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Non-relativistic limit of QFT

In the non-relativistic limit the QFT expres-
sion for the S-matrix reduces to the Lippmann-
Schwinger equation for the scattering amplitude. The
Lippmann-Schwinger equation is equivalent to the
Schrodinger equation.

In the first order Born approximation the elastic
scattering amplitude is given by the Fourier trans-
form of the potential. Inversely, the potential is given
as inverse Fourier transform of the scattering ampli-
tude. The prescription to obtain the non-relativistic
potential from a QFT is then relatively simple: calcu-
late the relativistic transition amplitude for the elas-
tic scattering in the lowest order perturbation theory;
make the non-relativistic limit; and calculate the in-
verse Fourier transform.

Lippmann-Schwinger equation

Consider a non-relativistic elastic scattering in a sys-
tem of two particles described by the Hamiltonian
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where V(r) is the interaction potential, m is the re-
duced mass of the two particles, r is their relative
distance, and h is the Planck’s constant.

The cross-section of the scattering from the ini-
tial state with relative momentum k into the final
state with relative momentum k’ is determined by
the so called reaction matrix! denoted here as M (for
certain reasons which are of little importance in the
present, context),
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It follows directly from the Schrdédinger equa-
tion? that the reaction matrix satisfies the so called

lthe reaction matrix is, of course, proportional to S — 1,
where S is the S-matrix.

2In the non-relativistic quantum mechanics calculating the
cross-section do involves solving the the Schrédinger equation
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where wl(j') is the scattering wave-function with the asymptotic

+ikr
() T2 ek 4 p S (1)
where f is the scattering amplitude and the cross section is
given as do/dQ = | f|%.
Multiplying the Schrédinger equation by (E — Hp)~! from
the left leads to the Lippmann-Schwinger equation for the scat-
tering wave-function,
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Lippmann-Schwinger equation,

M=V+VGM, (12)

where Gy is the free Green’s function (with the cor-
rect boundary condition),
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The solution of the Lippmann-Schwinger equation
can be written as perturbation series in V,

M=V +VG\V +VG VGV + ..., (14)
where the first term is the Born approximation,
(K'Mk) = (K'Vk) = / d*rV (r)e'r (15)

where q = k — k' is the transferred momentum.

It is actually the series (14) that the QFT expres-
sion for the reaction amplitude reduces to in the non-
relativistic limit.

Ladder diagrams

One can show that only the so called ladder diagrams,
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survive in the non-relativistic limit.
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where |k) is the free plane-wave solution with momentum k,
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and where Gg is the free Green’s function (with the correct
boundary condition of outgoing waves),
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Using the explicit expression for the free Green’s function in
coordinate space,
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where k/ = % one can easily show that
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The reaction matrix M is defined as the right-hand-side of (10)
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Multiplying (5) by (k/|V from the left and dropping the
annoying superscripts immediately leads to (12).

(K'|Mk) = (&' |V .



The total scattering amplitude, denoted as

BEN

is apparently the sum of all ladder diagrams,
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Equation (18) can be rewritten into the Lippmann-
Schwinger equation,
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Clearly (19) is equivalent to the Lippmann-
Schwinger equation (12) if we assume

In conclusion, in the non-relativistic limit a QFT
reduces to the Schrodinger equation with the poten-
tial equal to the inverse Fourier transform of the low-
est order elastic scattering amplitude.
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One-boson exchange potential

The diagram (20) for a pseudo-scalar boson interac-
tion Lagrangian —giy51¢ gives
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The Dirac bispinor up, is
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In the non-relativistic limit £ ~ m up to the terms
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Now introducing p; — pj = —q gives
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In the c.m. frame
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The one-pseudo-scalar-boson-exchange-potential is
the given as
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The OBEP with pseudo-scalar boson is thus a
finite-range spin-spin and tensor potential of Yukawa
type with the range equal to inverse mass of the ex-
change boson.

The OBEP with a vector boson has a slightly dif-
ferent spin structure which in addition includes cen-
tral and spin-orbit forces. The central force has the
Yukawa form e #"/r. In the limit of massless vector
boson this gives the Coulomb central potential.



