\pm}|\lambda\rangle).$$
 (24)

For a finite dimension representation there must exist the largest eigenvalue, say j, such that

$$I_{+}|j\rangle = 0. (25)$$

Similarly, there should also exist the smallest eigenvalue, such that

$$(I_{-})^{(N+1)}|j\rangle = 0,$$
 (26)

where N is some integer number.

Thus the eigenvalues of I_z is the sequence

$$j, j - 1, j - 2, ..., j - N.$$
 (27)

The trace of the generator I_z is equal zero².

trace
$$(I_z) = j + (j - 1) + \dots + (j - N)$$

= $\frac{1}{2}(2j - N)(N + 1) = 0$. (28)

Thus j = N/2 and the eigenvalues of I_z are j, j1, ..., -j. The dimension of a representation with a given j is 2j + 1.

Exercises

- 1. A group parameter φ is called additive if $g(\varphi_1)g(\varphi_2) = g(\varphi_1 + \varphi_2)$. Find the additive parameter of the Lorentz boosts along the z-axis. Find the corresponding generator.
- 2. Show that if $U = \exp(-i\sum_k J_k \alpha_k)$ is unitary $(U^{\dagger}U=1)$ and the parameters α_k are real, then the operators J_k are hermitian $(J_k^{\dagger} = J_k)$. Show that if det(U) = 1 then $trace(J_k) = 0$.
- 3. From the commutation relations

$$[I_j, I_k] = i \sum_{l} \epsilon_{jkl} I_l$$

find the 2x2 representation of the generators \vec{I} (assuming I_3 is diagonal and I_1 is real).

¹ where $\vec{a}\vec{b} \equiv a_1b_1 + a_2b_2 + a_3b_3$

²taking trace of the commutation relation