Near-infrared spectroscopy of Type la supernovae

Eric Y. Hsiao

Aarhus University Las Campanas Observatory Florida State University (in August)

on behalf of the Carnegie Supernova Project and collaborations M. M. Phillips, C. R. Burns, C. Contreras, N. Morrell, G. H. Marion, D. J. Sand, R. P. Kirshner, M. D. Stritzinger, C. Gall, et al.

Why NIR?

Credit: ESO

In the NIR, achieve higher precision through 2 routes:

- By avoiding things we do not understand (shortcut)
- By constraining the physics (more fun!)

Why NIR?

CSP NIR spectroscopy

Carnegie Supernova Project

CSP I (2004-2008)

CSP II (2011-2015) PI: Mark Phillips NIR observations of ~100 SNe Ia

I-m Swope optical light curves
2.5-m du Pont NIR light curves, optical spectra
6.5-m Magellan NIR spectra

Credit: Yuri Beletsky

CSP NIR spectroscopy

of la optical spectra

 $|()^{4}|$

of la NIR spectra

 10^{2}

41 from Marion et al. (2009) + 91T, 94D, 98bu, 99by, 99ee, 02bo, 02dj, 03du, 05cf, 05df, 11fe, 13ebh,14J

CSP NIR spectroscopy

 FIRE on 6.5-m Magellan main workhorse

- In 4 years,
 600+ NIR spectra
 from 160 SNe la
- Large sample High S/N Time series Complementary optical and light-curve data

Unburnt carbon

- Pristine material from the progenitor
- Incomplete burning: constraints for explosion models
- Optical C II 6580 detected in 20-30% of SNe Ia

Thomas et al. (2011) Folatelli et al. (2012) Silverman et al. (2012)

Unburnt carbon

- NIR provides a more complete census of carbon than the optical
- Is unburnt material present in all SNe Ia?

H-band break

H-band break

- Strong correlation consistent with Chandrasekhar-mass delayed detonation
- Weak correlation expected for dynamical merger

Eric Y. Hsiao

Magnesium velocity

- NIR Mg II 10927 strong, isolated line
- Flat Mg velocity evolution: bottom of C burning layer
- Boundary between C/O burning
- Sensitive to transition density

Magnesium velocity

- No correlation with light-curve decline rate
- Transition density not the main driver of SN brightness?

Neutron content

- Transitional phase NIR spectra ~50-100 d past explosion
- I.98 micron feature possible [Ni II], stable nickel

Neutron content

Influenced by

- Metallicity of progenitor
- Neutronization in simmering phase
- High density white dwarf

Summary

Pre-maximum spectra

- Unburnt material (Marion et al. 2006, Hsiao et al. 2013, 2015)
- Boundary of C/O burning (Wheeler et al. 1998, Höflich et al. 2002, Hsiao et al. 2013)

Post-maximum spectra

- Distribution of ⁵⁶Ni (Höflich et al. 2002, Hsiao et al. 2013)
- Progenitor metallicity (Marion 2001)
- Companion signature (Maeda et al. 2014)

Transitional phase spectra

Neutron content (Friesen et al. 2014)

Nebular phase spectra

- Mixing between ⁵⁶Ni and ⁵⁸Ni (Höflich et al. 2004)
- Asymmetric explosion (Motohara et al. 2006)
- Progenitor magnetic field (Penney & Höflich 2014)
- Initial central density (Diamond et al. 2014)