note2: September 29, 2008

Classical Lagrangian field theory

When building a theory for a physical system it is
often of advantage to use the variational principle!
instead of directly postulating the equations of mo-
tions.

Action and Lagrangian

The action S(¢) of a field ¢ is a functional (it takes
a function as an argument and returns a number as
a result) of a field ¢(z*) in the form

S(¢) = / dlal(6.0,0, ()

where the kernel £(¢,0,¢) is called Lagrangian den-
sity or simply Lagrangian.

Variational Principle

The variational principle is used (among many other
useful things) to find the trajectory (a full description
of the motion) of a physical system:

Of all possible trajectories of a physical sys-
tem with the given boundary condition the
theoretical solution is the one which provides
the least action.

Alternatively,

The variation of the action vanishes on the
theoretical solution for the trajectory of the
system.

Thus if ¢(z#) is a solution, and d¢(z#) is a small arbi-
trary variation (which does not change the boundary
condition), the (linear part of the) variation of the
action vanishes,

65(¢) = S(¢ +6¢) —5(4) = 0. (2)

Euler-Lagrange equation

The trajectory of minimal action actually satisfies an
equation of motion, called Euler-Lagrange equation,
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which can be derived from the variational principle.
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lalso called “Stationary Action Principle” or “Least Action
Principle”.

Translation invariance and energy-momentum
tensor

Since, as the experiment shows, the space-time is uni-
form or, in other words, translation invariant, the
Lagrangian can not depend explicitly on coordinates
z¥. Thus, under a translation ¥ — z¥ + dz", the

variation of the Lagrangian is given by
oL oL
9¢ 9(8,9)

Using the equation of motion (3) we can rewrite this
as

6L = Z—6¢ + 0,0 . (4)
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Dividing the equation by dz" gives
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which can be rewritten in a form of a 4-divergence
0,TF =0, (M

where T# is called the canonical energy-momentum

tensor,

oL
T =72 5,6 Lo".

Conservation of energy and momentum

The vanishing 4-divergence can be rewritten in a 3-
notation as
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where i=1,2,3. Suppose now that we have an isolated
system in a (large) 3-volume V where the field is zero
at the surface of the volume and beyond. Integrating
(9) over the 3-volume V gives the four conservation
laws for the energy and momentum:
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where P, is the energy-momentum 4-vector of the

field
P, = /d%TB (11)

Thus the time components of the energy-momentum
tensor can be interpreted as energy-momentum den-
sities of our field,
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The Hamiltonian (that is the energy as func- where @) is the charge inside the volume
tion of fields) is the time-component of the energy-
momentum 4-vector. Q= dvj° (20)
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the boundary) its charge conserves.
Note that for a real field the current is apparently
zero — real fields are necessarily neutral.

Note that energy and momentum is conserved only
on the solutions of the Euler-Lagrange equation.

Gauge invariance and conserved current .
Exercises

If the field ¢ is complex there is another transfor-
mation which leaves our Lagrangian invariant — the
global change of the phase of the field or oL

e, W
¢ = pe’ ~ ¢ +ich, (14) 0¢ " 0(9u0)

where € is an arbitrary phase shift (small for simplic- from the variational principle 05 = 0.
ity). This transformation is often called the global 2. Derive the Klein-Gordon equation
gauge transformation.

The variation of the Lagrangian under the phase Bu0"¢ +m?p =0,
shift is zero, since it is real (perhaps we need to as-
sume additionally that the Lagrangian contains only
integer powers of fields).

1. Derive the Euler-Lagrange equation,

from the Lagrangian

L=08,0*0"¢ —m?¢*¢ .
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The continuity equation (16) can be interpreted in 3-
notation, j* = {p,j}, as the charge conservation law.
In the differential form

dp
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and in the integral form
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