note3: September 29, 2008

Canonical quantization of a scalar field
Lagrangian, current, energy

If the field equation is to be a second order linear
differential equation, the Lagrangian must be at most
second order in the field and contain only the field
itself and its first derivatives. And it must also be a
real Lorentz scalar.

For a complex scalar field ¢ these conditions allow
basically only one possible Lagrangian

L=08,4"0"¢—m?¢*¢, 1)

where m is some constant (later to be identified with
the mass).

The corresponding Euler-Lagrange equation is the
Klein-Gordon equation,

0,0"¢ +m*¢ =0. (2)
The conserved current is given as
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The energy density is equal the time-time compo-
nent of the energy-momentum tensor,
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Normal modes

Normal modes are orthogonal and normilized solu-
tions of the field equation (with a given boundary
condition) which make a complete basis. Any other
solution of the field equations (with the same bound-
ary condition) can be represented as a linear superpo-
sition of normal modes. Plane waves, spherical waves
or stationary waves are often chosen as normal modes.

In the canonical quantization the normal modes
become quanta of the field.

Let us try to find a solution of the Klein-Gordon
equation in the form of a plane wave,

Bla) = ek,

where k* = {w,k}, kz = ka2 = wt — kr.
Substituting this plane wave into the Klein-Gordon
equation (2) gives
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K =m?,

(6)

where k? = k,k* = w? — k?. This equation is ap-
parently the well known relativistic relation between
energy, mass and momentum
wr=m?+k*. (7

Thus a plane wave with an arbitrary k is a solution
to (2) as long as w satisfies the relation (7).

Note that a complete basis must include both
positive-frequency solutions with w = +vm?2 + k2
and negative-frequency solutions, w = —vm?2 + k2.

Periodic boundary conditions

Let us assume that our field is contained in a box of
length L, much larger that the typical length of the
system. Then the boundary condition on the surface
of the box should be of no importance for the system.
We can then choose the boundary condition to our
liking, and we choose a periodic boundary condition,

Blo=1. = Plo=0; Dly=1 = Bly=0; ¢|.=1 = P|.=0 . (8)

For plane-waves e™* this means that the momentum
k has to be of the form
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where ng,ny,n, are integer numbers.

With this boundary condition plane-waves with
different momenta are orthogonal,

/ d3$67ik’xeikx = V(Sk,k, (10)
v

where 0y is the Kronecker delta-symbol. The vol-
ume V should vanish from all the final expressions,
therefore we can just as well put it equal to 1 from
the very beginning.

Normalization to a unit charge

A normal mode can be normalized covariantly to a
unit charge,

Q) = /V dvjo = / Vi (606 — 0,6°6) . (11)

Substitutinge e~**" into (11) gives the charge of a
plane wave, '
Qe™*) = 2w .

Note that positive-frequency solutions have positive
charge, while negative-frequency solutions have neg-
ative charge.

Thus a complete basis of orthogonal and nor-
malized solutions to the Klein-Gordon equation can
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be chosen as a set of positive-frequency, ¢, and
negative-frequency, ¢, , plane-wave normal modes
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where k* = (wi, k) and wx = +vm? + k2 is the pos-
itive square root.

Energy and charge in normal mode represen-
tation

Any solution ¢ to the field equation can be repre-
sented as a superposition of the normal modes,

(ake_“”C + bﬁeikm) , (14)

¢(w)=2¢;—k

where the expansion coefficients ax and by are com-
plex numbers (soon to become operators).

The Hamiltonian in the normal mode representa-
tion is equal

H = /dVTO = Zwk(al’iak + bkbf{) . (15)
k
and the charge is equal
Q= /deO = (agax — bicby) - (16)
Kk

Apparently the positive and negative frequency so-
lutions have the same energy but opposite charges —
like particles and antiparticles.

Canonical quantization: the number of parti-
cles must be an operator

Experiment shows that the energy of a system of par-
ticles and antiparticles (noninteracting and thus mov-
ing with some constant momenta) is given as

E = Zwk(nk + ﬁk) ,
k

(17)

while the total charge of such a system is equal

Q= (n—mx), (18)
k

where ny is the number of particles, 7y is the num-
ber of antiparticles with momentum k, both numbers
being non-negative integers.

Mathematically the number of particles must then
be represented by an operator (a matrix) with non-
negative integer eigenvalues.

Generation-annihilation operators

Comparing (17) and (18) with (15) and (16) we have
got to postulate that the object ajax must be the
number of particles operator, nx = aLak, with non-
negative integer eigenvalues. This can be fulfilled if
aL and ax (and similarly b;'( and by) are themselves
operators (called generation-annihilation operators)
with commutation relations

aka;'( — a;r(ak =1, (19)
or with anti-commutation relations
aal +ala, =1. (20)

The commutation relations (19) lead to the number
of particle operator ny with eigenvaluesn = 0,1,2,....
In other words any number of particles can be in the
same state. Such particles are called bosons.

The anti-commutation relations (20) lead to the
number of particle operator nyx with only two eigen-
values n = 0,1. That is at most one particle can
occupy a given state. These particles are called
fermions.

Apparently for the scalar field the commutation re-
lation (19) has to be chosen, otherwise the Hamilto-
nian (15) will not be bounded from below. The scalar
(spin-0) particles must then necessarily be bosons.

Exercises

1. Show that d*z and dV j° are Lorentz scalars, and
that dV T is a Lorentz 4-vector.

2. Prove the orthogonality of normal modes with
periodic boundary condition (10).

3. Given aa' — afa = 1 (aa' + afa = 1) find the
eigenvalues of the afa operator.

4. For the Lagrangian £ = 9,¢*0*¢ — m*¢*¢ find
the expressions for the energy-momentum tensor
T# and the conserved current density j*.

5. Calculate the 4-momentum P* = [ dVT and
the conserved current j* for a positive and nega-
tive frequency normal modes (13). Interpret the
results.

6. Prove that different normal modes contribute to
the energy (15) and the charge (16) indepen-
dently (there are no interference terms in the
sums).



