Two in One

Intrinsic Properties of two fast declining SN Ia in the same Galaxy

Christa Gall

Aarhus University, Department of Physics and Astronomy in collaboration with the *Carnegie Supernova Project*

AARHUS UNIVERSITET

SN 2007on & SN 2011iv in NGC 1404

Discovery: November, 2007, 0.25m robotic TAROT Discovery: December, 2011, Stu Parker, New Zealand CBET 2940

Photometry

Photometry

SNooPy light curve fitter EBV, MAX_model (Burns et al. 2011)

	Transitional		Transitional	91bg-like	Normal
Parameter	SN 2011iv	SN 2007on	iPTF13EBH	SN 2006mr	SN 2006dd
Δm15(B)	1.73 ± 0.01	1.96 ± 0.001	1.785 ± 0.012	1.82 ± 0.02	1.078 ± 0.025
$\mathbf{s}_{\mathtt{BV}}$	0.652 ± 0.007	0.576 ± 0.005	0.631 ± 0.023	0.220 ± 0.005	0.940 ± 0.004
$E(B-V)_{host}$	-0.018 ± 0.009	-0.057 ± 0.01	0.05 ± 0.02	-0.098 ± 0.047	0.043 ± 0.08
$\mathrm{DM}_{\mathrm{EBV}}$	31.189 ± 0.06	31.573 ± 0.06	33.603 ± 0.07	31.945 ± 0.085	31.157 ± 0.069
$\mathrm{DM}_{\mathrm{Tripp}}$	31.3 ± 0.18	31.57 ± 0.18	33.63 ± 0.18	31.834 ± 0.106	31.276 ± 0.052
			Hsiao et al. 2015	Stritzinger et al. 2010	

10/07/15

Christa Gall, EWASS 2015, La Laguna, Tenerife

B-V Color - Reddening

	Transitional		Transitional	91bg-like	Normal
Parameter	SN 2011iv	SN 2007on	iPTF13EBH	SN 2006mr	SN 2006dd
Δm15(B)	1.73 ± 0.01	1.96 ± 0.001	1.785 ± 0.012	1.82 ± 0.02	1.078 ± 0.025
s _{BV}	0.652 ± 0.007	0.576 ± 0.005	0.631 ± 0.023	0.220 ± 0.005	0.940 ± 0.004
$E(B-V)_{host}$	-0.018 ± 0.009	-0.057 ± 0.01	0.05 ± 0.02	-0.098 ± 0.047	0.067 ± 0.06
E(B-V) _{Lira}	0.055 ± 0.001	-0.033 ± 0.01	0.0025 ± 0.002	-0.002 ± 0.008	0.092 ± 0.009
			Hsiao et al. 2015	Stritzinger et al. 2010	

HST UV Spectroscop

2011iv: Maximum brightness spectrum by Foley et al. 2012; 2011fe: Patat et al. 2013; 2013dy: Pan et al. 2015

10/07/15

Christa Gall, EWASS 2015, La Laguna, Tenerife

UV-Continuum flux: depends on various mechanism:

- explosion model
- geometry and viewing angle effects
- complexity incorporated in models

Theory predicts metallicity effects:

- weaker UV features
- larger blueshifts
 for increasing metallicity
 (e.g., Lenz et al. 2001)

Spectroscopy

<u>SN 2007on</u> 17 optical spectra -4 to +89 days (Folatelli et al. 2013) 4 late phase spectra +101 to +380

SN 2007on: 2 spectra +33, +93 days

<u>SN 2011iv</u>

22 spectra -7 to +42 days 2 late phase spectra +141, +260

13 NIR spectra +0.2 to +83 days

Maximum UV—NIR brightness spectrum (Foley et al. 2012)

What are the differences?

SN 2007on

- Fainter (M_{B,max} = -18.598 mag)
- Redder (early phase)
- Bluer (late phase)
- Faster declining (1.96)
- Lower color stretch(0.57)
- Weak titanium
- CI in the optical
- Lower ⁵⁶Ni mass (0.25 M_{\odot})
- Away from the center
- Larger distance

SN 2011iv

- Brighter (M_{B,max} = -18.901 mag)
- Bluer (early phase)
- Redder (late phase)
- Slower declining (1.73)
- Larger color stretch(0.65)
- No titanium
- C II in the NIR
- Larger ⁵⁶Ni mass (0.4 M_{\odot})
- Close to the center
- Shorter distance

Challenges

What makes them different?

- Temperature \clubsuit ⁵⁶Ni mass
- Challenges in distance measurements vs physical differences
- Progenitor metallicity
- Progenitor mass
- What makes them similar?
- Explosion mechanism
- Abundance stratification
- Layered structure

