SOURCES OF DUST IN THE EARLY UNIVERSE

Christa Gall Aarhus University, Department of Physics and Astronomy

The Life Cycle of dust in the Universe Taipei, Taiwan, November 18-22

DUST AT HIGH REDSHIFT

The Life Cycle of Dust in the Universe, Taipei

11/18/13

e.g., Wang et al. 2010, Walter et al. 2004, Michalowski et al. 2010, Hjorth et al. 2013

The Life Cycle of Dust in the Universe, Taipei

Finkelstein et al. 2012

11/18/13

The Life Cycle of Dust in the Universe, Taipei

Large amounts of dust

Galaxy	SFR (M _☉ /yr)	Dust mass (M _☉)	Stellar mass (M_{\odot})
SMGs	100-1000	10 ⁸⁻⁹	1011
QSOs	≥ 1000	10 ⁸⁻⁹	1011

Requirement for sources:

→ Fast

➡ Efficient

Dust Sources

- Stellar sources
 - AGB stars
 - Massive stars
 - Supernovae

- Non-stellar sources
 - Grain growth in molecular clouds
 - Dust formation in AGN outflows

Timeline

Late Stage of Stellar Evolution - Lifetimes

11/18/13

The Life Cycle of Dust in the Universe, Taipei

Dust Sources

- Direct observations of dust sources, e.g. stellar sources at high redshift, are impossible
- Highest redshift detected core collapse SN is
 at z = 2.37 (Rodney et al. 2014)

Standard picture in local Universe

 ~ 0.005 All stellar sources

Draine 2009

Problem in MW, SMC, LMC: only 4-10% stellar dust

(e.g., Draine 2009, Matsuura et al. 2009, Boyer et al. 2012)

Efficiency

11/18/13

The Life Cycle of Dust in the Universe, Taipei

Potential sources

The Life Cycle of Dust in the Universe, Taipei

First Stars - Population III Stars

- Formed in dark-matter mini halos of ~10^{5−6} M_☉ at redshift z ~ 10−50 (Tegmark et al. 1997)
- Pair Instability Supernova (PISNE) ~140–260 M_{\odot}
- Dust:
 - 140 260 M_☉ ~ 15-30%
 - 170 M_{\odot} ~ 5.6 25 M_{\odot}

(Nozawa et al. 2003)

- (Cherchneff & Dwek 2009, 2010)
- Type Ic SN 2007bi has been reported as a PISN (Gal-Yam et al. 2009)
 - Core collapse SN (~100–280 M_o) (Moriya et al. 2010; Yoshida and Umeda 2011)
- Chemical signature not unambiguously detected yet

(e.g., Beers and Christlieb 2005)

AGB Stars

Theoretical dust yields for AGB stars Z=0.001 -2 Z = 0.04Ši -2 -3 $\log M_{\rm dust}$ E. -5 Z=0.008 Log (M_d/M_©) -2 ~10⁻² M_o of dust -3 Up to -4 Z = 0.02Z=0.020 $^{-2}$ $\log M_{\rm dust}$ -3-4 A -7 2 З 5 6 $\mathbf{4}$ 1 2 1.5 3 5 $M_i[M_{\odot}]$ M_* Nanni et al. 2013 Ferrarotti and Gail 2006 11/18/13 The Life Cycle of Dust in the Universe, Taipei Christa Gall

AGB Stars

10¹

10[°]

10-1

10-2

5.0

Dust Yield per Star (M_{\odot})

11/18/13

The Life Cycle of Dust in the Universe, Taipei

Redshift

Christa Gall

Michalowski et al. 2011

Massive Stars

- RSGs and WR stars in NGC 604,HII region in M33 (Eldridge et al. 2006, Eldridge and Relaño 2011)
 WR stars appear less extinguished than RSGs
- Dust in colliding winds of binary systems: WR104, WR140 ,~8 x 10⁻⁷ M_o yr⁻¹

(e.g., Crowther 1997, Williams et al. 1990, Harris et al. 2004)

 \Rightarrow 3 × 10⁻⁸ M_{\odot} yr⁻¹ kpc⁻² \Rightarrow ~ 1% of AGBs (Massey et al. 2005)

The Life Cycle of Dust in the Universe, Taipei

Massive Stars

- LBV stars, $> 25 M_{\odot}$
- e.g., η Car : ~ 0.4 M $_{\odot}$ of dust (Gomez et al. 2010)

The Life Cycle of Dust in the Universe, Taipei

Supernovae – Type la

- Little to no dust in Ia SN (Nozawa et al. 2011)
- No observational evidence
- Dust is circumstellar or interstellar

(e.g.: Ishihara et al. 2010, Gomez et al. 2012, Phillips et al. 2013)

The Life Cycle of Dust in the Universe, Taipei

CORE COLLAPSE SUPERNOVAE KNOWN DUST PRODUCERS

The Life Cycle of Dust in the Universe, Taipei

Core Collapse Supernovae

Observational evidence of dust from supernovae

Gall et al. 2011, A&ARv

The Life Cycle of Dust in the Universe, Taipei

Core Collapse Supernovae

SNe (13–40 M_o) about 2–5% (Nozawa et al. 2003)

SNe (20M $_{\odot}$) ~ 0.103 – 0.16M $_{\odot}$ (Cherchneff & Dwek 2009, 2010)

Todini & Ferrara 2001, Bianchi & Schneider 2007, Nozawa et al. 2007

11/18/13

Different types of core collapse supernovae

SN Type	Characteristics	Progenitor M_{\odot}	Progenitor Type
II-P (plateau)	Hydrogen present	(7) 8 - 25	RSG
II-L (linear)	Blue	~ 15 – 25	YSG
lln (narrow line)	Narrow emission lines, broad base	~ 8 – 10 > 25 – 30	SAGB LBV
llb	Little hydrogen	> 25 - 30	WR, binary
lb	Helium rich	> 25	WR
lc	Helium deficient	> 25	WR, binary

No evidence of dust from Ic SNe!

SUPERNOVAE WITH CIRCUMSTELLAR INTERACTION

The Life Cycle of Dust in the Universe, Taipei

Type IIn SN 2010jl, VLT/X-shooter

11/18/13

The Life Cycle of Dust in the Universe, Taipei

Supernova extinction curve

Supernova extinction curve

Large grains

11/18/13

The Life Cycle of Dust in the Universe, Taipei

Large grains are robust against destruction

Silvia et al. 2010

Grains > 0.1 μ m have highest survival rate

SN 2010jl: 80% of dust mass is in form of large grains !!

The Life Cycle of Dust in the Universe, Taipei

Linking early and late dust masses

Dust productivity

11/18/13

The Life Cycle of Dust in the Universe, Taipei

ADDRESSING DUST IN GALAXIES

The Life Cycle of Dust in the Universe, Taipei

Modeling dust evolution

Different model predictions e.g.: Morgan & Edmunds et al. 2003 Dwek et al. 2007 Calura et al. 2008 Valiante et al. 2009, 2012 -> favour AGB stars, grain growth Pipino et al. 2010 Dwek & Cherchneff 2010 Gall et al. 2011 A&A,525,13; 525,14 -> favour SNe !! Mattsson 2011 -> favour grain growth Asano et al. 2013 and many more

Different assumptions!!!

Chemical Evolution models

Parameters	Value	Unit	Description
M _{ini}	$5 \times 10^{10}, 1 \times 10^{11}, 5 \times 10^{11}, 1.3 \times 10^{12}$	M_{\odot}	Initial mass of the galaxy
$\psi_{ m ini}$	1×10^{3}	$M_{\odot}~{ m yr}^{-1}$	Star formation rate
Z _{ini}	10 ⁻⁶	Z_{\odot}	Initial metallicity
k	1.5		Power for the relation $\psi(t) \propto M_{\rm ISM}(t)^k$
M _{cl}	800, 100, 0	M_{\odot}	Swept-up ISM mass per SN
M ^{crit} _{core}	15	M_{\odot}	Critical He core mass
ξsn	0.93		SN dust destruction factor
M _{SMBH}	$3 \times 10^9, 5 \times 10^9$	M_{\odot}	Mass of the SMBH
t _{SMBH}	4×10^{8}	yr	Growth timscale for the SMBH
t _{max}	10 ⁹	yr	Maximum computed age of the galaxy
Parameters	Switch		Description
$Y_{\rm Z}, Y_{\rm E}, Y_{\rm Q}$ (for SN)	EIT08, WW95, N06, Georgy et al. (2009)		Possibilities for the SN yields
$Y_{\rm Z}, Y_{\rm E}, Y_{\rm Q}$ (for AGB)	van den Hoek & Groenewegen (1997)		Possibilities for the AGB yields
$\phi(m)$	Salpeter, mass-heavy, top-heavy, Larson 1, Larson 2		Initial mass function
SFR	evolving/constant		Additional switch for the SFR
$\epsilon_{AGB}(m,Z)$	only one case considered		Dust formation efficiency, AGB
$\epsilon_{\rm SN}(m)$	max/low		SN dust formation efficiency
ξsn	considered/not considered		SN dust destruction
BH/SN	SN when BH/no SN when BH		Possibility, if a SN occurs even a BH
			is formed or not
SMBH	considered/not considered		Growth of SMBH

Gall et al. 2011

Chemical Evolution models

Tuning parameters

Most important: SFR, IMF, Dust source, SN dust destruction

Good models: Consistent with observational constraints

Chemical Evolution models

Modeling quasars at z > 6

Rapid evolution (30 Myr) with SN ~0.1-1 M_{\odot}

Gall et al. 2011A&A,525,13; 525,14

The Life Cycle of Dust in the Universe, Taipei

NON-STELLAR SOURCES

The Life Cycle of Dust in the Universe, Taipei

Grain growth in the ISM

- Accretion and coagulation in cold molecular clouds
- Various models: (e.g.: Dwek 1998; Hirashita 2000, Zhukovska, Gail, & Trieloff 2008; Draine 2009; Hirashita & Yan 2009; Pipino et al. 2011; Valiante et al. 2011; Inoue 2011; Asano et al. 2013)
- Growth timescales: ~ 10⁷⁻⁸ years
- Still need SNe to produce the metals and seeds
- Ejection of elements and dust into clouds ?
- Need to grow in a fairly high-density region, shielded from SN shocks, and need to grow a very large fraction of all metals ejected by SNe
- Fraction of cold molecular clouds ?
- Still subject to destruction

LAST WORDS

The Life Cycle of Dust in the Universe, Taipei

LAST WORDS

- Indication of fast and efficient process of dust formation
- Supernovae most promising sources
- Can account for dust in galaxies
- Challenges:
 - Destruction of SN dust by shock interactions
 - Destruction of all kinds of dust by SN shocks
- Importance of grain growth vs. direct formation
- Large grains?
- Can we trust observations, notably derived dust masses (kappa, ...) and stellar masses

THANK YOU LHY/K XOO