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Gauge theories

Gauge theory is a peculiar quantum field theory
where the Lagrangian is invariant under the so called
local gauge transformations. The transformations
form a Lie group which is referred to as the symmetry
group or gauge group of the theory. For each group
parameter there is a special vector field, called gauge
field, which helps to make the Lagrangian group in-
variant. The quanta of the gauge field are called
gauge bosons. If the symmetry group is commuta-
tive, the gauge theory is called abelian, otherwise it
is called (surprise, surprise) non-abelian or simply
Yang-Mills theory.

The good old QED happened to be a gauge theory
with the group U(1). Then it turned out that only
gauge theories can be renormalized and therefore the
Standard Model had to be a gauge theory, though
in order to incorporate more gauge bosons the gauge
group had to be a bit higher than U(1). It turned
out SU(2) and SU(3) fit perfectly for the weak and
strong interactions correspondingly.

Example: quantum electrodynamics

Quantum electrodynamics (QED) is a theory of the
electron/positron (bispinor) field ¢ coupled to the
electromagnetic (vector) field A, with the interac-
tion Lagrangian —j, A", where j, = gy, is the
conserved current (g is the charge of electron).

The QED Lagrangian,
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is invariant under the local gauge transformation,
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where «a(z) is an arbitrary scalar function (and also
the group parameter). The transformation matrices
€9 form a Lie group U(1) where the charge is the
group generator. QED is thus a gauge theory with the
symmetry group U(1). The group is commutative,
therefore QED is an abelian theory.
The first term of the Lagrangian (1) is conveniently
written as
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where the group covariant derivative
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has the property that under the gauge transformation
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Note that 1
F,=—|D,,D,].
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Non-abelian (Yang-Mills) gauge theories

QED is a very good re-normalizable theory, but it
only has one gauge boson, the photon, while you need
a lot more for the standard model...

Yang and Mills suggested to consider more general
groups of matrices
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with some generators I,, a = 1...n, and Lie-algebras
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If the structure constants C'¢;, are not equal zero, the
theory is called non-Abelian.

To make the theory gauge invariant a separate vec-
tor field A# is needed for each group parameter a,
and the gauge field becomes A* = I*A¥ (there is no
difference whether the group index a is up or down).
The generalized gauge transformation is now defined
as

v = Y =Uy,
Ay = A =UAUT - Lo, U-U.
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The transformation matrices U have certain dimen-
sion and thus the field v, on which the matrix oper-
ates, becomes a column-vector in this new dimen-
sion!.

In a Yang-Mills theory the fermionic field v is a
non-trivial object: it is an (generation/annihilation)
operator in the space of quantum states of the field;
it is a Lorentz group bispinor; and it is also an object
rotated by a (usually fundamental) representation of
the gauge group.

The Yang-Mills field tensor is
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and the Yang-Mills Lagrangian for the gauge field is
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Since the Yang-Mills field tensor (10) contains the
gauge field commutator, which is of second order in

Tthis dimension is referred to as weak isospin space for the
weak interaction and color space for the strong interaction.



the field, the Yang-Mills Lagrangian contains third
and fourth order terms. The non-abelian gauge
bosons can thus self-interact.

The gauge bosons are necessarily massless (as the
mass term breaks gauge invariance). However with
the so called Higgs mechanism the gauge bosons can
acquire effective mass through interactions with the
Higgs field.

The number of gauge bosons is equal to the number
of generators in the gauge group. There is one gauge
boson, the photon, for the U(1) group; three gauge
bosons for the SU(2) group; and eight gauge bosons
for the SU(3) group.

Exercises

1. Find the (infinitesimal) gauge-transformation
rule for the gauge field Aj.

2. Show that the Yang-Mills field tensor (10) is
gauge invariant.

3. (This exercise is actually for the next note!)
Show that the fields A, Z, and W* are eigen-
states of the charge operator Q.

Hints:

(a) How to define an abstract operator I
which represents an infinitesimal gen-
erator I[:

The action of an infinitesimal group element
1 4+ ¢Ia, acting on its relevant object ¢, is
by definition ¢ — (1 + ilda)p = 1 + d¢,
where delta denotes group covariant differ-
ential §¢ = ildag.

Thus, apparently, the action of an abstract
operator I , representing the generator I in
the space of the object ® the operator I
acts upon, can then be defined through the
covariant differential d® of the object under
the infinitesimal group transformation.
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(b) How the abstract operator Yy acts on
the gauge fields B and W:

Under the gauge transformation generated
by the week hyper-charge U(1)w the covari-
ant part of the transformation of the fields
B and W is zero, thus
Vv Yiv
—B=—W=0.
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The fields B and W are thus eigenstates of
Yw with the eigenvalue 0.

How the abstract operator Ts acts on
the gauge fields B and W:

Under the infinitesimal SU(2)r gauge
transformation,
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where o = a Ty, W = W, T, T, = i7,.
Thus

3B =0,
TsW = [T, W]
Then, apparently,
T3 Wy =0
TsW* = 2w

where
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How the abstract operator Q acts on

the gauge fields A, Z and W+:
From the definition Q = %ffw + Tg it im-
mediately follows that

QA=0
QZ=0
QW* = xw*



