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Examples of Feynman diagrams

For the interaction Lagrangian £, = —gin)¢ the sec-
ond order term of the S-matrix is given as

S = % /d4x1d4x27'1[_1(5€1)¢(5”1)¢(x1) )

Y(z2)h(z2)d(2) , (1)

where 7 denotes T-product. The Wick’s expansion
of the T-product in (1) gives (among others) the term

N¢($1)¢($1)¢($2)¢($2)¢($1)¢($2) ) (2)

where A denotes normal ordering of operators. Ac-
cording to the Feynman rules the corresponding dia-
gram, see figure 1, has two vertexes, 21 and x5, con-
nected by a bosonic contraction ¢(z1)¢(z2), and non-
contracted fermionic lines (1), ¥(x1) and (x2),
(x2) attached correspondingly to vertexes z; and
I2.

Figure 1:
term (2).

The Feynman diagram representing the

Another interesting term in the Wick’s expansion
of the T-product in (1) is

N¢(I1)¢(I1)¢($2)¢($2)¢($1)¢($2) . (3)

Its Feynman diagram, see figure 2, has two vertexes,

connected by the fermionic contraction ¢ (zq)y(x2)
and the non-contracted fields 1(z1), ¢(z1) (with ver-

tex 1) and ¥(z2), ¢(x2) (with vertex z2).
Initial and final states for Feynman diagrams

An non-contracted field Ny gives a non-zero result
when acting on a particle state aL)‘|0) to the right,

Nip(x)al,,|0) = upre*7|0) (4)
or on the anti-particle b;fd\|0) state to the left,

(0bpAN'é(x) = (Olvpre ™™ (5)

p(x2) Y(x2)
P(a1)1h(z2)
d(w1) Y(xr)

Figure 2: The Feynman diagram representing the
term (3).

An non-contracted field A¢) acts non-vanishingly
on an anti-particle to the right,

N ()bl 0) = Tpre™77]0) (6)

or a particle to the left,

(Olapa N (x) = (Olpre ™" (7)

Thus an non-contracted field A4y can represent a
particle in the initial state or an antiparticle in the
final state. The barred field N7 can represent an
antiparticle in the initial state or a particle in the
final state.

An non-contracted real field N'¢p can represent a
particle in both the initial and or final states.

If the initial state is assumed to be at the right side
of the diagram and the final state at the left side,
then figure 1 describes (a contribution to) fermion-
fermion scattering, figure 2 — fermion-fermion anni-
hilation into two bosons.

If the initial state is assumed at the bottom of the
diagram and the final state at the top, then figure 1
describes (a contribution to) fermion-antifermion
scattering, figure 2 — boson-fermion scattering.

CPT theorem

The CPT theorem states that in the canonical quan-
tum field theory the action is invariant under the
combination of charge conjugation, parity and time
reversal. The consequence is that the cross sections
of certain reactions should then be related.

Let us see how it works with the scalar field.

C: charge conjugation

Under charge conjugation the particles are exchanged
with antiparticles,

C
ak—>bk.

(8)



The field ¢(z) then turns into ¢f(z),
(ake_“” + b;r(e"'““”) 5

1
P(z) = ;\/2—71(

1 —ikx totika) _ ot
g o (bke +a,e ) o' (x) . (9)

P: parity transformation

Under parity transformation the momentum changes
sign,
P
akx — A_x . (10)

The field ¢(¢,x) then turns into ¢(t, —x),

P

1 . )
d(x) = ; o (ake_”” + b;r(e""’“”) =

(a,ke*“” + bJr_kerz) = ¢(t, —x) . (11)

1

T: time reversal

Under time reversal the process of an annihilation
of a particle turns into a process of generation of a
particle with opposite momentum,

ax 5 af_k . (12)

The field ¢(t,x) then turns into ¢'(—¢,x),

1 ) ,
o(x) = ; o (akeﬂkm + bLe“km) EN

(alr e ke g b,ke“’””) = ¢f(—t,x) . (13)
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Under the combination of all three the field ¢ changes
the sign of the argument,
o(x)  g(-a) . (14)

However, since the action involves integration [ d*z
the sign change of the argument apparently leaves it
unchanged, q.e.d.

Exercises

1. Formulate Feynman rules for £, = —g¢¢ in
momentum space:

(a) Consider e.g. “Compton scattering” pro-
cess, diagram Figure 2 between certain
plane-waves, and carry out coordinate in-
tegration.

(b)

(©)

Figure out the correspondence between the
terms in the S-matrix element and the ele-
ments of the diagram.

Consider the loop diagram

bt B

and write down the corresponding matrix
element in momentum space. Figure out
the expression for the loop. Also estimate
the asymptotic behavior of the loop inte-
gral.



