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Summary

Modern cosmology, the study of our Universe as a whole, progresses
by comparing predictions of cosmological models to real world obser-
vations. One such observation is the present day large-scale structure
of matter, i.e. how the luminous and dark matter within the Universe
is structured at scales beyond that of individual galaxies. The precise
layout of this structure is intricately dependent on various cosmological
parameters, such as the neutrino mass, or rather the three neutrino
masses if we consider the full neutrino hierarchy. Depending on the
values of these unknown but constrained masses, the existence of neutri-
nos affect the large-scale matter structure at the percent level, directly
through gravitational interaction and indirectly by modifying the Hubble
expansion.

In the near future, extremely precise observations of the large-scale
structure in our Universe will be available, thanks to surveys such as
LSST and Euclid. At this level of precision, the effects of massive
neutrinos cannot be neglected, and thus must be included in our models
from which we produce predictions of the large-scale structure. If we
succeed in modelling the cosmic effects from massive neutrinos, we will
then be able to extract the neutrino mass from the observations of the
large-scale structure.

The standard way of producing predictions for the large-scale struc-
ture is through large computer simulations, evolving virtual universes
from a few million years after the Big Bang through cosmic history up
until the present. While the treatment of matter in such cosmological
simulations is a relatively settled issue, the best way of including massive
neutrinos remains an open problem.

My PhD work and this thesis focus on a new method for dealing with
massive neutrinos in cosmological simulations. At a glance, this method
works by treating the neutrinos as a fluid and solving the non-linear
fluid equations on a grid in real space. The fluid variables considered are
constructed from velocity moments of the distribution function, forming
a hierarchy of variables known as the Boltzmann hierarchy. As this
hierarchy is much too large to be solved in full in 3D, we keep only the
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lowest few moments non-linear. The full linear Boltzmann hierarchy is
then used to close the truncated non-linear Boltzmann hierarchy.

Besides the development of this non-linear neutrino method, I have
also been concerned with a method for implementing massive neutrinos
into cosmological simulations at the purely linear level, also described in
this thesis. I have implemented both the linear and non-linear method
into my own code by the name of concept. In addition, the linear
method has also been implemented into the state-of-the-art pkdgrav
code. An extremely large simulation using this code is planned, which
will serve as the flagship simulation for the Euclid mission. Furthermore,
this simulation is planned to be run with the inclusion of massive linear
neutrinos using my implementation.

This thesis contains two research papers of which I am a co-author,
written during my PhD. The papers describe and demonstrate the linear
and non-linear method, respectively. With the linear implementation
we are able to achieve agreement with linear theory at the sub-per-mille
level. However, linear theory is not applicable throughout time for
massive neutrinos, and so a non-linear description is needed for more
realistic modelling of the neutrinos. For the non-linear implementation
we generally find results consistent with the literature. Unlike the linear
method which is rather unique in the sense that there is nothing much
one can change about it, the non-linear method is really a collection of
methods, with no a priori means of knowing which yields the best results.
Though the entire scope of this collection is discussed in this thesis, only
a limited subset has been implemented in practice.
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Dansk Resumé
(Danish Summary)

Fremskridt indenfor moderne kosmologi, studiet af Universet som hel-
hed, foregår ved at sammenligne forudsigelser fra kosmologiske modeller
med observationer fra den virkelige verden. Blandt de vigtigste ob-
serverbare fænomener har vi storskalastrukturen af stof, dvs. hvordan
det lysende og mørke stof i Universet er fordelt på størrelsesskalaer
større end enkelte galakser. Det detaljerede udseende af denne struktur
afhænger på komplicerede måder af diverse kosmologiske parametre,
såsom neutrinomassen, eller rettere de tre neutrinomasser hvis vi be-
tragter det fulde neutrinohierarki. Eksistensen af neutrinoer påvirker
stoffets storskalastruktur på procent-niveau, med en større effekt for
større værdier af de ukendte men afgrænsede neutrinomasser. Påvirknin-
gen er både direkte via gravitationel interaktion, men også indirekte idet
neutrinoerne modificerer Hubble-ekspansionen.

Vi vil i den nære fremtid have adgang til meget præcise observationer
af Universets storskalastruktur, takket være surveys som LSST og Eu-
clid. På dette præcisionsniveau kan vi ikke længere ignorere de massive
neutrinoers indflydelse, hvorfor vi er nødt til at inkludere dem i vores
modeller hvorfra vi producerer forudsigelser for storskalastrukturen. Hvis
det lykkes for os at modellere de kosmiske effekter fra massive neutrinoer,
vil vi være i stand til at udtrække neutrinomassen fra observationerne af
storskalastrukturen.

Den typiske måde hvorpå vi producerer forudsigelser af storskala-
strukturen er gennem store computersimuleringer, som udvikler virtuelle
universer fra få millioner år efter Big Bang og frem til nutiden. Mens man
har standardiserede teknikker til at behandle stof i disse simuleringer,
er den bedste måde til at inkludere massive neutrinoer stadig et åbent
spørgsmål.

Mit PhD-arbejde og denne afhandling fokuserer på en ny måde
hvorpå massive neutrinoer kan inkluderes i kosmologiske simuleringer.
Groft sagt virker metoden ved at behandle neutrinoerne som et fluid
og løse de ikke-lineære hydrodynamiske ligninger på et gitter i reelt
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rum. De betragtede fluid-variable konstrueres fra hastighedsmomenter
af fordelingsfunktionen, som tilsammen danner et hierarki af variable
kaldet Boltzmann-hierarkiet. Da dette hierarki er alt for stort til at
blive fuldstændigt løst i 3D, beholder vi kun de få laveste momenter som
ikke-lineære. Det komplette lineære Boltzmann-hierarki bruges da til at
lukke det trunkerede ikke-lineære Boltzmann-hierarki.

Udover udviklingen af denne ikke-lineære neutrino-metode har jeg
også beskæftiget mig med en metode til at implementere massive neu-
trinoer i kosmologiske simuleringer på et rent lineært niveau. Denne
metode er også indeholdt i denne afhandling. Jeg har implementeret
både den lineære og den ikke-lineære metode i min egen kode ved navn
concept. Derudover har jeg også implementeret den lineære metode i
den sofistikerede og moderne pkdgrav-kode. Denne kode vil blive brugt
til at køre en ekstremt detaljeret simulering, som skal tjene som flagskibs-
simuleringen for Euclid-missionen. Det er ydermere planen at denne
simulering skal inkludere massive neutrinoer via min implementering.

Denne afhandling indeholder to forskningsartikler som jeg er medfor-
fatter på, og som blev skrevet i løbet af min PhD. Artiklerne beskriver
og demonstrerer henholdsvis den lineære og den ikke-lineære metode.
Med den lineære metode er vi i stand til at opnå overensstemmelse
med lineær teori på bedre end promille-niveau. Lineær teori er dog
ikke anvendelig for massive neutrinoer gennem hele Universets udvikling,
hvorfor vi er nødt til at overgå til en ikke-lineær beskrivelse for at opnå
en mere realistisk modellering af neutrinoerne. Resultaterne fra den
ikke-lineære implementering stemmer generelt overens med litteraturen.
Modsat den lineære metode som er stort set unik i den forstand at den
næsten ikke kan modificeres, er den ikke-lineære metode nærmere en hel
samling af ikke-lineære metoder, uden nogen a priori måde hvorpå disse
kan rangordnes. Hele denne samling af metoder vil blive præsenteret i
denne afhandling, men kun en begrænset delmængde af dem er blevet
implementeret i praksis.
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1 Introduction

1.1 Cosmology
Cosmology is the study of the Cosmos (or Universe) as a whole. It
strives to explain why the Universe is as it is, how it has evolved and
what the future will bring. Throughout human history, different cultures
have invented thousands of imaginative cosmologies as answers to this
self-imposing riddle. Only in recent times, starting with the advent of the
theory of general relativity a century ago, have we developed a scientific,
physical cosmology.

General relativity promotes space (and time) from mere static and
eternal labels to a dynamical scene in which the cosmic story can unfold.
Though the heavens appear static on the time scales of humans, the
observation that distant galaxies uniformly are moving away from us
made it clear that the Universe is expanding, and hence was smaller
in the past. This is the beginning of the well-known Big Bang theory,
which states that our universe began its life 13.8 billion years ago in a
very hot and dense state, from which it has expanded and cooled ever
since. Most of contemporary cosmology aims to explain how we get from
this hot and dense state to the present day universe. Ideally we would
like to also understand the Big Bang itself and go beyond it. For this,
a plethora of ideas do exist, but the honest answer is that our current
understanding of Nature predicts its own downfall at the Big Bang, and
so these ideas are highly speculative.

Exactly how the fabric of space expands is described by the Einstein
field equations, which state that this expansion depends exclusively
on what kind of stuff the universe contains. The scenery (spacetime)
and actors (content within the universe) of the cosmic story are thus
intimately linked. As we have no good theory describing the very birth
of a universe, we have no a priori idea of what these actors may be. From
everyday experience we know that our universe contains atoms and light,
from which we ourselves are build and interact with the world. More
generally, we know of the existence of all of the particles in the standard
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model of particle physics, which additionally include more exotic particles
like the neutrinos.

Through detailed observations of how the luminous atomic stuff is
distributed throughout the Universe (the cosmic large-scale structure),
as well as of the distribution of light from the Big Bang itself (the cosmic
microwave background) and of the late expansion history of the Universe
(via supernovae), it is clear that the content of our universe mostly consist
of forms of energies well outside our standard model of particle physics.
The standard model of Big Bang cosmology, ΛCDM, gets its name from
these additional, exotic species. The Λ refers to a cosmological constant;
the simplest type of dark energy, a term reserved for whatever substance
makes the universal expansion accelerate over time. At the present epoch,
∼ 70 % of the total energy content of our universe is contributed by this
dark energy. The CDM stands for cold dark matter, meaning stuff that
gravitate and cluster like luminous matter (atoms), but does not interact
electromagnetically. Currently ∼ 25 % of the total energy of our universe
is contained in cold dark matter. This leaves us with a mere ∼ 5 % for
“ordinary” stuff, including atoms, photons and neutrinos. As most of
the energy in atoms is bound in the nucleus, which in turn consists of
baryons, atomic matter is commonly referred to as baryonic matter.

Commonly, the ΛCDM model is extended with inflation, which
amounts to the additional of yet another exotic species (the inflaton),
the purpose of which is to create exponential expansion in the very
early universe. This idea solves the problem of why distant regions seem
to have once been in thermal equilibrium, and also explains why the
Universe appears ‘flat’ (as in Euclidean). In addition, this rapid early
expansion serves to magnify quantum fluctuations to macroscopic scales,
providing an explanation as to how primordial fluctuations may arise
from a classically completely homogeneous background.

1.2 The Importance of Neutrinos
Progress in cosmology is achieved through testing models of the Universe
against observations, a key example of which is the large-scale (matter)
structure of our universe. Given a cosmological model with precisely
specified parameters, large computer simulations allow us to compute
predictions of physical observables such as the large-scale structure.

Though the ΛCDM model is firmly established, it leaves quite some
room for specification of various details, one of which is the precise nature
of neutrinos. This topic really belongs to particle physics, from which
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we have learned a lot about how neutrinos interact weakly and undergo
flavour oscillations, though their masses remain undetermined. From
a cosmological point of view, the most important neutrino parameters
are the masses of the three mass states, since this directly relate to the
amount of energy that is tied up in neutrinos and how strongly they
interact gravitationally with other species.

The existence of neutrinos affect the large-scale structure in several
principle ways: The flatness of our universe demands a specific total
energy density, and so raising/lowering the energy density put into
neutrinos alters the remaining energy available for the other species. To
a first approximation then, the sum of neutrino masses, written

∑
mν , is

then all we need to know in order to compute the energy fraction taken up
by neutrinos and hence how much is “left over” for matter. Introducing
neutrinos into the cosmology also has an effect on the expansion history,
which affect the clustering of matter. More directly, neutrinos also affect
the large-scale structure by interacting gravitationally with matter.

Upcoming large-scale structure surveys such as LSST [1] and Euclid [2]
will map the large-scale structure extremely precisely. At this level of
precision we will need to take the effects of neutrinos into account when
producing predictions via the simulations. As such, my PhD work and
this thesis is about my attempt to incorporate massive neutrinos into
cosmological simulations.

Massive Neutrino Schemes in the Literature

Before introducing the scheme(s) developed during my PhD for incor-
porating massive neutrinos into cosmological simulations in the next
section, let us briefly outline existing methods in the literature.

• Treat neutrinos as particles and evolve them using more or less
standard N -body techniques [3–10]. Due to the large thermal
velocities of neutrinos, the particles need to sample the full 6-
dimensional phase space, which should be contrasted with the usual
cold dark matter particles where only the three spatial dimensions
are sampled. In practice then, this technique requires extremely
many neutrino particles in order to obtain good resolution.

• Avoid the problem of non-linearly evolving the neutrinos by just
using the linear evolution. One way of doing this is through re-
peated realisation of the linear neutrino density field throughout
the simulation, from which the gravitational forces on the particles
are computed [11]. This is a simple and computationally cheap
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strategy which works well in practice. As it does come with the
assumption that the neutrinos behave linear throughout the simu-
lation, accurate results may only be obtained for small neutrino
masses.
This strategy is identical to what this thesis refer to as ‘the linear
method’, though here we embed the neutrino realisation within
the framework of the N -body gauge similar to what is done for
massless neutrinos in [12].
Some non-linearity of the neutrino evolution can be achieved by
feeding the non-linear gravitational potential from the simulation
back into the linear computation of the neutrino evolution [13, 14].

• One can marry the two approaches above, with the neutrinos
initially evolved linearly and then at some time converted into
particles in the simulation [15]. This particle dump should then
occur at a time where the thermal velocities of the neutrinos
are not much greater than the gravitationally induced streaming
velocities, so that the depth of the momentum dimensions in the
neutrino distribution which require sampling is small, leading to a
manageable number of neutrino particles.

1.3 My PhD Work
1.3.1 Non-linear Neutrinos
The first ∼ 2.5 years of my PhD work was focused on developing a method
which could handle neutrinos in complete generality, i.e. regardless of the
value of

∑
mν . Here, the neutrinos are introduced in an N -body code on

equal footing with matter. The neutrinos are evolved in time according
to their internal dynamics, while interacting gravitationally with the
matter and amongst themselves. This general method, which I shall
refer to simply as ‘the non-linear neutrino method’, was implemented
into the concept N -body code [16], a code I originally wrote for my
master’s thesis in 2015. A large part of the numerical work consisted in
fully integrating the Einstein-Boltzmann code class [17] into concept,
essentially enabling concept to query class for various cosmological
background quantities and linear perturbations.

A paper titled ‘νconcept: Cosmological neutrino simulations from
the non-linear Boltzmann hierarchy’ which outlines the method and
its implementation in concept, and also discusses the results of test
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simulations, can be found on arXiv [18]. It was submitted to JCAP in
December 2017, though the referee has requested two major revisions. I
plan to re-submit it this December. The paper is included in this thesis
in chapter 10, which also explains the reason for these major revisions.

1.3.2 Linear Neutrinos
I had the pleasure of spending May and June of 2018 at the Institute
for Computational Science, University of Zürich, under the supervision
of Romain Teyssier, who is the main author of the ramses code [19],
one of the main cosmological/galaxical simulation codes. However, I
ended up working closely together with Joachim Stadel on his pkdgrav
code [20], which again is one of the main cosmological N -body codes.
In particular, an extremely large simulation using four trillion particles
is planned to be carried out with this code, which shall then serve as
the flagship simulation for the Euclid mission. As mentioned, for precise
comparisons to observations, neutrinos need to be taken into account. As
far as physics is concerned, however, pkdgrav is very limited, capable
only of simulating matter particles in an expanding universe. As the
best way of implementing fully non-linear neutrinos is still unclear, a
linear approach was opted for pkdgrav. Here, ‘linear’ means that the
neutrinos themselves are computed exclusively using linear perturbation
theory, but that we include their gravitational interaction on the N -body
particles (and not vice versa).

Adding neutrinos to pkdgrav meant that it now had to interface
closely with an Einstein-Boltzmann code, just as concept had been
interfaced with class. To save (a lot of) time, I decided to use concept
as a middleman between pkdgrav and class. I added a functionality to
concept (the so-called class utility) enabling it to dump the processed
background quantities and perturbations from class to a single HDF5
file, which would then be read in from pkdgrav.

For a linear treatment of neutrinos to be accurate, the neutrino mass∑
mν has to be small enough so that the neutrinos remain relativistic

throughout at least most of cosmic history, as they will otherwise undergo
non-linear clustering just like matter. As shown in [11], treating neutrinos
linearly as opposed to non-linearly leads to a 1 % error∗ in the present day
matter power spectrum for

∑
mν ∼ 0.5 eV. For the flagship simulation,

∗The error on the late-time neutrino distribution (and hence the neutrino power
spectrum) itself is much larger. As we have no hope to observationally map the
perturbations in the cosmic neutrino background within the near future, this is not
problematic.
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a value of
∑
mν = 0.06 eV has been decided. With such nearly massless

neutrinos, their effect on the matter can no longer be expected to be
vastly bigger than the effect from photons. A very nice feature of
the linear neutrino method now implemented in pkdgrav is that it is
completely independent of the actual physical nature of the species, as
the complicated physical evolution is handled by the Einstein-Boltzmann
code. We thus decided to include both neutrino and photon perturbations
in pkdgrav.

When working at the level of photon perturbations, perturbations in
spacetime itself (the metric) ought to be taken into account as well, as
demonstrated in [12]. From the point of view of the linear implementation
in pkdgrav, this is just another species, on equal footing with photons
and neutrinos. As all communication from class to pkdgrav goes
through concept, the linear neutrinos (and photons etc.) essentially
had to be implemented in concept first, and so concept has both
the linear and non-linear implementations built in. This also keeps the
interface clean on the pkdgrav side, as class does not readily provide
e.g. the metric perturbations in the same form as photon perturbations.

I worked on the implementation of the linear species into concept
and pkdgrav for the last half of a year of my PhD. A paper titled
‘Fully relativistic treatment of light neutrinos in N -body simulations’,
describing the method (but not the details of its implementation) and
demonstrating results from it, can be found on arXiv [21]. It was
submitted to JCAP in early November of 2018, from which we await
response. The paper is included in this thesis in chapter 9.

In the remainder of this thesis, I will try not to describe the linear
and non-linear neutrino methods as being separate. In fact the non-
linear method has an associated order of linearity which can be tuned
depending on how non-linear the neutrinos are expected to be. At the
lowest order, the “non-linear” method reduces precisely to the linear
method. As described for the linear case above, the method extends
generally to other species (e.g. photons) as well, and this remains true
in the non-linear case. Thus, though we have neutrinos in mind, the
method presented in this work can straightforwardly be applied to other
species. In fact, due to the excellent integration of class into concept,
any species implemented in class can readily be used by concept in
this manner. As an example, Katrine Alice Glasscock used concept to
study the effects on matter from linear dark energy perturbations for her
Bachelor’s project.
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1.4 The CONCEPT Code
The concept code (‘COsmological N -body CodE in PyThon’) is the
main product of my PhD work. It is free and open-source and available
on GitHub∗. It was originally written for my Master’s thesis [22] in 2015.
At the time the code was able to evolve dark matter particles under their
own gravity in an expanding background, the evolution of which was
solved internally and could contain matter, Λ and radiation. Gravity
was (and is to this day) implemented using three different methods; the
PP, PM and P3M methods. For the neutrino implementation developed
during my PhD, only the PM method (or rather a generalisation thereof)
is suitable, and so we will primarily be concerned with this method in
this thesis.

Though concept is written in Python, it achieves C-like performance
thanks to extensive use of Cython [23]. Furthermore it makes use
of several high-performance libraries such as GSL, FFTW and HDF5.
In order for concept to be able to scale to large problems it uses
MPI parallelisation. Though much of the practical work put into the
development of concept comes down to software technical details, often
vastly complicated by the parallelisation aspect, these are not the focus
of this thesis.

In order for neutrinos to be incorporated into concept, it has been
extended with the following (non-exhaustive) list of features during the
course of my PhD:

• Fluid dynamics.

• Integration with class.

• Particle and fluid realisation.

The neutrinos are treated as a fluid rather than as particles. The non-
linear fluid equations are then solved to integrate the neutrino fluid
forward in time. Our strategy for doing this rely on repeated realisation
(i.e. 3D real-space instantiation) of linear theory input, and so having
class fully integrated into concept is a must. On top of this, class
also provides the background evolution and the linear theory transfer
functions needed for initial condition generation for both the matter
particles and the neutrino fluid.

Though concept is fully usable in its current state, it lacks behind
contemporary N -body codes in one aspect in particular: To achieve

∗https://github.com/jmd-dk/concept

https://github.com/jmd-dk/concept
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high spatial resolution of the particle distribution over a wide range of
scales, the PM method is not suitable. Instead, the P3M (or its fancier
cousin, the treePM) method could be used. Though the current P3M
implementation in concept does provide the missing resolution, it is
implemented non-optimally and increases the simulation time beyond
acceptance. I will stay in the cosmology group of Steen Hannestad for the
next six months as a postdoc, during which I will work on reimplementing
the P3M method, after which I would consider concept to be highly
competitive with other state-of-the-art cosmological simulation codes.

1.5 This Thesis
The remainder of this thesis is structured into three parts. Part I deals
with the theory of cosmological perturbations on top of a homogeneous
background, with special attention given to massive neutrinos. Part II
then goes into the numerical methods developed for simulating the physics
described in part I. Finally part III contains the two research papers I
have co-authored during my PhD, along with conclusions and outlook.

Part I starts out with chapter 2 in which the basic cosmology of a
homogeneous universe including massive neutrinos is laid out. Chapter 3
adds perturbations in all species, though the focus is on matter and
neutrino perturbations in particular. These perturbations are discussed in
both linear and non-linear theory, as well as both general relativistically
and in the Newtonian limit. Chapter 4 introduces the idea of the
power spectrum, which shall be our primary measure of the amount of
structure generated within the simulations, which we can use to compare
simulations with each other and with linear theory, and ultimately with
real world observations.

Part II starts out with a general review of cosmological N -body
methods in chapter 5. These are augmented with less standard methods
for fluid dynamics in chapter 6, needed to evolve the non-linear neutrinos.
These include an extension of my own invention to an existing method,
as well as a generalisation of the PM method for gravity in the case
of a simulation involving both matter particles and a neutrino fluid.
In chapter 7 various techniques for realising both particles and fluid
variables are developed. In particular, the linear realisation of the metric
perturbations is explained and new non-linear realisation schemes are
proposed, capable of performing realisations using information from both
a linear transfer function and the current non-linear state of a simulation.
Part II then finishes off with chapter 8 which review the concept code
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and makes it clear exactly which of the many methods discussed in this
part is actually implemented, and to what extent.

Part III starts out with chapter 9, which contains the paper entitled
‘Fully relativistic treatment of light neutrinos in N -body simulations’
along with a short introduction. Similarly, chapter 10 contains the
paper ‘νconcept: Cosmological neutrino simulations from the non-
linear Boltzmann hierarchy’, along with a short introduction. The thesis
is then concluded and future prospects considered in chapter 11.





Part I

Theory
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2 The Homogeneous Universe

The key to cosmology is the fact that the Universe is statistically homo-
geneous on large enough scales. This in effect provides a “largest scale”
of interest, beyond which nothing new appears. Together with a smallest
scale provided by quantum mechanics, this constrain our possibly infinite
universe to a finite range of scales, and so the amount of information
needed to statistically describe it is finite as well. Throughout this chap-
ter we will make the assumption that the Universe is homogeneous on
all scales, which will produce equations correctly describing the Cosmos
at these largest scales of interest (typically quoted as & 100 Mpc). Later
chapters will then go on to add inhomogeneities in order to describe
smaller scales as well. Our homogeneous universe is allowed to contain
quite a general assembly of different species, though we do not discuss
the possibility of these to interact by any means other than gravity.

We shall work in units in which the speed of light c, Planck’s reduced
constant ~ and Boltzmann’s constant kB are all set equal to unity. We
will make use of implied summation through the Einstein index notation.
All equations will be written with respect to cosmic (as opposed to
conformal) time t, with an overdot ˙ ≡ ∂t. We shall often leave out
explicit time dependencies when writing functions.

2.1 The Hubble Expansion
The homogeneity of the universe does not allow it to do much. If we
also impose complete isotropy (consistent with large-scale observations)
the only possible dynamics is that of universal expansion/contraction in
all directions. That is, the symmetry of space is not shared by time, in
which case the squared spacetime line element ds2 decompose as

ds2 = −dt2 +
(
a(t) dΣ

)2
, (2.1)

with dΣ being the line element on space, the expansion of which is
encoded in the scale factor a(t). Observations [24] tell us that our
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Universe is flat, and so the spatial metric is just that of Euclidean space:

ds2 = −dt2 + a2(t) dx2 , (2.2)

with x = (x, y, z) a Cartesian coordinate. The metric (2.2) is known as
the flat Friedmann-Lemaître-Robertson-Walker (FLRW) metric. The
dynamics of this FLRW metric, i.e. the evolution of the scale factor
a(t), depends upon the content within the universe, as described by GR
(general relativity), the central equations of which are the Einstein field
equations∗

Rµν −
1
2gµνR = 8πG sTµν , (2.3)

with G being Newton’s gravitational constant and we have a metric gµν =
diag(−1, a2, a2, a2) for our homogeneous spacetime (2.2) in Cartesian
coordinates xµ = (t,x). In fact, the entire left-hand-side of (2.3) is just
a particular way of writing the curvature of spacetime, and so the Ricci
curvature tensor Rµν and scalar R ≡ R α

α may be given in terms of the
metric alone;

Rµν = Γαµν,α − Γαµα,ν + Γαµν Γ
β
αβ − Γαµβ Γ βνα , (2.4)

Γµνρ = 1
2g

αµ(gαν,ρ + gαρ,ν − gνρ,α) , (2.5)

with Γµνρ the Cristoffel symbols and a comma index implies partial
differentiation with respect to the following indices. The metric gµν with
upper indices is the matrix inverse of its lower index counterpart, which
for our diagonal metric reduces to elementwise reciprocals.

The right-hand-side of (2.3) contains the stress-energy tensor sTµν ,
which hold within it the total energy density, momentum density, pressure
and shear stress from all species, as function of time and space. The
overbar is there to remind us that it is the stress-energy tensor of a
homogeneous universe. For a general set of non-interacting (gravity
aside) species, all of the quantities stored in the stress-energy tensor are
additive and so we are allowed to combine all species into one. Since
non-zero off-diagonal elements in sTµν (momentum or shear) would break
isotropy, the state of this combined species has to be fully specified by
its homogeneous energy density sρ and pressure sP , i.e. it is a perfect fluid,
sTµν = diag(sρ, sP , sP , sP ). With both sides of the Einstein field equations
(2.3) fully specified, it is just a matter of working out all of the Cristoffel

∗An explicit cosmological constant Λ is left out, as we shall think of this as a
component of the energy density and pressure contained within sTµν .
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symbols and entries in the Ricci tensor and see what it all boils down to.
This is done in e.g. [22], with the final results being the two Friedmann
equations

ȧ2

a2 = 8πG
3 sρ , (2.6)

ä

a
= −4πG

3 (sρ+ 3 sP ) , (2.7)

where the first equation results from the time/density component of the
Einstein field equations, whereas the second equation results from the
space/pressure component of the Einstein field equations together with
the first equation.

The two Friedmann equations (2.6) and (2.7) can be combined into
one by differentiating the first equation and substituting the left-hand-
sides for the right-hand-sides of both equations, in which case the homo-
geneous continuity equation is produced:

ṡρ = −3 ȧ
a

(sρ+ sP ) . (2.8)

This equation tell us the rate at which the energy density sρ dilutes given
a value for the expansion rate ȧ/a as well as values of the density sρ
and pressure sP . We could also have obtained the continuity equation
from the requirement of local energy conversation, sT 0α

;α = 0, where a
semicolon denotes covariant differentiation with respect to the following
indices.

The homogeneous continuity equation (2.8) makes it clear that the
density and pressure are not independent variables. In fact, for our set of
non-interacting species, what defines a given species is the exact relation
between density and pressure; an equation of state. With sρ(t) and sP (t)
depending only on time, it is clear that there exists some w(t) such
that sP (t) = w(t)sρ(t). Furthermore, since the homogeneous continuity
equation really describes local conservation of energy, it will hold true for
any single species (specified by the label α) with mean density sρα, not
just for the total energy density sρ. Substituting sρ→ sρα and sP → wαsρα
in (2.8), performing separation of variables and integrating between
today and some other time, we obtain

sρα(a) = exp
(

3
1w

a

1 + wα(a′)
a′

da′
)

sρα,0 , (2.9)

where now a ‘0’ subscript refer to the present day value, i.e. sρα,0 ≡
sρα(a = 1), where the scale factor normalisation is chosen such that it
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equals unity at the present time. In writing (2.9) we have also changed
the explicit temporal dependency from cosmic time t to the scale factor
a, which we can freely do if a(t) is bijective, i.e. a grows monotonically
with t. We can see from (2.6) that this is indeed the case since a(t) > 0,
sρ(t) > 0, and so ȧ(t) can never change sign. In the common case of
constant wα, (2.9) reduces to

sρα(a) = a−3(1+wα)
sρα,0 (constant wα) , (2.10)

which is applicable for all species discussed in this thesis except for
(massive) neutrinos.

Looking back at the first Friedmann equation (2.6), we can evaluate
it at the present to get H2

0 = 8πGρc,0/3, where H ≡ ȧ/a is the Hubble
parameter and the critical density ρc = sρ has been introduced, so named
as this is the exact total density required to make the universe flat,
given some value of H. The Hubble constant is observed [24] to be
H0 ≈ 67 km s−1 Mpc−1, from which we get ρc,0 equal to the mass of 5
hydrogen atoms per cubic meter of space. To express the first Friedmann
equation (2.6) in terms of present-day values, we simply divide it by
itself evaluated at today. Furthermore we split the total background
density into contributions from separate species:

H2(a)
H2

0
=
∑
α

exp
(

3
1w

a

1 + wα(a′)
a′

da′
)
Ωα,0 , (2.11)

where the sum is over all species and the density parameters Ωα ≡ sρα/ρc
have been introduced. In our flat universe,

∑
αΩα = 1 and so Ωα is

simply the fraction of the total energy budget taken up by species α.
Given the current composition of the universe, {Ωα,0}, together with the
equation of state for each species and the current expansion rate H0, we
can now solve for the expansion history H(a) or a(t).

2.1.1 Cosmic Inventory
As it stands, the Friedmann equation (2.11) is very general∗. Let us now
decide on which species to include in our model universe. We shall follow
that of standard ΛCDM with three massive neutrinos, i.e. our universe
contain dark energy in the form of a cosmological constant (ΩΛ,0 ≈ 0.68),
cold dark matter (Ωcdm,0 ≈ 0.27) and baryons (Ωb,0 ≈ 0.049) [24], leaving

∗It even allows for curvature by thinking of this as an energy density with an
equation of state wk = −1/3, should be wish to relax our assumption of a flat universe.
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trace amounts of photons and the three neutrino mass states, of which
at least two are massive.

The cosmological constant is defined to have constant energy density
sρΛ. From (2.9), it is clear that this requires

wΛ = −1 , (2.12)

which then implies the constant negative pressure sPΛ = −sρΛ.
The mean density sρα and pressure sPα generally emerge as statistical

properties from microscopic physics, i.e. they can be computed from
weighted integrals over the underlying distribution function sfα(t,p),
with p the 3-momentum. Here the overbar is to remind us that this
is the zero-order distribution function, i.e. any spatial dependencies
(inhomogeneities) have been integrated out. Similarly, isotropy dictates
that really sfα(t,p) = sfα(t, |p|). From the distribution function, the mean
density and pressure are given as

sρα = gα

w d3p

(2π)3
sfα(p)

√
m2
α + p2 , (2.13)

sPα = gα

w d3p

(2π)3
sfα(p) p2

3
√
m2
α + p2

, (2.14)

where
√
m2
α + p2 is the energy of a single particle with momentum p and

mass mα, while gα is the degeneracy of species α (i.e. number of single-
particle quantum states). With (2.13), (2.14) and some key knowledge of
the different species at our disposal, we can find the individual equations
of state for all remaining species. The distinguishing feature of matter,
whether it being cold dark or baryonic, is that m �

√
〈p2〉 , i.e. the

particle mass is much larger than typical momenta (values of p for which
sf(p) is non-negligible). This translates to a vanishing pressure when
compared to the density, and so since wα ≡ sPα/sρα, we get

wcdm = wb = 0 . (2.15)

Without even bothering with the integrals of (2.13) and (2.14), we
then have sρcdm = sρcdm,0a

−3, sρb = sρb,0a
−3 and sPcdm = sPb = 0, where

the density scalings are purely the result of the Hubble expansion (no
redshifting of the energy as matter is non-relativistic).

For photons we have the opposite limit, mγ = 0, which transform
sPγ → sργ/3 and so

wγ = 1
3 , (2.16)
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implying sργ = sργ,0a
−4, sPγ = sργ,0a

−4/3.
In the case of massless neutrinos, the result is of course identical to

that of photons. Often, photons and neutrinos are collectively referred
to as “radiation” since they (may) behave similar in this respect. As we
shall generally work with massive neutrinos, we shall refrain from this
collective labelling and keep these species distinct.

From the observed effects of neutrino oscillations [25] we know that
at least two of the three mass eigenstates of the neutrinos have non-zero
masses. These masses are however very small, with a bound [24] on the
sum of masses

∑
mν < 0.12 eV. With masses in this regime, neutrinos

will be ultrarelativistic and hence photon-like in the early universe, but
non-relativistic and hence matter-like in the late universe, as

√
〈p2
ν〉 will

be redshifted from
√
〈p2
ν〉 � mν to

√
〈p2
ν〉 � mν over the course of

cosmic history, and so the equation of state for massive neutrinos vary in
time. In order to obtain this wν(a), we must then carry out the integrals
of (2.13) and (2.14), using some suitably defined distribution function
sfν .

Leaving wν(a) undefined for now, we can write out the Friedmann
equation (2.11) for our given cosmic inventory:

H2(a)
H2

0
= ΩΛ,0 +

Ωcdm,0 +Ωb,0
a3 +

Ωγ,0
a4

+ exp
(

3
1w

a

1 + wν(a′)
a′

da′
)
Ων,0 ,

(2.17)

where specific values for Ωγ,0 and Ων,0 have yet to be specified.

2.2 Neutrinos
In the case of photons and neutrinos, their mean densities are usually
not specified by their density parameters Ωγ and Ων . We can measure
the temperature of the cosmic microwave background with pristine
precision, and so most often this temperature Tγ is given in place of Ωγ .
We can relate these quantities if we know the distribution function sfγ .
Before recombination (electrons and light nuclei forming atoms), the
photons were in thermal equilibrium with the plasma, and so followed
a Bose-Einstein distribution (due to photons being bosons) with some
definite temperature. After recombination, the photons decouple from
the baryons and are now able to stream freely. The photons then keep a
Bose-Einstein distribution, but the temperature of this distribution is
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redshifted over time due to the Hubble expansion. A similar story holds
for neutrinos; they too were once in equilibrium with the cosmic plasma
(though through weak as opposed to electromagnetic interactions), but
has since (prior to the photons) decoupled. Generally then, we may write
the zero-order distribution function∗ of species α as

sfα(a,p) =
[

exp
(√

m2
α + p2

Tα(a)

)
+
{
−1 α ∈ bosons
+1 α ∈ fermions

}]−1

, (2.18)

where the ∓1 depending on the bosonic/fermionic nature of species α
chooses between a Bose-Einstein or a Fermi-Dirac distribution. Plugging
sfγ into (2.13) using gγ = 2 due to the two spin degrees of freedom of the
photon, one obtain

sργ = π
2

15T
4
γ . (2.19)

With Tγ,0 = 2.7255 K [26] we then get Ωγ,0 = 5.5× 10−5.
We can similarly get sρν(Tν) by choosing the Fermi-Dirac version of

(2.18) and inserting into (2.13). At early times where the neutrinos were
relativistic, we can neglect their mass and get

sρν(a� 1) = 7π2
40 T

4
ν , (2.20)

where I have used gν = 6 due to the three generations of neutrinos, all
of which have antiparticles. No spin factor is used since the neutrinos
only have a single spin degree of freedom due to their chiral nature with
respect to the weak interaction.

Unlike the temperature of the CMB, we have not measured the
temperature of the CνB, as we in fact have not directly observed a single
cosmic neutrino. We can however link Tν to Tγ . At a time where the
neutrinos were in thermal equilibrium with the plasma and hence the
photons, the whole combined system had a single temperature. Then the
neutrinos decouple, locking their distribution though with a redshifting
temperature. After this, the temperature of the plasma drops below the
electron mass, ending e+e− pair production. The remaining annihilations
then dump energy into the photons, heating them up, and so at this
point (as today), Tγ > Tν . A full analysis [27] yields Tν = (4/11)1/3Tγ
right after decoupling. For this relation to hold throughout time, the
neutrino and photon temperature have to have identical scalings with

∗In reality, the zero-order distribution functions will differ slightly due to non-
equilibrium physics. Also, all chemical potentials are assumed to be zero.
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a. From (2.16) and (2.19) we have Tγ ∝ sρ
1/4
γ ∝ a−1. It turns out that

this scaling holds for the massive neutrinos as well, which we can see by
calculating the number density,

snν(a) = gα

∫ d3p

(2π)3

[
exp
( |p|
Tν(a)

)
+ 1
]−1

= 9ζ(3)
2π2 T 3

ν (a) , (2.21)

where ζ is the Riemann zeta function. We thus indeed have Tν ∝ sn
1/3
ν ∝

a−1 ∝ Tγ , where the middle proportionality results from the expansion
of space and the conservation of neutrino number after decoupling. Note
that even though no neutrino mass appears in the distribution function
explicitly written in (2.21), this equation still holds for massive neutrinos
throughout time. The massless distribution function must be used as
this is the distribution set at the time of thermal equilibrium, where the
mass is negligible.

In actuality, the neutrino decoupling and electron-positron annihila-
tion does not take place sufficiently separated in time so that the two
processes can be considered completely separate, and so a few “relic” neu-
trinos will be around to take away some of the energy from the annihila-
tions. This is parameterised through Neff, so that sρν/sργ → (Neff/3)sρν/sργ ,
i.e. Neff = 3 corresponds to the limit of complete separability of neu-
trino decoupling and e+e− annihilation. Simultaneous simulation [28]
of neutrino decoupling and e+e− annihilation, taking neutrino flavour
oscillations into account, yields Neff = 3.046. Absorbing this Neff into
the neutrino temperature, we have

Tν =
(
Neff

3

)1/4( 4
11

)1/3

Tγ . (2.22)

We can now put everything together, obtaining

sρνi = 2
∫ d3p

(2π)3

{
exp
[(

3
Neff

)1/4(11
4

)1/3a|p|
Tγ,0

]
+ 1
}−1√

m2
νi

+ p2 ,

(2.23)

sPνi = 2
∫ d3p

(2π)3

{
exp
[(

3
Neff

)1/4(11
4

)1/3a|p|
Tγ,0

]
+ 1
}−1 p2

3
√
m2
νi

+ p2
,

(2.24)
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Table 2.1 – Cosmological background parameters used throughout this
thesis, unless explicitly stated otherwise. Dark energy is assumed to take
the form of a cosmological constant Λ, with ΩΛ,0 = 1− (Ωb,0 +Ωcdm,0 +
Ωγ,0 +Ων1,0 +Ων2,0 +Ων3,0), making the universe flat.

H0 67 km s−1 Mpc−1

Ωb,0 0.049
Ωcdm,0 0.27
Tγ,0 2.7255 K
mν1

0
mν2

8.7× 10−3 eV
mν3

5.2× 10−2 eV

where now I have used gν = 6/3 = 2 to separate out the three neutrino
species νi, i ∈ {1, 2, 3}. Note that since the temperature does not depend
on the mass, all three mass states share the same temperature throughout
time, Tνi = Tν . Should we wish to think of the three neutrinos {νi} as a
collective species ν (as in e.g. the Friedmann equation (2.17)), we can use
the additivity of density and pressure, sρν ≡

∑3
i=1 sρνi and sPν ≡

∑3
i=1

sPνi ,
from which we get Ων =

∑3
i=1Ωνi . Note however that with regards to

the equation of state used in the Friedmann equation, things are not
so straight forward. In particular, wν 6=

∑3
i=1

sPνi/
∑3

i=1 sρνi , but rather
some sum of wi with combinations of Ωi as weights. Though we may
some times want to think of all neutrino species (or some other set of
species) as a single, collective species, in practice it is easier to keep all
species separate.

From studies [29] of neutrino oscillations and assuming the by now
slightly favoured normal neutrino mass hierarchy, it is found that mν2

=
mν1

+ 8.7× 10−3 eV and mν3
= mν1

+ 5.0× 10−2 eV, leaving mν1
uncon-

strained except for the cosmological upper bound [24] on
∑
mν < 0.12 eV,

implying mν1
< 2.0× 10−2 eV. For no other reason than the added in-

terest from having one of the neutrinos be massless, we choose mν1
= 0

as our standard value for this thesis, resulting in
∑
mν = 5.9× 10−2 eV.

With this, we have completely specified the background cosmology. For
future reference, our choices of cosmological parameters scattered around
this chapter is collected together in table 2.1.

Figure 2.1 shows the evolution of the mean density of all species, com-
puted as described in this chapter. The mean densities are parameterised
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Figure 2.1 – Energy density parameters Ωα for all the different species
as function of scale factor a. Cosmological parameters are as defined in
table 2.1.

as Ωα(a) ≡ sρα/ρc. Note that we do not have to solve the Friedmann
equation in order to obtain ρc(a), as this is simply the sum of the indi-
vidual background densities. We do however need ρc,0 (or equivalently
H0) to convert from {ΩΛ,0, Ωcdm,0, Ωb,0} → {sρΛ,0, sρcdm,0, sρb,0}. The fig-
ure clearly shows that cold dark matter and baryons behave the same;
they are merely scaled (translated, on the logarithmic plot) versions of
each other. The same goes for photons and the massless neutrino. As
discussed earlier, massless neutrinos and photons should indeed scale
similarly. The massive neutrinos ν2 and ν3 follow the massless ν1 at early
times when all three neutrinos are relativistic, but obtain an enhance-
ment when transitioning to the non-relativistic regime, surpassing the
photons. The more massive ν3 goes non-relativistic much earlier than the
lighter ν2. Lastly we see that the cosmological constant has just recently
begun to dominate over matter, which in turn began to dominate over
“radiation” (photons and neutrinos) around arm = 3× 10−4.

We have yet to numerically solve (2.24) for the neutrino pressure. This
is done for figure 2.2 which shows the equations of state wνi = sPνi/sρνi
for the three neutrino mass states. We see that all neutrinos obey the
relativistic limit wνi(a � 1) = 1/3 at early times and that for the
massive neutrinos, wν2

and wν3
follow decaying power laws at late times,

approaching the matter limit of 0.
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Figure 2.2 – Neutrino equation of state parameters wνi
as function of

scale factor a. Cosmological parameters are as defined in table 2.1.

With the neutrino equations of state at hand we can solve the Fried-
mann equation∗ (2.17), either algebraically for H(a) or via integration
for a(t) and H(t). These are shown in figure 2.3, where the history of
the universe has been separated into a radiation dominated era, a matter
dominated era and a dark energy dominated era. As a bonus we also
get the current age of the Universe from a(t0) = 1; t0 = 13.8 Gyr. The
scalings of a(t) and H(t) in the different epochs displayed on the figure
can be easily found from the single component Friedmann equation with
constant w; H2/H2

0 = a−3(1+w), where I have left out a density parame-
ter which equals unity for a flat, single component universe. Integrating
from t = a = 0 to some other t and a gives

a(t) =
[

9
4(1 + w)2(H0t)2

] 1
3(1+w)

, (2.25)

which we see fails for w = −1. Simply setting w = −1 and then doing the
indefinite integral yields a = C exp(H0t), with C being some undefined
constant of integration. Thus a Λ-only universe has no a = t = 0 a
finite time ago, i.e. no Big Bang, hence the failure of (2.25). Plugging

∗Only a single neutrino species appears in equation (2.17). To include all
three species, we simply replace the neutrino term with three identical copies, with
{wν , Ων} → {wνi

, Ωνi
}.
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Figure 2.3 – Scale factor a and Hubble parameter H as function of cosmic
time t. Cosmological parameters are as defined in table 2.1. The vertical
lines are situated at matter-radiation and dark energy-matter equality,
with the proportionalities showing the evolution in each epoch. Dotted
trendlines show fits to these proportionalities.

radiation (w = 1/3) and matter (w = 0) into (2.25) we then have

a =


(2H0t)

1/2 (radiation)(
3
2H0t

)2/3

(matter)

C exp(H0t) (Λ)

ȧ =



(
2 t

H0

)−1/2

= H0a
−1 (radiation)(

3
2
t

H2
0

)−1/3

= H0a
−1/2 (matter)

H0C exp(H0t) = H0a (Λ)

H =


(2t)−1 = H0a

−2 (radiation)
2
3 t
−1 = H0a

−3/2 (matter)

H0 (Λ) ,

(2.26)

which indeed agrees with the numerical findings stated on figure 2.3.
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We use the terms “matter” and “ration” to refer to species with
equation of state wm = 0 and wr = 1/3, respectively. The instance of
matter-radiation equality arm is then defined from sρm(arm) = sρr(arm)
and corresponds to the leftmost vertical line on figure 2.3. We see
that matter-radiation equality takes place around arm = 3 × 10−4, at
which point all the neutrinos were still relativistic according to figure 2.2.
We should thus include all neutrinos as part of the radiation when
computing arm, i.e. sρr(arm) = sργ(arm) + sρν1

(arm) + sρν2
(arm) + sρν3

(arm).
Contrary, the dark energy-matter equivalence at amΛ takes place in
the recent past as seen from figure 2.3 (amΛ = 0.8), which now means
that the two massive neutrinos are non-relativistic (c.f. figure 2.2) and
so should now be included when counting up the matter; sρm(amΛ) =
sρcdm(amΛ) + sρb(amΛ) + sρν2

(amΛ) + sρν3
(amΛ).

With the Hubble expansion as well as the evolution of the background
density and pressure for every species known, we are done describing the
homogeneous universe and ready to begin perturbing it.
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3 The Perturbed Universe

With the homogeneous universe from the previous chapter, this chapter
sets out to study the linear growth of structure given some initial per-
turbations. We shall first look at a perturbed matter-only universe in
which we can successfully carry out the analysis in a Newtonian manner.
We can even apply the results from this to cosmologies containing other
species as well, as long as these do not cluster much themselves. We shall
then discuss the general relativistic fluid dynamics applicable for any
species. Linearising this fluid dynamics will produce linear perturbation
theory, which is capable of solving for the linear growth of any species in
the context of general relativity.

3.1 Newtonian Matter Perturbations
Allowing for inhomogeneities in the universe switches on gravity∗, as
overdense regions can now attract each other. Gravity is global in
the sense that all species share the gravitational interaction, i.e. the
gravitational effect on a given species cannot be computed without
knowledge of all other species. For now though, we shall consider a
universe containing only a matter fluid, i.e. a species which is described
completely by its energy (or mass) density field ρ and its momentum
density field.

3.1.1 Eulerian Equations of Motion in Comoving Space
To obtain a description of Newtonian gravity, we consider the (temporally)
local limit of the FLRW metric (2.2), which then becomes the metric of
special relativity (i.e. we disregard the Hubble expansion), gµν → ηµν =
diag(−1, 1, 1, 1). To allow for Newtonian (weak) gravity, we now perturb
the metric, gµν → ηµν + hµν with |hµν | � 1. As matter is pressureless,

∗Here ‘gravity’ is meant in the usual (Newtonian) sense as an attractive force.
In the larger context of general relativity, the overall Hubble expansion may also be
referred to as gravity.
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the only non-zero diagonal element of Tµν is T00 = ρ. The Einstein field
equations (2.3) then reduces [22] to the single equation∗

r∂i r∂
iφ = 4πGρ , (3.1)

which we recognize as the Poisson equation for gravity with φ being the
gravitational potential. The seemingly unnecessary left subscripts r on
the derivatives are to remind us that these derivatives are to be taken
with respect to the static space coordinates r as opposed to comoving
coordinates x, as we have removed the Hubble expansion in order to
derive (3.1).

In static space with physical coordinates r, the equations of motion
for a matter fluid specified completely by its energy density ρ(r) and
velocity ṙ(r), comes down to the simple continuity and Euler equations{

r∂tρ = − r∂jρṙ
j ,

r∂tρṙ
i = − r∂jρṙ

iṙj − ρ r∂iφ ,
(3.2)

where subscript t means time (the 0’th index). The first equation
(continuity) states that any change in local energy density ρ must be the
result of mass transfer. The second equation (Euler) states that changes
in the local momentum density ρṙ are due to either momentum transfer
or momentum generation through the gravitational potential. In writing
the Euler equation (3.2), the choice has been made to group the product
ρṙi together. This is convenient not only because we can think of ρṙi as
a fluid variable (the momentum density) in its own right, but it keeps
the equation in so-called conservation form, where fluxes (transfer) of
the fluid variable are easily recognized as divergences over the variable,
while all other terms are source terms.

To transform the continuity and Euler equation (3.2) from static
space r to comoving space x, we upgrade r from static to physical space
(which is allowed to expand), related to comoving space by r = ax (c.f.
the FLRW metric (2.2)). Allowing the fluid variables to take in both
physical and comoving arguments, e.g. ρ(t, r) = ρ(t, ax) ≡ ρ(t,x), the
transformation is then handled solely by the derivatives, e.g. r∂ → x∂.
From r = ax we immediately get the spatial transformation r∂i =
a−1

x∂i. For the temporal transformation, compare the comoving and
physical differential of some function f(t, r) = f(t,x);

df = x∂tf dt+ x∂if dxi

∗Here we have made the association h00 ≡ 2φ in order for the potential to have
the same scaling as we are accustomed to from Newtonian gravitation.
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= r∂tf dt+ r∂if dri

=
(
ȧ

a
xi x∂if + r∂tf

)
dt+ x∂if dxi

⇒ r∂t = x∂t −
ȧ

a
xi x∂i , (3.3)

where dri = xi da+ a dxi = ȧxi dt+ a dxi has been used. Knowing how
r∂µ transforms, the continuity and Euler equation (3.2) in comoving
space become

x∂ta
3ρ = −a2

x∂iρu
i ,

x∂ta
4ρui = −a3

x∂jρu
iuj − a3ρ x∂

i

(
φ+ 1

2aäxjx
j

)
,

(3.4)

where the fluid variables are now chosen to be the comoving energy
density a3ρ and momentum density a4ρui, with ui ≡ aẋi being the
peculiar velocity. Stating the comoving continuity and Euler equation
(3.4) in terms of these variables makes them appear very similar to their
static space versions (3.2), with the Hubble expansion only∗ appearing
through multiplicative factors of a (we shall deal with the ẍ term below).

The Peculiar Potential

The gravitational source term of (3.4) looks almost nonsensical due to the
xjx

j term. To fix this, define the peculiar potential ϕ as the parenthesis
in (3.4);

ϕ(x) ≡ φ(r) + aäx2/2 , (3.5)

where I have changed to vector notation as the following will be easier
expressible this way. Though the x2 term is still hiding inside the
definition of ϕ, it disappears (due to the Laplacian) when writing out
the Poisson equation for ϕ;

x∇2ϕ = 4πGa2(ρ− sρ) , (3.6)

where we have used (3.1) with x∂i = a r∂i and the subtraction of the
mean density appears from substitution of ä via the second Friedmann
equation (2.7). As before, the left subscript x reminds us that the
differentiation happens in comoving space. The Poisson equation (3.6)
shall be our new definition of ϕ, and so we can forget that the strange xjxj

∗Had we stated e.g. the continuity equation in terms of x∂tρ, a new Hubble drag
term −3Hρ would appear, just as we had in (2.8).
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term ever appeared. The price to pay is that now gravity is determined
from the density perturbation δρ ≡ ρ − sρ rather than just the density
ρ. This is referred to as ‘Jeans swindle’. Intuitively we would expect
a (spatially) constant offset in the density field to make no difference.
Inverting the Laplacian on the left-hand-side to some integral over all
of space on the right-hand-side of (3.6), it is clear that such an integral
can only be convergent if the integrated density has zero spatial mean,
demonstrating the importance of the subtraction of the mean.

We now want to carry out the above mentioned inversion of the
Laplacian in the Poisson equation (3.6). The inverse Laplacian will be
an integral over all of space with some kernel G

x∇2 (the Green’s function
of the Laplacian), i.e. ϕ = 4πGa2 r

d3x′ G
x∇2(x,x′)δρ. Reapplying the

Laplacian should convert back to the Poisson equation, and so x∇2G
x∇2 =

δ(x′ − x), with δ the Dirac delta function. The solution is G
x∇2 =

−1/(4π|x′ − x|), and so the potential alone can be expressed as

ϕ(x) = −Ga2
w

d3x′
δρ(x′)
|x′ − x| . (3.7)

Similarly, we want an expression for the force x∇ϕ, which we can get
from the Poisson equation in a similar manner to what we just did, or
more easily by simply taking the gradient of (3.7):

x∇ϕ(x) = −Ga2
w

d3x′
x′ − x
|x′ − x|3 δρ(x′) . (3.8)

3.1.2 Lagrangian Equations of Motion in Comoving
Space

In the previous subsection we found the non-linear equations of motion for
matter in comoving coordinates. We described matter as a fluid through
its density ρ(t,x) and peculiar velocity ui(t,x), i.e. we can choose some
spatial location x and ask about the density and pressure at this point.
This is called an Eulerian description of the fluid. Though this is the
description we will need for now, we shall later be using the Lagrangian
description, where we follow specific fluid parcels — or particles — as
they move through space. Labelling these particles with an n, the system
is then described by {xn(t), qn(t)}, where qn ∝ mnun is the comoving
momentum canonical to xn, with mn the mass of particle n.

One can obtain the Lagrangian description from the Eulerian descrip-
tion. As our system of gravitationally interacting matter particles is
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rather simple, we shall instead derive the Lagrangian equations directly
from the single-particle Lagrangian in static space;

Ln(t, rn, ṙn) = 1
2mnṙ

2
n −mnφ(rn) . (3.9)

From r = ax⇒ ṙ = ȧx+ aẋ = ȧx+ u and the relation (3.5) between
the physical (or proper) potential φ and the peculiar potential ϕ, we can
immediately write the above Lagrangian in comoving space;

Ln(t,xn, ẋn) = 1
2mnu

2
n −mnϕ(xn) + d

dt
1
2aȧmnx

2
n

→ 1
2mnu

2
n −mnϕ(xn) , (3.10)

where the spurious term ∝ x2
n is removed by a gauge transformation,

which correspond to Jeans swindle introduced for the Eulerian case.
With the Lagrangian in comoving space (3.10) defined, the comoving

momentum qn canonical to xn comes out to be

qn ≡
∂Ln(t,xn, ẋn)

∂ẋn
= a2mnẋn = amnun . (3.11)

The Hamiltonian Hn(t,xn, qn) ≡ ẋnqn − Ln(t,xn, qn) is then

Hn(t,xn, qn) = q2
n

2a2mn
+mnϕ(xn) , (3.12)

from which the equations of motion ẋn = ∂Hn/∂qn, q̇n = −∂Hn/∂xn,
become 

ẋn = qn
a2mn

,

q̇n = −mn x∇ϕ|x=xn ≡ fn ,
(3.13)

where the left index on the gradient is once again to remind us that the
gradient it to be taken in comoving space, and fn(t) is the comoving
force acting on particle n.

With the Hamiltonian equations established, let us now explicitly
express the Eulerian fluid fields in terms of the Lagrangian particles. For
point-like particles, we have

a3ρ(x) =
∑
n

mnδ(xn − x) ,

a4ρu(x) =
∑
n

qnδ(xn − x) .
(3.14)
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Integrating (3.14) over some comoving volume will result in the enclosed
mass (first equation) and the enclosed comoving momentum (second
equation), both of which should be constant in time for a homogeneous
universe. The exponents of a on the left-hand-sides are then chosen such
that the resulting energy (here simply mass) and momentum densities
are in conservation form as in (3.4).

The Hamiltonian equations (3.13) together with the Poisson equation
(3.6) (or equivalently one of (3.7) or (3.8)) completely describe the system
of particles. For a Poisson equation for ϕ expressed in terms of particles,
we can replace δρ in the Poisson equation with the sum over particles as
given in (3.14).

3.1.3 Linear Perturbations
From this point on we will stay in the comoving frame with coordinates
x, and so we shall drop the left subscript on derivatives. We shall also
go back to the Eulerian description of the matter fluid. Collecting the
results from subsection 3.1.1, the continuity, Euler and Poisson equations
for the perturbed matter-only universe are

∂ta
3ρ = −a2∂iρu

i ,

∂ta
4ρui = −a3∂jρu

iuj − a3ρ∂iϕ ,

∂i∂
iϕ = 4πGa2

δρ .

(3.15)

The assumption going into equations (3.15) were that of weak (Newto-
nian) gravity. The fluid variables ρ and ui have not themselves been
linearised, and so (3.15) holds true in non-linear theory as well.

We define the density contrast δ(x) as the dimensionless “perturba-
tion” to ρ(x),

ρ(a,x) = sρ(a)[1 + δ(a,x)] , (3.16)

although generally we do not assume δ to be small. Right now however
that is exactly what we shall do. Keeping only linear terms of δ and
ui (meaning δ2 = uiuj = δui = 0) in (3.15), we can combine the three
equations into one by taking the temporal derivative of the continuity
equation and the spatial derivative of the Euler equation, resulting in

δ̈ + 2Hδ̇ − 4πGδsρ = 0 (δ � 1) . (3.17)

Note that only for δ � 1 is the variable δρ ≡ δsρ equal to the product δρ.
Generally we wish to solve for the growth of structure (3.17) throughout
history, not just during matter domination. We thus relax the assumption
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of the universe being matter-only. The δ in (3.17) is still the density
contrast of just the matter, but δsρ is really the density perturbation of all
species, as it is what provides gravity. On the other hand we know for a
fact that it is only the matter in our Universe which cluster strongly, and
so we may take δsρ in (3.17) to only include matter as well. Expressing
the background matter density as Ωm,0ρc,0a

−3 with the current critical
density given by the Friedmann equation (2.6), we can write (3.17) as

D̈ + 2HḊ − 3
2Ωm,0H

2
0a
−3D = 0 , (3.18)

where I have substituted the linear growth factor D(a) for δ(a), which
is somewhat nicer as δ generally is a spatial field, whereas (3.17) and
(3.18) do not depend on x. The growth of structure given by (3.17) and
(3.18) are then completely scale independent.

In the radiation era, the background matter density was relatively
insignificant (see figure 2.1), and we know that initially the matter
contrast δ have to be very small. We can then neglect the δsρ term in the
radiation era. We similarly ignore the δsρ term during the Λ epoch, this
time because sρ exponentially decays with time. For matter domination,
we keep the term and approximate sρ = ρc. With these approximations
we now plug H from (2.26) into (3.17) and get [22]

D(a) =


Cr log a+ C ′r (radiation)
Cma+ C ′ma

−3/2 (matter)
CΛ + C ′Λa

−2 (Λ) ,
(3.19)

where the C’s are constants of integration. Disregarding the slow loga-
rithmic growths during radiation domination, we see that δ only grows
during matter domination. The large-scale structure in the universe then
only has a finite temporal window within which to form.

Figure 3.1 shows the numerical solution of the matter growth fac-
tor D(a), in our complete universe simultaneously containing matter,
photons, neutrinos and Λ. As we learned from the analytical approxi-
mations (3.19), we do indeed find that matter perturbations only grow
during matter domination, and that this growth very precisely follows
D ∝ a. As the matter epoch spans ∼ 3 orders of magnitude in a, linear
perturbation theory then predicts a similar ∼ 3 orders of magnitude
growth of δ. This suggests that we cannot treat the perturbations as
small throughout time, establishing the need for non-linear simulations.

What we have considered “matter” in this section has been a pres-
sureless fluid, i.e. cold dark matter and baryons. In a universe with
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Figure 3.1 – Growth factor D as function of scale factor a. Cosmolog-
ical parameters are as defined in table 2.1. The growth factor has been
normalised so that D(a = 1) = 1. The vertical lines are situated at matter-
radiation and dark energy-matter equality. The dotted trendline shows a
perfect D ∝ a relation.

massive neutrinos however, we know that these will act matter-like at
late times, including the late phase of matter domination, depending
on the mass (see figure 2.2). Similar to cold dark matter and baryons,
we then expect structure in the massive neutrino distribution to also
grow significantly during matter domination, increasing δρν to a point
where it can no longer be neglected from the total density perturbation
δsρ in (3.17). The growth factor D as defined through (3.18) is then a
good description of the linear growth of matter only in universes without
massive neutrinos.

3.2 General Relativistic Fluid Dynamics
In this section we will study the general relativistic fluid dynamics of
any species. For this we will first need to define a common set of fluid
variables by which any fluid can be fully described, and then we need to
find evolution equations for each of these variables. As we will not have
any particular set of species in mind, we will leave out the α index on
the various variables.

3.2.1 Fluid Variables and the Boltzmann Hierarchy
The biggest mathematical structure we have so far encountered, hold-
ing fluid variables such as the energy density, momentum density and
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pressure, has been the stress-energy tensor Tµν . As this is a symmetric
4× 4 tensor, it generally contains 10 independent∗ variables. We may
take these to be† [31]

T 0
0 = −ρ ,

T i0 = −(ρ+ P )ui ,
T ij = Pδij + (ρ+ P )uiuj +Σi

j ,

(3.20)

where δij is the Kronecker delta and the symmetric and traceless shear
stress Σi

j is the only new variable, from which we further define

Σi
j ≡ (ρ+ P )σij . (3.21)

In the case of complete homogeneity we saw in (2.13) and (2.14) how
the density and pressure arose as weighted integrals — or moments — of
the underlying distribution function f , though the same formalism holds
true in the general case. Completely analogous to (2.13) and (2.14), the
stress-energy tensor can be constructed as

Tµν =
√−g

w
d3P f

PµPν
P0

, (3.22)

where g is the determinant of the metric, d3P = dP 1 dP 2 dP 3 and
Pµ the conjugate momentum to the comoving xµ. Indeed, setting
µ = ν = 0 in (3.22) we obtain ρ ∝

r
d3P fP 0 with P 0 the energy

density, which matches (2.13), while setting µ = ν = i in (3.22) yield
3P ∝

r
d3P fP iPi/P0 (with P the pressure), where the 3 comes from

the sum (trace), which again matches (2.14).
Equation (3.22) can be seen as a description for generating fluid

variables as momentum/velocity moments over f . Let us write these

∗Really only 6 due to the 4 Bianchi identities.
†Note the inclusion of the term (ρ + P )uiuj which is missing in e.g. (25) of

[30]. This term is clearly needed when we consider a perfect fluid for which T ij =
Pδij + (ρ + P )uiuj . It is left out of (25) of [30] and much other literature because
uiuj vanish to linear order in perturbations.
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variables down in a list:

T 0
0 (t,x) =

√−g
w

d3P fP 0 ,

T i0 (t,x) =
√−g

w
d3P fP i ,

T ij (t,x) =
√−g

w
d3P f

P iPj
P0

,

Π i
jk (t,x) =

√−g
w

d3P f
P iPjPk
P0P0

,

...

(3.23)

We see that each new variable is an object with one additional index, and
that the rule for constructing the next variable is just to multiply the
integrand by P`/P0. This enable us to construct higher-order moments
such as Π i

jk , which are new fluid variables not contained in the stress-
energy tensor. The infinite list of variables (3.23) is called the Boltzmann
hierarchy. The temporal and spatial dependency is contained in the fluid
variables, while no momentum dependency is left due to the integrations.
Viewing the infinite hierarchy as a monomial expansion of f in velocity
(P`/P0 ∼ u`) moments then guarantees that all the information of f is
preserved in the infinite list of fluid variables, assuming only that f be
analytic.

3.2.2 Fluid Equations
When analysing Newtonian fluid dynamics in section 3.1, we did not
use the underlying distribution function but instead the fluid variables ρ
and ρui. These exactly correspond to the first two fluid variables in the
Boltzmann hierarchy (3.23) for a fluid with no pressure (c.f. (3.20)). In
fact, having no pressure is the same as T ii = 0, while having no shear
stress means Σi

j = 0, which in turn leaves T ij as just some combination
of the lower order fluid variables, and is hence not an independent
variable. If the even higher moments of the fluid in question also vanish,
the hierarchy becomes finite. In this subsection we will not assume that
any fluid variable vanishes. The goal is then to construct the evolution
equation for each variable to see how the different orders are related.

As mentioned in section 2.1, local energy-momentum conservation
is expressed by the vanishing covariant derivative of the stress-energy
tensor,

0 = Tαµ;α = ∂αT
α
µ + Γ ββα T

α
µ − Γ βαµ Tαβ , (3.24)
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which indeed amounts to four equations, corresponding to the continuity
and Euler equations. As (3.24) refer only to the stress energy tensor and
the metric, we are guaranteed that the continuity and Euler equation
can contain nothing but the fluid variables ρ, ui, P and Σi

j , together
with gravity from the metric. For the evolution of e.g. the pressure
itself, (3.24) cannot help us. For a general approach to constructing the
evolution equations of fluid variables then, we have to go beyond (3.24).

As the fluid variables are constructed from the distribution function
f , we can use the evolution of f itself to obtain the evolution of any
given fluid variable. In GR, the non-manifestly covariant collisionless
Boltzmann equation takes the form [32,33]

Pα
∂f

∂xα
− PαP βΓ iαβ

∂f

∂P i
= 0 . (3.25)

Multiplying this equation by the contravariant invariant volume element
[18] √−g d3P /P0 and integrating, we obtain integrals of the sort we
see in (3.23) but with spatial and importantly temporal derivatives of
f . Using this procedure while introducing the additional needed factors
of P`/P0 according to (3.23) in the integrand, we can find the evolution
equations of the fluid variables.

To carry out the integrations over (3.25), we need to settle on a gauge.
In [18] this is done in conformal Newtonian gauge [30] with line element

ds2 = −(1 + 2ψ) dt2 + a2(1− 2φ) dx2 . (3.26)

With the metric perturbations being small, ψ, φ � 1, we recognize
(3.26) as a perturbed FLRW metric (2.2). Multiplying the Boltzmann
equation (3.25) by the invarianet volume element together with P0 and
then integrating, [18] finds the continuity equation

δ′ =− (1 + w)(θ − 3φ′)− 3a
′

a

(
δP

δρ
− w

)
δ

− θδ − ui∂iδ

+ 3
(

1 + δP
δρ

)
φ′δ − δP

δρ
θδ − ui∂i

(
δP

δρ
δ

)
− (∂iψ − 3∂iφ)

(
1 + δ + w + δP

δρ
δ

)
ui ,

(3.27)

where δP ≡ P − sP , θ ≡ ∂iu
i and a prime refers to differentiation with

respect to conformal time, ′ ≡ ∂τ = a∂t. Applying the same procedure
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but this time multiplying by P0P
i/P 0, [18] finds

(ui)′ =−
[
a′

a
(1− 3w)− ψ′ − 5φ′

]
ui

−

[
δ′ + w′ +

(
δP

δρ
δ

)′]
ui + δij(1 + δ)∂jψ

1 + δ + w + (δP/δρ)δ

−
[
δ
ik(∂j + ∂jψ − 3∂jφ) + δ kj δi`∂`φ

]
T jk

sρ[1 + δ + w + (δP/δρ)δ] .

(3.28)

Both (3.27) and (3.28) are also derived in [31] from the vanishing of the
covariant derivative of the stress-energy tensor (3.24).

We could continue down the Boltzmann hierarchy and find (T ij )′,
corresponding to P ′ and (Σi

j )′. As laid out in [18], (T ij )′ will contain
the divergence of Π i

jk as well as the double contraction of Π i
jk` , where I

have reused the symbol Π for the rank 4 fluid variable (the fluid variable
specification is completely contained in the number of indices). For the
massive neutrinos studied during my PhD work, it seems as though the
two lowest order fluid equations (3.27) and (3.28) are enough at the
non-linear level, and so I have not explored further up the Boltzmann
hierarchy.

As they stand, (3.27) and (3.28) are definitely not in conservation
form. As we wish to solve these partial differential equations numeri-
cally it is much preferable to have them in conservation form, as this
respects the conserved quantities/underlying symmetries. That is, if we
use the conserved form numerically, the physical conserved quantities
are guaranteed to also be conserved numerically, regardless of numerical
inaccuracies, improving numerical stability of the solutions. In trans-
forming (3.27) and (3.28) to conservation form, we simultaneously switch
from conformal time τ to cosmic time t; ′ = ∂τ → a∂t = a ˙ . We do this
for no other reason other than the fact that concept uses cosmic time
internally, and so in order to implement the equations in concept they
have to be expressed with respect to cosmic time.

We saw in (3.15) how the conserved energy density in comoving
coordinates was a3ρ for a matter fluid. In the static limit where flux
terms disappear, we can understand this a3 as coming from the scaling
sρ ∝ a−3 for matter. The product a3

sρ is then a constant, i.e. it is
conserved. In the case of radiation, it is a4

sρ that would be constant.
With these limits in place, we define the conserved energy density as

% ≡ a3(1+w)ρ , (3.29)
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satisfying the criteria for conservation for both matter and radiation limit.
In (3.29), w is the effective equation of state, which equal the normal
equation of state w when this is constant, as in the case of matter and
radiation. In the general case of varying w(a), w(a) is simply defined
to be whatever function makes (3.29) be the conserved variable. If we
compare (2.9) with (2.10), we see that we must have

a−3(1+w) ≡ exp
(

3
1w

a

1 + w(a′)
a′

da′
)

⇒ w = 1
ln a

aw

1

w(a′)
a′

da′ , (3.30)

which indeed satisfy w = w in the case of constant w.
For the momentum density, (3.15) shows that a4ρui is the conserved

quantity for matter. This makes sense since for matter, ρ ∝ a−3, ui ∝ a−1,
providing the need for the a4. For radiation, we have ρ ∝ a−4 and
constant peculiar velocity ui, and so we could define the conserved
momentum density as just a4ρui, independent of w (or w). Looking
back at the equation for (ui)′ (3.28), we see that it contains a temporal
derivative of the pressure, the expression for which we do not know,
although we do know what it takes to find it, as described earlier. We
can bypass this difficulty by including the pressure into our definition of
the conserved momentum density;

J i ≡ a4(ρ+ P )ui , (3.31)

where the addition of P does not break the previous arguments of
conservation as sP = wsρ, with w constant for matter and radiation.

As we do not concern ourselves with the time evolution of the pressure
and shear stress in this work, we do not need to find conserved versions of
these. However, I have found that the equations simplify if we introduce

P ≡ a3(1+w)P , (3.32)
ς ij ≡ a3(1+w)Σi

j = (%+ P)σij , (3.33)

which we shall refer to as the conserved pressure and the conserved shear
stress, respectively, although it might turn out that (3.32) and (3.33) are
not actually the conserved quantities once we know the equations for Ṗ
and Σ̇i

j .
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Writing the continuity (3.27) and Euler (3.28) equation only in terms
of the conserved variables, we get

%̇ =− a3w−2∂iJ
i

+ 3H(w%− P)
+ a3w−2J i∂i(3φ− ψ)
+ 3(%+ P)φ̇ ,

J̇ i =− ∂j
[
a3w−2 J

iJj
%+ P + a−3w(Pδij + ς ij

)]
− a−3w(%+ P)∂iψ − a3w−2 J

jJj
%+ P ∂

iφ

+
[
a3w−2 J

iJj
%+ P + a−3wς ij

]
∂j(3φ− ψ)

+ J i(ψ̇ + 5φ̇) ,

(3.34)

where we have switched back to cosmic time derivatives. The equivalent
equations with conformal time derivatives can be found in [18]. Note that
the many factors of a to various powers are not the result of switching to
cosmic time, but instead a necessary price we pay for using the conserved
variables.

I have written equations (3.34) so that similar physical terms appear
together on the same line. The first line of both equations contains the
entire flux; for the continuity equation this is a single energy flux, while
for the Euler equation we have momentum, pressure and shear flux.

The second line in the continuity equation is a Hubble source term,
the very sort of term we are trying to avoid by working in conserved
quantities. I conjecture that no choice of energy density variable can
completely rid the continuity equation for such a Hubble term, at least
not without introducing similar terms in the Euler equation. Note that
the specific Hubble source term in the continuity equation (3.34) is as
benign as can be, as it vanishes in the homogeneous limit since sP = wsρ,
as well as in the perfect fluid limit where P = wρ.

The third line of the continuity equation and the second and third
line of the Euler equation are gravitational source terms coming from
spatial derivatives of the potentials. As J iJj ∼ uiuj and ς ij similarly can
be expected to be of the order of uiuj , the (%+P)∂iψ term in the Euler
equation dominate. This is indeed precisely the Newtonian gravitational
source term, with ψ = ϕ being the Newtonian peculiar gravitational
potential. Remembering that a P is hiding inside J i, explaining the
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unusual appearance of the pressure in the Newtonian gravitational source
term.

The last line of both the continuity and the Euler equation are still
more general relativistic gravitational source terms, this time through
temporal derivative of the potentials. As with the other relativistic
gravitational source terms, we may neglect these when working with
Newtonian gravity.

Note that the claim of (global) “conservation” of % and J i can now be
explicitly checked by spatially averaging the right-hand-sides of (3.34):
This makes the flux terms vanish as we have no gradients, the gravita-
tional potentials vanish as they are produced by inhomogeneities, and
we have already discussed how the Hubble source term vanish in the
case of homogeneity. Thus % and J i as defined in (3.29) and (3.31) with
w defined in (3.30) are indeed good choices for conserved energy and
momentum density variables.

As a sanity check, we should make sure that the general continuity and
Euler equations (3.34) reduces to their Newtonian matter-versions (3.15).
The transformations that we need are ς ij = 0 and w = w = P = 0 ⇒
%→ a3ρ, J i → a4ρui, which once we throw away the general relativistic
source terms exactly converts the continuity and Euler equations (3.34)
into those of (3.15).

The non-linear continuity and Euler equation (3.34) needs to be
augmented with equations for the metric perturbations φ and ψ. Such
equations can be found by inserting the perturbed metric (3.26) and the
non-linear stress-energy tensor (3.20) into the Einstein equations (2.3).
The linear-order results are given later in subsection 3.3.2. Generally
when working in non-linear theory, we assume that gravity can be well
described by its Newtonian form∗, i.e. the Poisson equation given in e.g.
(3.15). As noted above, this corresponds to removing all gravitational
source terms from the continuity and Euler equation (3.34), except for
the (% + P)∂iψ term in the Euler equation. With ψ = ϕ, the Poisson
equation is then simply that of (3.15), which expressed using conserved
variables is

∂i∂
iϕ = 4πGa−3w−1

∑
α

δ% , (3.35)

where the explicit sum over all species reminds us that the peculiar
potential ϕ ≈ ψ ≈ φ is shared amongst all species, each of which have

∗We shall later put in GR corrections, but effectively this will be done by modifying
the density field present in the Poisson equation. We will not (re)introduce a second
potential with a separate Poisson-like equation.
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their own continuity equation, Euler equation and entire Boltzmann
hierarchy in general.

3.3 Linear Perturbation Theory
The non-linear continuity and Euler equations (3.27) and (3.28), or
equivalently their conservation form (3.34), hold true for any collisionless
species (meaning one that only interacts through gravity) as they are
derived from the collisionless Boltzmann equation (3.25). For matter, we
saw how the Boltzmann hierarchy (3.25) ended at the momentum/Euler
equation level, meaning that the continuity and Euler equation only
refer to fluid variables at or below this level, i.e. the energy and mo-
mentum density. Appending to the continuity and Euler equation some
equations for the gravitational potentials ψ and φ, which we can get by
just plugging the perturbed metric (3.26) into the (perturbed version
of) the Einstein equations (2.3), we have a fully specified system of
equations governing the non-linear evolution of matter, with the only
approximations being that matter is collisionless∗ and that the metric
perturbations are linear, i.e. the potentials ψ and φ are small, which is
an extremely good approximations at cosmic scales.

The most general species is one which have non-zero pressure and
shear stress while also having a time dependent equation of state w(a),
which is the case for massive neutrinos. Here, the continuity and Euler
equations require us to know these additional quantities. We could
continue up the Boltzmann hierarchy (3.23), deriving equations for the
pressure and shear, which in turn would require the knowledge of even
higher-order variables, and so on ad infinitum. As solving just the
non-linear continuity and Euler equation is already computationally
demanding, another approach is needed.

As the Universe becomes more and more homogeneous when we go
up in scale or back in time, we are able to successfully apply perturbation
theory at these scales and times. In this section we will outline the basics
of linear perturbation theory, where we seek to find evolution equations
for the perturbed quantities at the linear level, i.e. we throw away any
term containing two or more perturbed variables. We will find that the
linearised version of the Boltzmann hierarchy is principally manageable
up to arbitrary order.

∗This is not true for the baryons and photons as these interact with each other.
We shall not worry about this complication here.
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3.3.1 Continuity and Euler equation
It will turn out that δ and θ ≡ ∂iu

i are the natural “energy” and
“momentum” variables to use in linear perturbation theory. We can
get their time evolution to linear order simply by linearising (3.27) and
(3.28), where we have to take the divergence of (3.28) to convert from
ui to θ:

δ′ = (1 + w)(−θ + 3φ′)− 3a
′

a

(
δP

sρ
− wδ

)
,

θ′ =
[
a′

a
(3w − 1)− w′

1 + w

]
θ + k2

δP

sρ(1 + w) + kik
jσij + k2ψ ,

(3.36)

where we have gone back to conformal time derivatives just as in (3.27)
and (3.28), and also changed to Fourier space by ∂i → iki. As in
writing the equations above, we will most often not distinguish between
a variable in real space and its Fourier space counterpart. In ambiguous
circumstances we shall write e.g. δ(x) and δ(k) for the real and Fourier
space variable, respectively.

Doing linear perturbation theory in Fourier space turns out to be
far easier than keeping the equations in real space. The reason is that
in Fourier space, the linear equations decouple into modes. That is e.g.
δ(k) and θ(k) does not depend on anything at some other k′ 6= k. The
same was not true in real space due to the derivatives. Each equation
then has to be solved over and over again at various k, whereas in real
space we effectively had to solve all of these equations simultaneously, as
they are not decoupled.

In linearising the Euler equation (3.36) we see that any mention
of the velocity (or momentum) is through the velocity divergence θ.
This effectively reduces the vector ui to the scalar θ, an hence lower the
dimensionality of the Euler equation to a scalar equation. For the velocity
vector ui to be fully specified by its divergence, it has to be irrotational∗.
To invert the divergence in θ = ∂iu

i we make use of this irrotationality,
from which we know that ui can be written as the gradient of some scalar
field Υ ; ui ≡ ∂iΥ . We then have θ = ∂i∂

iΥ
F−→ −k2Υ ⇒ Υ = −θ/k2,

∗A rotational part would be generated by vector perturbations, whereas the
divergence is generated by scalar perturbations. As these perturbations are generated
from a very nearly isotropic state of the universe, vector perturbations are extremely
hard to induce and so we neglect them entirely. Although tensor perturbations are
not nearly as suppressed as vector perturbations, we similarly neglect these, meaning
that we construct σij from a single scalar field as well.
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where F denotes the Fourier transform. From the implicit definition of
Υ in Fourier space, ui ≡ ikiΥ , we then get

ui = −i k
i

k2 θ , (3.37)

allowing us to reconstruct the irrotational, linear velocity vector from θ.
It is clear that since the velocity now only has scalar degree of freedom,

the linear Fourier space equations (3.36) are “isotropic” in the sense that
they can only depend on the magnitude of k, |k| ≡ k, not the direction.
Thus, δ(k) → δ(k), θ(k) → θ(k), and so on for all the other spatial
variables.

Just as we have replaced the velocity vector ui with its divergence
∼ kiθ, we now want to replace the shear stress tensor σij with something
like ∼ kik

jσ, with σ(k) some scalar. When doing so we must however
remember to preserve the properties of σij , i.e. its symmetry σij = σji
and its tracelessness σii = 0, the latter of which is not consistent with
merely doing the replacement σij → kik

jσ. The way to define such
a symmetric, traceless, 3 × 3 tensor from some scalar Υ (not related
to the temporary scalar field of the same name used to define ui) is
σij = (∂i∂j − 1/3 δij∂

k∂k)
F−→ −k2(k̂ik̂j − δij/3)Υ , where ki ≡ kk̂i. We

shall define the scalar shear stress σ following the convention of [30];

σ ≡ −
(
k̂ik̂

j − 1
3δ

j
i

)
σij

= 2
3k

2Υ

⇒ σij = −3
2

(
k̂ik̂j −

1
3δ

i
j

)
σ , (3.38)

where k̂ik̂i = 1 and δijδ
j
i = δii = 3 has been used. Note that once we got

the symmetric and traceless σij , multiplying (3.38) by kikj and summing
over i and j reveals the simple relation

σ = −kik
j

k2 σij , (3.39)

as we might expect on the basis of analogy to θ = ikiui.
Inserting (3.38) into the Euler equation (3.36), we arrive at our final

incarnation of the general linearised Euler (and continuity) equation,
δ′ = (1 + w)(−θ + 3φ′)− 3a

′

a

(
δP

sρ
− wδ

)
,

θ′ =
[
a′

a
(3w − 1)− w′

1 + w

]
θ + k2

δP

sρ(1 + w) − k
2σ + k2ψ .

(3.40)
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Though a lot of terms have dropped, the linear system of equations (3.40)
has a similar structure to its non-linear counterpart with regards to the
Boltzmann hierarchy, i.e. the interconnectedness of the fluid variables is
much the same. A big difference is that the velocity and shear variable
are now scalars, making the Euler equation a scalar equation. Linearising
the fluid equations (while again ignoring vector and tensor perturbations)
thus helps tremendously in reducing the dimensionality of the system,
as the otherwise growing number of indices on the tensor variables
in the Boltzmann hierarchy (3.23) now vanish completely, reducing
every higher-order fluid equations to scalar equations. Extending the
Boltzmann hierarchy beyond the Euler equation then seems reasonable
in linear perturbation theory.

3.3.2 Beyond the Euler Equation
Let us look at the linear continuity and Euler equation (3.40) for matter,
where w = δP = σ = 0:

δ′ = −θ + 3φ′ ,

θ′ = −a
′

a
θ + k2ψ .

(matter) (3.41)

Except for the general relativistic φ′ term, we can easily obtain the same
results by linearising the non-linear Newtonian matter continuity and
Euler equation (3.15) (removing the ∂jρuiuj term entirely), where we
will also need the homogeneous continuity equation (2.8) to get from ρ′

to δ′ and remember that ψ = ϕ. Importantly, the system of equations
(3.41) is closed∗, as we have already seen from the non-linear case.

In the general case of non-vanishing δP and σ, the Euler equation
will include these on its right-hand-side. To find the equations of such
higher-order variables, set aside the Boltzmann hierarchy for now and
go back to the distribution function f , the perturbed version of which
we may define as

f(τ,x, q) = sf(q)
[
1 + Ψ(τ,x, q)

]
, (3.42)

where sf is the background level distribution function from section 2.2
and Ψ is the perturbation. The perturbation is allowed to vary in space
xi and depend on the direction of the momentum. We follow [30] and
use the comoving momentum qj as the momentum variable. We now

∗The Poisson equation is of course also needed.
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expand the Fourier space version of the perturbation Ψ in a Legendre
series,

Ψ(τ,k, q) =
∞∑
`=0

(−i)`(2`+ 1)Ψ`(τ,k, q)P`(k̂q̂) , (3.43)

which create a Boltzmann-like hierarchy of variables Ψ`. The relation
between these and our usual variables follows the prescription (3.23).
Using the orthogonality of the Legendre polynomials, [30] finds

δ = 4π
a4

sρ

w
q2 dq

√
q2 + a2m2 sfΨ0 ,

θ = 4πk
a4

sρ(1 + w)
w
q2 dqq sfΨ1 ,

δP = 4π
3a4

w
q2 dq q2√

q2 + a2m2
sfΨ0 ,

σ = 8π
3a4

sρ(1 + w)
w
q2 dq q2√

q2 + a2m2
sfΨ2 .

(3.44)

Solving the Boltzmann equation with the perturbed distribution function
(3.42), [30] are able to find the dynamical equations

Ψ ′0 = − qk√
q2 + a2m2

Ψ1 − φ′
d ln sf

dln q ,

Ψ ′1 = qk

3
√
q2 + a2m2

(Ψ0 − 2Ψ2)−
√
q2 + a2m2 k

3q ψ
d ln sf

dln q ,

Ψ`≥2 =
qk
[
`Ψ`−1 − (`+ 1)Ψ`+1

]
(2`+ 1)

√
q2 + a2m2

,

(3.45)

where crucially the last equation holds recursively for any ` ≥ 2. Equa-
tions (3.45) then allow us to solve the dynamics of any collisionless
species. Note that the time evolution of moment Ψ` only depends on
the neighbouring moments Ψ`±1. We can thus choose some maximum `,
`max, after which we close the hierarchy, either through simple trunca-
tion (Ψ`>`max

→ 0) or by some closed-form algebraic approximation for
Ψ`max+1.

Note also that gravity only acts on the two lowest moments of (3.45),
corresponding to energy, momentum and pressure, i.e. the gravitational
effects we already know from the continuity and Euler equations. Even
in the case of non-linear gravity, where the weak-field metric (3.26) is
replaced by a completely general metric, only the next level Ψ2 will be
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further affected, as the Einstein field equations (2.3) only couple the
metric to variables within the stress-energy tensor, i.e. the highest-order
variable affected is the second-order variable σij , equivalent to its scalar
version σ in linear perturbation theory.

While equations (3.45) hold for any collisionless species, we saw
that the much simpler equations (3.41) hold for matter. Indeed, one
can regain (3.41) from (3.45) in the matter limit. Similarly, a simpler
(though still infinitely recursive) system of equations can be found by
considering the case of massless species [30], were the q dependence of
the distribution function can be integrated out. The resulting recursively
defined variables are then not the Ψ` moments under the integrals of
(3.45), but instead the integrals themselves, i.e. the fluid variables. Thus,
the massless counterpart to the general hierarchy (3.45) is much less
computational demanding, as we can solve for the whole integral for each
` in one go, rather than separately solving multiple sample points of the
integrand.

The massless version of the general (3.45) can be used to describe
massless neutrinos and photons. In actuality, the photons are more
complicated since these are not collisionless, and so a collision term
need to be added to the Boltzmann equation (3.25). This interaction
is between the photons and the baryons/electrons, which is extremely
important prior to recombination. The interaction is also important later
however, due to reionization. This interaction then also means that we
cannot use the simple “matter” equations (3.41) for baryons.

With all moments defined by (3.45), the only unspecified quantities
left are the metric perturbations ψ and φ. These are found from the
(perturbed version of) the Einstein equation (2.3), where we plug in the
perturbed metric (3.26) and the perturbed stress-energy tensor. These
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take the form of the following four equations [30]:

k2φ+ 3a
′

a

(
φ′ + a′

a
ψ

)
= 4πGa2

∑
α

(−δρα) ,

k2
(
φ′ + a′

a
ψ

)
= 4πGa2

∑
α

sρα(1 + wα)θα ,

φ′′ + a′

a
(ψ′ + 2φ′)

+
(

2a
′′

a
− a′2

a2

)
ψ + k2

3 (φ− ψ) = 4πGa2
∑
α

δPα ,

k2(φ− ψ) = 4πGa2
∑
α

3sρα(1 + wα)σα .

(3.46)
Each equation above is analogous to the Poisson equation found in
(3.15). In fact, in the Newtonian limit where a′ = φ′ = 0, φ = ϕ, the
first equation above is identical to the Poisson equation. From the last
equation above, we see that in general φ = ψ unless the universe contains
shear stress.

This concludes our description of the inner workings of linear per-
turbation theory. From now on, we shall not deal directly with any of
the linear equations, but instead use numerical tools which can solve the
linear evolution equations for all species simultaneously, including the
photon-baryon coupling, while also solving their gravitational interaction
as described by the weak-field limit of GR. Such codes are known as
‘Einstein-Boltzmann solvers’. The main two used today are camb [34]
and class [17], where I have used the latter throughout my PhD work. A
slightly modified version of class is included when installing concept.

3.3.3 Transfer Functions
As the result of linearisation of the dynamical equations, we ended up
with the linear continuity and Euler equations (3.40), as well as the
general linear hierarchy (3.45). As these are linear differential equations,
the absolute scale of the dynamical variables does not matter. That
is, if {δ(a, k), θ(a, k), δP (a, k), σ(a, k), . . .} is the solution to the linear
equations, so is {Cδ(a, k), Cθ(a, k), CδP (a, k), Cσ(a, k), . . .} for any
constant C. Of course the real Universe has chosen one specific scaling,
and so in the end we will need to care about this C.

To distinguish between the honest physical variables and the variables
resulting from solving the equations of linear perturbation theory, we
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Figure 3.2 – Ratio of the linear matter (combined cold dark matter and
baryon) density contrast δ(a, k) and the growth factor D(a) as function of
a. Three cases of k are shown. Cosmological parameters are as defined in
table 2.1, though with either three massless neutrinos or with a degenerate
neutrino mass hierarchy with

∑
mν = 0.1 eV. Both D and δ have been

computed in class, though with the normalisation of D removed. Also, δ
is shown in conformal Newtonian gauge. The ratios have been scaled so
that they equal ∼ 1 at a = 1, with individual scaling for each k but with
the same scaling applying across the two cosmologies for any given k.

refer to the latter as transfer functions. Given a set of transfer functions
and the knowledge of the physically correct value of any of the variables
at any∗ point {a, k}, we can then rescale the corresponding transfer
function accordingly, while also scaling all other transfer functions by
the same amount.

In the rest of this thesis, we shall denote transfer functions as e.g. Tδ,
while reserving δ for the corresponding properly scaled physical quantity.
To be clear, this does not mean that e.g. the variables on the left-hand-
sides of (3.44) should have been written as Tδ, Tθ, TδP and Tσ, rather
the equations hold true for both the physical quantities and their transfer
functions, and the scaling applies to Ψ` (or TΨ`) as well.

We have previously encountered the same scaling freedom in the
equations (3.18) when discussing the growth factor D(a), which we arbi-
trarily scaled so that D(a = 1) = 1 in figure 3.1. Figure 3.2 compares

∗As long as this point is well within the linear regime, of course.
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D to the linear matter δ computed in class. In the Newtonian regime,
these should be very close, provided that we do not have strong per-
turbations outside the matter sector, i.e. heavy massive neutrinos. A
critical difference between D(a) and δ(a, k) is the k-dependence of δ.
The Newtonian regime then corresponds to large k. Indeed, figure 3.1
shows excellent agreement between D and δ for k = 0.1 Mpc−1, while
the same is not true for the larger scales. The linear growth of matter is
then really somewhat k dependent, even in the case of massless neutrinos.
Adding mass to the neutrinos alters this k dependence.

Increasing the neutrino mass (while keeping Ωcdm and Ωb fixed) raises
δ directly due to the added gravitational interacting from the clustering
of massive neutrinos. On the other hand, D is only affected indirectly by
the neutrinos through the Hubble expansion; an effect which is of course
also taken into account by δ. The net result is then that δ/D increases
with the neutrino mass, which is what we see in figure 3.2.
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4 Power Spectra

This chapter introduces the notion of a power spectrum, the absolute
measure used to describe the amount of structure at a given scale. We
then go on to describe the primordial power spectrum, i.e. the initial
conditions set very near the time of the Big Bang from which all future
structure spring.

4.1 Power Spectra as Measures of Correlation
We seek a measure for the amount of structure in the universe. Equation
(3.16) defines the density contrast δ(x) which associates each point in 3D
real space with a number, fully specifying the energy density distribution.
As all spatial locations are statistically equivalent (homogeneity on large
scales), a specific point x is not very meaningful. What is meaningful is
instead the distance scale x = |x| or its Fourier equivalent k = |k|. A
statistical measure of the amount of structure on the length scale x can
e.g. be taken as the two-point correlation function

ξ(x) = 〈δ(x′)δ(x− x′)〉V , (4.1)

where 〈•〉V denotes averaging over a (comoving) volume V , i.e. let x′ take
on all values satisfying (4π/3)|x− x′|3 ≤ V . For ξ(x) to truly describe
the statistics of the distribution δ(x), V has to be large enough∗ so that
the averaging has converged, making ξ independent of V . The fact that
(4.1) has x on the left and x on the right just means that any chosen
direction of x will lead to the same result, guaranteed by large-scale
isotropy.

Replacing the real space δ’s in (4.1) with their Fourier decompositions
and exploiting the reality of δ(x), δ−k = δ∗k with the asterisk denoting
complex conjugation, we can derive

ξ(x) = V −2
∑
k

〈|δk|2〉V eikx

∗Large-scale homogeneity guarantees the existence of a large enough V .
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≡ V −1
∑
k

Pδ(k)eikx , (4.2)

=
w d3k

(2π3)Pδ(k)eikx ,

where the middle line define the power spectrum Pδ(k) ≡ V −1 〈|δk|2〉V ,
where the averaging in Fourier space should be done “in shells”, i.e.
average over all k with the same |k|. It is understood that V should be
taken large enough so that there are enough 3D Fourier modes of scale k
to make the averaging converge for any given k. In the final line of (4.2)
we have removed any reference to V , allowing k to take on arbitrarily
small values, corresponding to V →∞.

To be precise, the above power spectrum is really the δ power spec-
trum as it is build from the δ field, whereas we can imagine a similar
construction done for e.g. the θ field. Furthermore, we could have chosen
to work with the δρ power spectrum Pδρ = sρ2Pδ instead of the δ power
spectrum Pδ. When leaving out further specification, the power spec-
trum will refer to the δ power spectrum. Including a factor V −1 in the
averaging above, i.e. 〈•〉V ≡ V −1 r

V
• d3x, the δ power spectrum then

has units of volume.
As the power spectrum is just the Fourier transform of the two-

point correlation function, they contain the same information. Further-
more, if the full 3D distribution δ(x) is a Gaussian random field, i.e.
each mode has mean zero and is fully defined by its variance, then
〈|δk|2〉V = V Pδ(k) contains the entire statistical information of δ(x). In
the general case of an arbitrary distribution δ(x), a complete statistical
description is captured only by the set of all correlation functions, i.e.{
〈δ(x)δ(x− x′)〉V , 〈δ(x)δ(x− x′)δ(x− x′′)〉V , . . .

}
.

4.2 The Primordial Power Spectrum
The current structure in the Universe is largely the product of gravity
doing its work over billions of years, exaggerating small, linear overden-
sities into galaxy clusters. Ultimately however, these early time linear
fluctuations cannot themselves be produced in this way, as gravity needs
inhomogeneities to work. The common explanation for the primordial
structure of the Universe is that of inflation, proposing a hypothetical
scalar field which dominated the Universe at very early times. This infla-
ton field makes the Universe expand exponentially, blowing up quantum
fluctuations in the inflaton field to macroscopic scales, after which the
field decays into the standard model particles.
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Table 4.1 – Primordial cosmological parameters used throughout this
thesis, unless explicitly stated otherwise.

As 2.1× 10−9

ns 0.96
αs 0
kpivot 0.05 Mpc−1

Many models of inflation exists, but the general predictions of interest
to us here is the shape of the primordial power spectrum, the fact that
all current species necessarily shared this primordial power spectrum,
and the fact that the primordial fluctuations were (at least very nearly)
Gaussian, implying that the primordial distribution of all species are
fully specified by their power spectrum.

One generic prediction of inflation is that the primordial power
spectrum Ps is close to being “flat”, meaning that the dimensionless
power spectrum k3Ps does not vary much across a wide range of k. One
often model this as

Ps(k) = 2π2Ask
−3
(

k

kpivot

)ns−1
exp
[
αs
4 ln

(
k

kpivot

)2]
, (4.3)

where the ‘tilt’ or ‘spectral index’ ns ≈ 1 in order for k3Ps to be flat.
The overall scale is set by the amplitude As with k3Ps(kpivot) = 2π2As,
the ‘pivot scale’ kpivot being some chosen scale at which to define As.
Finally, αs is the ‘tilt running’. Choosing kpivot = 0.05 Mpc−1, current
best-fit values [24] of the three parameters are As = 2.1×10−9, ns = 0.96,
αs ≈ 0. For future reference, these parameters are listed in table 4.1.

Just as a general power spectrum Pδ(k) was given in terms of the
square of a Fourier space perturbation, we write the primordial power
spectrum Ps(k) as the square of the primordial curvature perturbation ζ,
Ps(k) = ζ2(k), implying

ζ(k) = π
√

2As k
−3/2

(
k

kpivot

)ns−1
2

exp
[
αs
8 ln

(
k

kpivot

)2]
. (4.4)

Note that we define ζ(k) as time independent, i.e. we only define it at
some initial instance right after inflation. Also note that the presence
of the definite scale As ensures that ζ(k) is absolutely defined. This
is the opposite behaviour of the transfer functions T introduced in
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subsection 3.3.3, which were defined throughout time but lacked an
absolute scale. With the absolute scale of primordial fluctuations in any
species determined by ζ, we can write a general linear power spectrum
as∗

Pδα(a, k) = ζ2(k)T 2
δα

(a, k) , (4.5)

where α labels the species. This link between transfer functions and
absolute power spectra, themselves defined by (4.2), finally makes it
clear how to interpret the k dependence of the linear variables/transfer
functions of section 3.3, as now Tδ(k) ∝

√
〈δ2
k〉V , i.e. a dependence on k

can be thought of as the root-mean-square of the corresponding 3D k
dependent quantity, with the mean being carried out in shells of constant
|k|.

To nail down the normalization of transfer functions and power
spectra and thus imbue the value of As with absolute meaning, we can
pick some a and k for which we simply define T (a, k) to have some
definite value, where T is some specific transfer function. In our notation
here, the choice of class corresponds to Tζ(a = 0, k) = −1, with Tζ the
transfer function for the primordial curvature perturbation, which in the
above is defined only at the initial time, corresponding to a = 0. From
(4.5), this results in the wanted Ps(a = 0, k) = ζ2(k). As the curvature
perturbation is really a dynamic perturbation in its own right, ζ = ζ(a, k),
the transfer function Tζ(a, k) is linked to all other transfer functions, and
so once a normalisation is chosen for this, the normalisation of every
transfer function is specified.

4.2.1 The Variance as Amplitude
In (4.5), the normalisation of the power spectrum was delegated to
As within the primordial curvature perturbation ζ. This make As the
fundamental parameter responsible for the amplitude of fluctuations. A
different approach is to just scale the power spectrum until it matches
some predefined criterion. A common approach is to specify a definite
variance of the density field, σ2 = 〈δ2(x)〉V −〈δ(x)〉2V = 〈δ2(x)〉V = ξ(0).
From (4.2) then, σ2 is just the integral over the power spectrum. As
the observable power spectrum is not available to us for arbitrarily large
k, one chooses a scale at which to smooth out δ(x) before doing the
integration. The smoothing is done by convolving δ(x) by a simply

∗This is the class convention. Transfer functions from other sources may use
slightly different convention.
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top-hat function

WR(x) =


(

4π
3 R

3
)−1

|x| < R

0 otherwise
(4.6)

⇒WR(k) = 3
(kR)3

[
sin(kR)− kR cos(kR)

]
, (4.7)

which in Fourier space turns into simple multiplication,

σ2
R = 1

2π2
∞w

0
dk k2W 2

R(k)Pδ(k) , (4.8)

where the angular part has been integrated out. The standard choice is
σR=8 Mpch−1 ≡ σ8, where h ≡ H0/(100 km s−1 Mpc−1). That is, a given
value for σ8 can be used in stead of As. As written in (4.8), σ8 is really
a function of time since Pδ(k) = Pδ(a, k). Whenever a value for σ8 is
provided, it is always the present day value. A further sloppiness of (4.8)
is that it does not specify from which species the power spectrum is
taken. In practice, σ8 is always the variance of the matter density field.

For any otherwise specified cosmology, there is then a one-to-one
relationship between As and σ8. However, while As is a proper input
parameter, σ8 (as it is defined at a = 1) is really only obtained after
solving all of the dynamical equations. Furthermore, as σ8 is the variance
of the linear density field at the non-linear time and scale {a, k} =
{1, 8 Mpch−1}, σ8 is just as As not a directly observable quantity.

4.3 Realisations
We have seen how we can express the statistical information of a 3D
distribution δ(x) by its power spectrum Pδ(k), even capturing the entirety
of this information when δ(x) is Gaussian. We now want to reverse the
process, creating a 3D distribution from the power spectrum. This
amounts to inverting the averaging operation in the definition (4.2) of
the power spectrum, which of course cannot be done without supplying
the missing 3D information by hand. We encode this missing information
in R(k), which we know should be a Gaussian random field with zero
mean. Then,

δ(a,k) ≡ V 1/2δ(a, k)R(k) , (4.9)

from which we see that R(−k) = R∗(k) as δ(x) ∈ R.
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If we specify the variance of the random Gaussian field R(k), its
properties will be fully specified. Taking this to be unity, it follows from
(4.9) that

〈|R(k)|2〉V ≡ 1⇒ δ(k) = V −
1/2
√
〈|δ(k)|2〉V , (4.10)

which then finally defines the exact meaning of 1D Fourier space quantities
like δ(k) as simply the shell-average of the corresponding 3D quantity.
From the definition of the power spectrum (4.2) and its relation to
transfer functions (4.5), we now also have

δ(a, k) = Tδ(a, k)ζ(k) , (4.11)

which explains why we wanted to include a factor of V 1/2 in (4.9). Note
that as ζ(k) has units of length3/2, so does δ(k). Also, δ(k) has units of
volume.

The dimensionless 3D real space quantity δ(a,x) is given as the
Fourier transform of δ(a,k),

δ(a,x) = V −1
∑
k

δ(a,k)eikx

= V −
1/2
∑
k

δ(a, k)R(k)eikx

= V −
1/2
∑
k

Tδ(a, k)ζ(k)R(k)eikx , (4.12)

where the volume V should reflect the minimum |k| used in the sum;
k = 2πh/V 1/3, h ∈ Z3 \ 0. Considering the V → ∞ limit, we could
write (4.12) as a Fourier integral rather than a series, ridding of us any
mention of V and hence a scale above which δ(x) is periodic. However,
(4.12) is in the form in which we will use it numerically, so we shall leave
it be.

To be clear, we now have five different versions of each quantity, so far
demonstrated only for the density contrast δ. Together with (4.9), their
relations are∗ Pδ(a, k) = V −1 〈|δ(a,k)|2〉V = δ2(a, k) = T 2

δ (a, k)ζ2(k),
along with the realisations (4.12) which incorporate δ(a,x). Here only the
Fourier space transfer function Tδ(k) and the real space 3D field δ(x) are

∗It is uncommon to see this explicit distinction between e.g. δ(k) and Tδ(k) in the
literature. When working at the interface between linear (and hence 1D) theory and
non-linear (3D) theory, I have found it very useful to clearly separate out the different
usages of the same physical quantity.
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dimensionless. When thinking of a 3D grid of δ(a,x) values, we write this
as δn(a), with n ∈ N3 labelling the grid points. Correspondingly, we write
the grid version of δ(a,k) as δh(a) with V 1/3(2π)−1k = h ∈ Z3 labelling
the grid points. Sometimes we might instead use the physical but non-
integer labelling δk(a). Thus, δ(a,x) = δn(a) and δ(a,k) = δk(a) = δh(a)
for matching {x,n} and {k,h}.

The instantiation of a specific δ(x) from the random field R(k) is
called a realisation. There exists an infinite number of equally valid
random fields R, each giving rise to its own realisation, all with the
same power spectrum, as this is controlled solely by ζTδ. In the case of
finite V , which we will have numerically, we can then think of a given
choice for R as corresponding to translation within an infinite universe,
enabling us to sample different patches of this infinite space.

As written in (4.12), both ζ(k) and R(k) are defined independent of
time, meaning that they are both defined at the time right after inflation.
We can then understand R(k) as representing the 3D distribution of
fluctuations left behind by inflation, from which the fluctuations in all
other species arose. That is, all species share the same R. Moreover,
the same R apply for variables other than δ. Substituting δ (both the
variable and the subscript) for e.g. δP in (4.12) would then lead to the
correct realisation of the pressure. The same would be true for θ and σ,
although typically we are not interested in realising θ(x) and σ(x) but
rather ui(x) and σij (x). From (3.37) and (3.38), we have

ui(a,x) = V −
1/2
∑
k

[
−i k

i

k2Tθ(a, k)
]
ζ(k)R(k)eikx , (4.13)

σij (a,x) = V −
1/2
∑
k

[
−3

2

(
k̂ik̂j −

1
3δ

i
j

)
Tσ(a, k)

]
ζ(k)R(k)eikx , (4.14)

which alongside (4.12) shall enable us to realize scalar, vector and rank-2
tensor fields.

It should be clear that the realisations listed in this section can
only ever produce linear fields, as they are built from linear transfer
functions together with the primordial field ζR. In contrast, given some
non-linear field δ(x), the power spectrum Pδ(k) = V −1 〈|δk|2〉V will be
fully applicable, resulting in the non-linear power spectrum, which is
still a useful measure of the amount of structure, though it will miss out
on the non-Gaussianity developed during the non-linear evolution. In
chapter 7 we shall further develop the basic linear realisations of this
section, while also extending the idea to non-linear realisations.
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5 Overview of Standard
N-body Techniques

This chapter introduces the overall framework of non-linear cosmological
N -body simulations and gives an overview of the main numerical methods
utilised within them. The main goal of such N -body simulations is to
evolve a system of N particles (or bodies) forward in time under mutual
gravity, and so this is the main problem discussed in this chapter. For
a more thorough and pedagogical walk-through of the basic techniques
covered, see [22]. Other façades of cosmological simulations, such as
fluid dynamics and generation of initial condition, will be discussed in
chapters 6 and 7, respectively.

Special attention will be given to the techniques which I have imple-
mented into concept, though this chapter does not serve as an overview
of the concept code. For that, see chapter 8.

5.1 Basic Set-up
This section briefly describe the general set-up of cosmological N -body
simulations, introducing terms and notions that we will need later.

Newtonian Framework

Most of the widely used cosmological simulation codes, such as gadget
[35], pkdgrav [20] and ramses [19], as well as concept [16] operate
in a Newtonian setting, disregarding∗ GR corrections at all scales. An
exception is the gevolution N -body code [36] which evolve the system
in the weak-field limit of GR.

∗In fact this is not quite true, as during my PhD I have implemented weak-field
GR corrections into both concept and pkdgrav. This however is done in a seemingly
roundabout manner, exactly for the reason as to keep the overall setting Newtonian.
These GR corrections are discussed in subsection 7.3.2.
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The Hubble Expansion

Though the local gravitational field is treated as Newtonian, the Hubble
expansion is however accounted for, which as we have seen in e.g. (3.15)
really just amounts to multiplying the different terms of the equations
of motion by a raised to various powers. Thus, all cosmological N -
body codes are in need of a(t). This is usually obtained by solving the
Friedmann equation (2.11) internally by the N -body code itself. This is
of course fine, but in practice the Friedmann implementations are all very
limited, often only accounting for matter and Λ (gadget) and perhaps
radiation (pkdgrav). In concept, the Friedmann equation (including
matter, Λ and radiation) may be solved internally, but really one should
use its excellent integration with class. Indeed, the concept default
is to run class in order to get a(t), allowing for the inclusion of other
species such as massive neutrinos.

The Particles

Usually, N -body simulations only contain within them a single compo-
nent; matter. The N particles thus sample the phase space distribution
function fm(t,x, q). Additionally, this ‘matter’ is often taken to behave
like cold dark matter∗, which then removes the q dependence of the
distribution function, leaving it a function of only time and space. This
is the reason as to why particles are a numerically feasible representation
of (cold) matter, as we only need to sample 3D space as opposed to
6D phase space. At early times of almost homogeneity, each point in
(discretised) space is then populated with a single particle, which is
assigned some suitable momentum. Each particle n is fully specified
by its comoving position xn(t) and its comoving canonical momentum
qn(t) = mna

2ẋn(t), with mn the particle mass. Usually the particle
mass is shared amongst all particles, mn = m.

The Box

Sprinkling N particles throughout an infinite space will of course do us
no good. Instead, we focus on a cubic box of comoving volume V = L3,
in which the particles live. This box is made periodic so that any particle

∗Some codes like gadget and ramses implement both cold dark and baryonic
matter, with the complicated gas physics of the baryons included. We shall not deal
with this complication in this work. For us, the baryons are then treated exactly as
cold dark matter by the N -body simulation, which is fine as long as we do not probe
small (sub-galactic) scales where the gas physics is important.
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flying through one face instantly reappears at the opposing face, keeping
the particles within the box. One effect of this is that it removes any
notion of a centre (or edge) of the box. Less trivially, this periodicity
apply to gravity as well, meaning that two particles at opposite sides of
the box feel a strong mutual gravity, as the largest separation between
a pair of particles is now L/2 in any direction. The pairwise gravity is
not just given by some modular arithmetic though, as the gravitational
attraction from each of the infinite ‘mirror images’ of a single particle
needs to be taken into account. The periodicity is then what allows us to
emulate an infinite self-gravitating universe, though with the constraint
of enforced homogeneity above the box size. Fortunately, this is exactly
what we seek in cosmology, provided that we pick a large enough box.

5.2 Hamiltonian Dynamics
In this section we describe the numerical time evolution of the particles.
This comes down to integrating the Hamiltonian equations (3.13) for ẋn
and q̇n in time, which is complicated by the fact that these equations
are coupled: ẋn depends explicitly on qn, while q̇n depends implicitly on
{xm6=n} through the comoving force fn. This section does not account
for the computation of this force, which we shall simply assume known
to us. Remaining agnostic regarding the nature of this force means that
the following will apply for a general force, not just that of gravity.

5.2.1 The Leapfrog Integrator
Numerically, the two coupled Hamilton equations has to be solved it-
eratively, evolving {xn} slightly and only then {qn} slightly. Exact
simultaneity is out of the question. We can write down operators which
when acting on the system only evolves either {xn} or {qn} forward in
time by the amount ∆t;

D(∆t){xn(t), qn(t)} =
{
xn(t) + qn(t)

mn

t+∆tw

t

dt′
a2(t′) , qn(t)

}
, (5.1)

K(∆t){xn(t), qn(t)} =
{
xn(t), qn(t) + a(t)fn(t)

t+∆tw

t

dt′
a(t′)

}
, (5.2)

where D(∆t) and K(∆t) are known as the ‘drift’ and ‘kick’ operators.
As evaluation of the scale factor a(t) is not constrained to the discrete
time steps, a better approximation to the true drift xn(t + ∆t) =
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xn(t)+m−1
n

r t+∆t
t qn(t′)/a2(t′) dt′ is obtained by keeping the scale factor

integration as seen in (5.1), rather than approximating this integral as
just ∆t/a2(t). A similar thing is going on for the kick operation (5.2).
Here, the naïve kick would be just qn(t+∆t) ≈ qn(t)+fn(t)∆t. However,
the comoving force fn as defined in (3.13) has an intrinsic scaling of a−1,
inherited from the peculiar potential; fn ∝ ∇ϕ ∝ a2

sρ ∝ a2a−3 = a−1.
We thus integrate this scaling over the time step in (5.2) and introduce
a factor∗ a(t) to compensate for the introduced a−1(t′).

For an infinitesimal time step ∆t, D(∆t)K(∆t){xn(t), qn(t)} =
K(∆t)D(∆t){xn(t), qn(t)} = {xn(t + ∆), qn(t + ∆)}. For any finite
∆t though, the interdependence of the two canonical quantities makes
the drift and kick operator noncommutative. Looking at (5.1) and (5.2),
we see that the right-hand sides only refer to the canonical variables
at the time t, though really we should be integrating these over the
time step, just as we do for a. We of course cannot do this numerically,
as this removes the time discretisation. Keeping to a discretised for-
malism, exact versions of (5.1) and (5.2) can be obtained by replacing
qn(t)

r ∆t
t dt′/a2(t′) in (5.1) with the average value of qn/a2 over the time

step (and multiplying by ∆t), and similarly replacing fn(t) in (5.2) with
its average value over the time step. At linear order in ∆t, this averaging
corresponds to just evaluating qn and fn at t+∆t/2. We can incorporate
this shift of ∆t/2 simply by applying D(∆t) and K(∆t) out-of-phase;

U(∆t) = K

(
∆t
2

)
D(∆t)K

(
∆t
2

)
, (5.3)

where this U is known as the ‘leapfrog’ KDK time evolution operator,
because it leads to {xn} and {qn} being constantly out-of-phase but
interchanging which of the two canonical variables are ‘ahead’ after each
kick and drift operation, when applied multiple times in succession.

Instead of the KDK leapfrog integrator (5.3), we could just as well
have settled for the DKD version. In the limit of many successive
applications of U(∆t), these are equivalent. We can see this from the
observation that K2(∆t/2) = K(∆t) and similarly D2(∆t/2) = D(∆t).
Using (5.3) to integrate the system forward by N time steps then looks
like

UN (∆t) = K

(
∆t
2

)[
D(∆t)K(∆t)

]N−1
D(∆t)K

(
∆t
2

)
, (5.4)

∗One might then argue that the combination afn is really what should be defined
as the comoving force. We shall however stick to our original definition (3.13).
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i.e. the entire time evolution just consists of successive kicks and drift
over time steps ∆t, but with half a kick at the beginning and end of the
time evolution.

Symplecticity

The naïve time evolution without the intentional out-of-phasing by ∆t/2,
[K(∆t)D(∆t)]N , leads to double the phase shift ∆t, while also always
keeping {xn} ahead of {qn} (the other way around for [D(∆t)K(∆t)]N ).
It can be shown [22,35] that these naïve time evolutions are first order
accurate in ∆t, while the symmetric leapfrogging (5.4) is second order
accurate.

Perhaps most important is the fact that (5.3) has time reversal
symmetry, i.e. U−1(∆t) = U(−∆t), which is clear since the same prop-
erty holds for K and D individually (note that the naïve integrators
K(∆t)D(∆t) and D(∆t)K(∆t) do not have this property due to D(∆t)
and K(∆t) not commuting with each other). This means that the numer-
ical time evolution resulting from U(∆t) actually do correspond to some
Hamiltonian, which we know can only deviate from the true Hamiltonian
(3.12) to second order in ∆t. The Hamiltonian (or symplectic) structure
of the system is then preserved when switching from true time evolution
to numerical leapfrogging, from which we are ensured that the overall
system will conserve energy. More generally, the symplecticity of the
leapfrog integrator guarantees that we do not break Liouville’s theorem
(volume conservation of any closed surface in phase space), and so the
numerical trajectory of each particle through phase space cannot diverge
rapidly from its true trajectory.

5.2.2 Adaptive Time Stepping
In the end, the leapfrog integrator (5.3) is simply the only time evolution
operator constructable from D and K which treats {xn} and {qn} sym-
metrically. Any improved version we might imagine can only correspond
to lowering the time step size ∆t.

A new range of possibilities arise if we split D and K into {Dn}
and {Kn}, i.e. allowing for drifting and kicking of individual particles
rather than always operating on the entire system. For systems of large
dynamic range such as the late time Universe with its non-linear structure
formation, such time stepping at a per-particle basis allows for fine time
steps of fast moving particles in strong gravity, while at the same time
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making it possible to only update slower particles within voids more
rarely, saving clock cycles without lowering the overall accuracy.

As the gravitational force is often computed collectively, for such
adaptive time stepping to work we need the system to synchronise itself
at frequent intervals. This is achieved by having a hierarchical time
stepping scheme, where single-particle time step sizes are allowed only to
take the form ∆t/2Nt , Nt ∈ N, where ∆t is now the maximally allowed
time step for any particle. This power of two hierarchy, as opposed to e.g.
just ∆t/Nt, makes it possible for particles at given ‘rung’ Nt to jump to
rung Nt − 1 after at most one time step, as inter-rung synchronisation
will happen every other time step for neighbouring rungs.

In principle, the rung of a given particle n should depend on both
|qn| and |fn|, since a particle with e.g. large |qn| but zero |fn| can be
integrated exactly using arbitrarily large ∆t. In practice however, most
particles with large momentum will be found in the vicinity of a large
overdensity, and so a particle with large |fn| can be assumed to also have
large |qn|. The rung of a particle is then typically set by the momentum
alone.

All the main cosmological simulation codes employ adaptive time
stepping in some form or another, which fit into the given gravitational
scheme used by the code in question. Here the concept code lacks
behind, having only a globally defined time step size ∆t. Due to the
lack of a proper P3M (or similar) implementation which can handle the
short-range component of gravity, the dynamic range in concept is
however considerably lower than it is in these other codes. For concept
to lack adaptive time stepping is thus not a major issue in and of itself.

5.3 Newtonian Gravitation
This section demonstrates the basics of the core numerical methods
used to solve gravity, i.e. obtain {fn(t)} from {xn(t)}. Solving gravity
is the main problem of any cosmological N -body code, and so several
sophisticated methods has been developed. Broadly, we can classify these
methods into two categories, which I shall refer to as direct summation
methods and grid based methods, the key difference being that while
direct summation basically computes pair-wise forces between the par-
ticles, grid based methods first solve for the global potential, the local
gradient of which is then used to compute the forces.

We shall study the most basic method from each of the two categories
in some detail, after which we will discuss more advanced extensions to
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these basic primitives. The basic methods are known as the particle-
particle method (direct summation) and the particle-mesh method (grid
based). From a mathematical point of view, the problem that both of
these methods has to solve is how to deal with the infinity that arises
from the periodicity. Ultimately, both methods solve the problem using
Fourier techniques.

5.3.1 The Particle-Particle Method
In the particle-particle (or PP) method we simply compute the direct
force between all pairs of particles. With N particles, this is then an
O(N2) operation. The tricky part is that each particle at xn has an
infinite number of image particles due to the periodicity, located at
xn + nL, n ∈ Z3, with n = 0 corresponding to the particle itself. Note
that the integer particle label n and the integer triple n are otherwise
unrelated.

Equation (3.14) writes the density ρ(x) in terms of particles. For
N particles within a periodic cubic box of comoving side length L, this
becomes

δρ(x) = 1
a3

N∑
n=1

mn

∑
n∈Z3

[
δ(xn + nL− x)− L−3] , (5.5)

where x may be taken as any position in R3. To get δρ = ρ − sρ, the
mean density

∑N
n=1mn/L

3 is subtracted once “per box” (once per value
of n). We can now express the peculiar potential (3.7) by plugging in
(5.5);

ϕ(x) = −G
a

N∑
n=1

mn

∑
n∈Z3

1
|xn + nL− x| , (5.6)

where the delta functions are used to evaluate the integral. I have removed
the divergent term resulting from the constant L−3. This amounts to
switching back to using ρ rather than δρ. Before we are done with the
PP method, we will have to remove another, very similar divergence of
the opposite sign.

Ewald Summation

Our goal is now to find a way to compute the infinite but periodic
sum (5.6). For this, the Ewald [37,38] summation method is deployed.
The sum over images in (5.6) is split into two parts by multiplying by
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1 = erf
[
|xn +nL− x|/(2xs)

]
+ erfc

[
|xn +nL− x|/(2xs)

]
, where xs > 0

is some chosen length scale. Because the error function approaches unity
for large input (and so the complementary error function necessarily
vanish), this corresponds to splitting each term of (5.6) into a short-range
and a long-range part. If we simultaneously cast the long-range part into
Fourier space using

r
d3x |x|−1 erf(|x|/(2xs))e−ikx = 4π exp(−k2x2

s )/k2,
we get

ϕ(x) = −G
a

N∑
n=1

mn

{ ∑
n∈Z3

erfc
[
|xn + nL− x|/(2xs)

]
|xn + nL− x|

+ 4π
L3

∑
k∈{2πL−1h |h∈Z3\0}

exp
(
−k2x2

s
)

k2 cos
[
k(xn − x)

]}
,

(5.7)

where the antisymmetric sine part of the complex exponential in the
Fourier series vanish under the symmetric k summation. Note that we
leave out the divergent k = 0 term. This term corresponds exactly to
the already removed divergent part, but has the opposite sign, somewhat
justifying these manual removals.

We can now take the gradient of (5.7) and obtain the comoving force
fn = −mn∇ϕ|x=xn ,

fn = Gmn

a

N∑
n′=1
n′ 6=n

mn′

{ ∑
n∈Z3

xn′ + nL− xn
|xn′ + nL− xn|3

[
erfc

( |xn′ + nL− xn|
2xs

)

+ |xn′ + nL− xn|√
π xs

exp
(
−|xn′ + nL− xn|

2

4x2s

)]

+ 4π
L3

∑
k∈{2πL−1h |h∈Z3\0}

k

k2 exp
(
−k2x2

s
)

sin
[
k(xn′ − x)

]}
.

(5.8)
As both the complementary error function and the Gaussian in the short-
range part of (5.8) fall off rapidly with increasing |n|, we can truncate
the short-range n sum, keeping only terms with |n| below some suitable
threshold. The same applies for the long-rang k (or h) sum, where a
Gaussian again ensures rapid convergence. Both gadget and concept
uses 

xs = L

4 ,

|xn′ + nL− xn| < 3.6L ,
h2 < 10 ,

(5.9)
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as suggested in [38].
With the numerical parameters (5.9), the force computation between

each pair of particles involve between 170 and 220 short-range terms as
well as 122 long-range terms, given by (5.8). Though finite, this is still
a large calculation. As the Ewald force between a pair of particles is a
smooth function of their separation, one can precompute a table (3D grid)
of Ewald forces, which once the n and k sums are carried out depend
only on xn′ − xn. Expressing the force in units of Gmnmn′a

−1L−1, the
same Ewald table can even be used for all simulations regardless of the
box size and particle masses, as well as throughout time within the
simulations. Furthermore, only one octant of the xn′−xn space needs to
be tabulated due to symmetry. We can see this by placing one particle at
the centre of the box. A particle at any of the 8 corners will now receive
the same force from the central particle, but with different signs of the
three force components, of which there are exactly 23 = 8 combinations.
All of gadget, pkdgrav and concept utilise such an Ewald table.

Finally, with the comoving force fn at hand, it is used to update the
comoving momentum qn of the n’th particle as described by the kick
operator (5.2). We now have everything we need to integrate the system
forward in time (5.4). In practice though, the asymmetry arising from
our discretisation of time into finite time steps of size ∆t while leaving
space continuous leads to extremely bad numerical behaviour, which we
shall now address.

Softening

Using the Ewald summation technique (5.8) we can compute the periodic
force between two point particles. For an infinitesimal time step size ∆t,
this would be a complete description of the PP method. In actuality
with a very much finite ∆t, this force has to be modified slightly. A finite
∆t allow the point particles to suddenly become arbitrarily close to each
other, resulting in unrealistic large forces which then generates energy.
To ensure that the pairwise force is “soft”, the mass of each particle
needs to be distributed continuously over a finite volume, as opposed to
being modelled by Dirac delta functions.

A typical and easy to implement solution is to model the particles as
‘Plummer spheres’ [39], with a single-particle density

ρP(x) ≡ m
(

4π
3 ε

3
)−1(

1 + (xP − x)2

ε2

)−5/2

, (5.10)
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where the particle is placed at xP and the softening length ε determines
its size. Note that the density is defined in terms of the comoving x,
meaning that the particles “grow along with the box”. We should then
not read too much meaning into the actual shape given to the particles,
it is merely a numerical necessity.

The seemingly odd exponent of −5/2 in (5.10) is chosen because it
leads to the nice looking potential

ϕP(x) = −Gm
a

1√
(xP − x)2 + ε2

, (5.11)

with the only change from the corresponding point particle potential
being the appearance of ε2 in the denominator. The force on a point
particle located at xδ from a Plummer sphere is now

fδ,P = GmδmP
a

xP − xδ[
(xP − xδ)2 + ε2

]3/2
, (5.12)

where I have now labelled the two masses. Importantly, the force (5.12)
has a finite maximum, which happens to be at |xP−xδ| = ε/

√
2 . Again,

the only change we need in order to go from the force between two point
particles and this softened Plummer force is the addition of ε2 in the
denominator. The Plummer softening used in N -body codes refer to
the form (5.12), i.e. the particles are not actually modelled as Plummer
spheres (5.10), as the force between two Plummer spheres is somewhat
different from (5.12).

The Plummer softening should be incorporated into the Ewald sum-
mation (5.8). As the softening only matters at small particle separations,
we only need it for the n = 0 term in the short-range sum. The way this
is usually handled is to introduce what me might call the mirror force;
the part of the periodic force that results from all mirror particles, but
not from the actual particle within the box itself. From (5.8), we can
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introduce the mirror force on particle n from particle n′ like

fmirror
n,n′ = Gmnmn′

a

{ ∑
n∈Z3

xn′ + nL− xn
|xn′ + nL− xn|3

[
erfc

( |xn′ + nL− xn|
2xs

)

+ |xn′ + nL− xn|√
π xs

exp
(
−|xn′ + nL− xn|

2

4x2s

)]

+ 4π
L3

∑
k∈{2πL−1h |h∈Z3\0}

k

k2 exp
(
−k2x2

s
)

sin
[
k(xn′ − x)

]

− xn′ − xn
|xn′ − xn|3

}
,

(5.13)
where the direct (non-mirror) force is subtracted on the last line. This
direct force can now be readded in its softened version. The complete,
softened force on particle n from all particles is then

fn =
N∑

n′=1
n′ 6=n

[
fmirror
n,n′ + Gmnmn′

a

xn′ − xn[
(xn′ − xn)2 + ε2

]3/2

]
. (5.14)

The precomputed Ewald table is then really over fmirror
n,n′ , allowing ε to

be a free parameter, independent of this table. Given that this table
only covers the cases |xn′ − xn| < L/2, it is crucial that xn′ in (5.14) is
chosen accordingly for each dimension, i.e. if particle n is closer to one of
the mirror versions of particle n′ than it is to n′ itself, we should swap
xn′ for the position of this closets mirror particle when doing the Ewald
lookup.

Good values for ε lie in the range [40,41]

ε ≈ (2–4)% L

N 1/3
, (5.15)

i.e. a small fraction of the mean, comoving inter-particle distance.
The simple Plummer softening is implemented in concept. More

involved softening is utilised by e.g. gadget [35], but it really just comes
down to a more complicated single-particle density distribution (5.10).

5.3.2 The Particle-Mesh Method
The previous subsection made it clear that we face two distinct problems
when implementing gravity numerically. First, the periodicity of the box
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transforms each pairwise interaction into an infinite sum of interactions.
Second, the force has to be softened, i.e. we have to introduce some
smallest scale, below which gravity weakens rather than increases. Both
of these problems are tackled simultaneously in the PM method by
introducing a comoving grid (or mesh) of some fixed comoving grid
spacing, on which we solve gravity using Fourier techniques. Besides the
grid aspect, the PM method is then analogous to the xs → 0 limit of
the Ewald technique (5.8), with the entire computation delegated to the
long-range Fourier sum.

The softening length ε of the PP method is then replaced by the grid
spacing ∆xϕ, below which gravity is not resolved. The introduced grid
is a cubic Nϕ×Nϕ×Nϕ grid and so the spacing (the cell width) in each
dimension is ∆xϕ = ∆yϕ = ∆zϕ = L/Nϕ. As we can choose Nϕ as we
please, the PM method can in principle be used to resolve gravity to
arbitrarily small scales. If we want the PM method to resolve gravity
as good as the softened PP method, we must require ∆xϕ ≈ ε. From
(5.15), this means that N3

ϕ ≈ N/[(2–4)%]3, i.e. the needed number of
grid points is at least tens of thousands times as large as the number of
particles, which is not numerically feasible. In practice then, ∆xϕ � ε,
making the gravitational resolution of the PM method much less than
that of the PP method.

What makes the PM method intriguing is its speed. As it solves
the collective potential ϕ from all particles on the grid, the particles
are never paired up, removing the O(N2) scaling. As the PM method
works by solving the Poisson equation on the grid in Fourier space, the
most expensive part of the method is the Fourier transformations needed.
Deploying the fast Fourier transform (FFT) [42], the PM method then
scales as O(N3

ϕ logN3
ϕ) ≈ O(N logN), where I have reasonably assumed

the choice of N3
ϕ ∝ N . Disregarding all constant factors, the largest

current simulations [20] having N ∼ 1012 then run billions of times faster
using the PM method than they would using the PP method.

In (3.7), the peculiar potential ϕ(x) is given as a convolution between
δρ(x) and |x|−1. In Fourier space, this convolution turns into multipli-
cation. With the Fourier transform of |x|−1 being 4π/k2, the Fourier
space Poisson equation becomes the simple algebraic relation

ϕ(k) = −4πGa2

k2 δρ(k) . (5.16)

The strategy of the PM method is to first construct δρ(x) on the Nϕ ×
Nϕ ×Nϕ grid from the particle distribution, Fourier transform the grid
in-place to get δρ(k), solve the Poisson equation (5.16) by multiplying
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each grid point k by −4πGa2/k2, turning the grid values into ϕ(k), and
then transform back to real space, obtaining ϕ(x). Though this single
grid in memory is used to hold δρ(x), δρ(k), ϕ(k) and ϕ(x) in turn, we
shall consistently refer to it as the ϕ grid. Once ϕ(x) is constructed on
the grid, we can differentiate it to obtain the force/mass, which can then
be interpolated back to the particle locations and applied.

In Fourier transforming the particle distribution within the finite box,
periodicity is achieved automatically, in stark contrast to the PP method
where the Ewald machinery were needed to inject the periodicity. For
Fourier based PM methods then, periodicity is the natural boundary
condition. If we instead wanted vacuum boundary conditions (if e.g. the
box contained just a single, isolated galaxy), the Ewald part would be
removed from the PP method making it much more straight forward,
whereas we would have to complicate the PM method by removing the
periodicity.

Mesh Interpolation

We shall now describe how to go about discretising (5.16) so that the
fields δρ and ϕ live on the fixed grid, rather than as continuous functions
in (real of Fourier) space. We first need to decide how the particles
should come together to form δρ(x). The simplest choice is to model
each particle as a delta function, giving rise to (3.14). We then say
that each particle has the shape S0(x) = δ(x). Generally, the shape is
a function localised around the origin describing the unit-mass single-
particle density field. We can construct higher-order shapes SO, O ∈ N,
by smoothing out S0, which we may do through repeated convolution
with some simple function. A somewhat subtle criterion of these shapes
is that in the end, a particle should not receive any force due to its own
presence. With a cubic grid, this pins down [43] this simple function to
be that of a cubic top-hat function Π:

SO(x) = ∆x−3O
ϕ

O∗
o=1

Π
(
x

∆xϕ

)
, (5.17)

where the big operator∗ means repeated convolution of the function to
the right, with the empty convolution (O = 0) defined as the δ function.
To be clear, the cubic top-hat function is

Π(x, y, z) ≡

1 |x|, |y|, |z| < 1
2 ,

0 otherwise .
(5.18)
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The shape S1 is then ∆x−3
ϕ Π(x/∆xϕ), the shape S2 is ∆x−6

ϕ Π(x/∆xϕ) ∗
Π(x/∆xϕ), and so on.

As any SO(x) integrate to one, so does ∆x−3
ϕ Π(x/∆xϕ) ∗ SO(x)

(which is really just SO+1(x)). We then define the dimensionless weight
function

WO(x) ≡ Π(x/∆xϕ) ∗ SO(x)

= ∆x−3O
ϕ

O+1∗
o=1

Π
(
x

∆xϕ

)
, (5.19)

which integrate the shape function over a cell volume centred at the
origin. We can then use this weight function to interpolate a fraction
of the mass of a particle at xn onto a grid point at xn = ∆xϕn, where
n ∈ N3 labels the grid points and is not related to the particle index n.
This fraction will be WO(xn − xn), corresponding to the overlap of the
particle shape centred at the particle and a cell volume centred at the
grid point.

The lowest order weight WNGP ≡ W0 = Π(x/∆xϕ) is known as
the ‘nearest grid point’ weight, as it corresponds to simply snapping
the entire particle onto the nearest grid point. The first order weight
WCIC ≡ W1 = Π(x/∆xϕ) ∗ Π(x/∆xϕ) is known as the ‘cloud in cell’
weight, and can be written out as

WCIC(x, y, z) =


(

1− |x|
∆xϕ

)(
1− |y|

∆xϕ

)(
1− |z|

∆xϕ

)
|x|, |y|, |z| < ∆xϕ ,

0 otherwise .
(5.20)

The CIC weights are what is used for the PM method in gadget and
concept. In pkdgrav∗, the NPG, the CIC, the second-order TSC
(‘triangular shaped cloud’) and the third-order PCS (‘piecewise cubic
spline’) weights are all implemented. As the order increases, a particle is
smeared over a larger volume and thus correspondingly more grid points,
which further softens the force.

The weight assigned to the grid point n from a particle at xn was
W (xn − xn) ≡Wn(xn), where the order O does not matter and so we
will not keep carrying it around. With the “true” density field ρ(x) given

∗Note that pkdgrav does not contain a complete PM method. The grid interpo-
lations of particles are implemented for the power spectrum computation, as here we
need δ(k) on a grid, δk, as described in section 4.1.
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in (3.14) as a sum of delta functions, the density assigned to each grid
point, ρn, is

ρn = 1
a3

N∑
n=1

Wn(xn) mn

∆x3
ϕ

(5.21)

=
[
Wn(x) ∗ ρ(x)

]
x=xn

∆x3
ϕ

, (5.22)

where the first equality is used in the actual implementation and the
second equality is a convenient observation which we will use later. The
specification of x = xn (note the boldness of n) in (5.22) is important
as otherwise the right-hand-side would be a function of x, which only
equals the number ρn at the point xn.

Note that even for a smooth (i.e. not a sum of delta functions) ρ(x),
ρn 6= ρ(xn) in general. There is thus a small (for slowly spatially varying
ρ(x)) but important difference between the actual field ρ(x) and its
discretised grid version ρn.

Solving the Poisson Equation

With the ϕ grid populated with ρn values via interpolating of particle
masses as given by (5.21), an in-place FFT results in ρh, Z3 3 h =
kL/(2π), i.e. the grid version of ρ(k). Fourier transforming (5.22), we
obtain the exact relation

ρh = Whρ(k)/∆x3
ϕ , (5.23)

where Wh is the Fourier transformed Wn(x) evaluated at k = (2π/L)h.
Importantly, for any given h ∈ Z3, ρh is just a (complex) number and
not a function, and so the right-hand-side of (5.23) is also just a number.
That is, k is not allowed to vary in this expression, due to it being
specified through h (this is exactly the same reason as for the explicit
evaluation x = xn in (5.22)). We thus cannot take an equation like
(5.23) and solve for the function ρ(k).

Inserting (5.23) into (5.16), we get

ϕh = −4πGa2

k2
∆x3

ϕ

Wh
ρh , ϕh=0 = 0 , (5.24)

where I have exchanged ϕ(k) for ϕh to reflect the fact that once again,
the expression as a whole is only meaningful at the grid points. Also,
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the removal of the background density (as (5.16) specify δρ, not ρ) is
handled simply by setting the “DC” (k = 0) mode to zero.

We have yet to calculate Wh = W
(
k = (2π/L)h

)
, W (k) being the

Fourier transform of W (x). With the repeated convolution of (5.19)
turning into repeated multiplication under the Fourier transform, we
just need to calculate the Fourier transform of Π(x/∆xϕ), which come
down to a product of cardinal sine functions;

WO,h = ∆x3
ϕ sincO+1

(∆xϕkx
2

)
sincO+1

(∆xϕky
2

)
sincO+1

(∆xϕkz
2

)
,

(5.25)
with sinc(x) ≡ sin(x)/x and (2π/L)h = k = (kx, ky, kz).

Comparing the continuous Poisson equation (5.16) to its grid form
(5.24), we see that they are not related simply by the exchange of fields for
grids {ρ(k), ϕ(k)} ↔ {ρh, ϕh}, but that the additional factor ∆x3

ϕ/Wh

appears in the grid equation. This factor came from the relation (5.23)
between the field ρ(k) and the grid ρh, or equivalently the field ρ(x)
and the grid ρn, where the latter was constructed from the first via
convolution. The factor ∆x3

ϕ/Wh then corrects for this convolution, and
is known as the deconvolution factor.

We could now perform an in-place inverse FFT on the ϕ grid, convert-
ing the ϕh values to ϕn values. We could then convert the potential into
forces, still locating at the grid positions, and finally interpolate these
forces back to the particle positions. This additional interpolation∗ would
then have to be corrected for by another deconvolution, which we know
corresponds to multiplication by the factor ∆x3

ϕ/Wh in Fourier space.
Before leaving Fourier space, we thus carry out this second deconvolution,
leaving the ϕ grid with the values

ϕ′h = −4πGa2

k2
∆x6

ϕ

W 2
h

ρh , ϕ′h=0 = 0 , (5.26)

where the prime is there to remind us that these grid values carry around
one additional deconvolution. Now we do the in-place inverse FFT,
leaving the ϕ grid with the values ϕ′n.

∗It may not be obvious that interpolation from the particles onto the grid in this
respect is equivalent to interpolation from the grid onto the particles. This is however
clear from the convolution between the grid and the particles in (5.22), convolution
being commutative.
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Obtaining the Forces

We now differentiate the ϕ′n values stored in the ϕ grid using symmetric
finite differencing, in order to obtain a grid of force values. The full
force field require three new grids, one for each dimension, each the size
of the ϕ grid. Carrying out the computation one dimension at a time,
we can however get by using just a single additional grid. A general
symmetric difference operator Dx

2O of order 2O, O ∈ N, acting along the
x dimension, may be written [44]

Dx
2Oϕ

′
nx,ny ,nz

= ∆x−1
ϕ

O∑
j=−O
j 6=0

[
d
dξ

O∏
i=−O
i 6=j

ξ − i
j − i

]
ξ=0

ϕ′nx+j,ny ,nz , (5.27)

where O does not have to match the order of the weight function. Sim-
ilar difference operators can of course be constructed for the y and
z dimensions. The full symmetric gradient operator is then D2O =
(Dx

2O, D
y
2O, D

z
2O). Both gadget and concept uses the fourth-order

operator, which boils down to

Dx
4ϕ
′
nx,ny ,nz

=
ϕ′nx−2,ny ,nz − 8ϕ′nx−1,ny ,nz + 8ϕ′nx+1,ny ,nz − ϕ

′
nx+2,ny ,nz

12∆xϕ
.

(5.28)
Note that we could have carried out the differentiation in Fourier space
by simply multiplying by ik, which again could be done one dimension
at a time, also requiring just a single grid in addition to the ϕ grid.
This would however require three separate inverse FFTs instead of one,
∼doubling the computation time. At least for smooth fields, low-order
(e.g. 4) real space finite differencing leads to very similar results, and so
it is generally preferable to do the differentiation in real space.

Interpolating the differentiated ϕ′n back to the particle positions is
then done in a similar manner to (5.22), though now the particle index
n is fixed while the sum is over grid points n:

fn = −mn

∑
n

Wn(xn)Dϕ′n , (5.29)

where I have left out the order specification on D. Importantly, as
the sum (5.29) corresponds to convolution (c.f. (5.22)), the additional
deconvolution present inside of ϕ′n is now paired up, and so we lose the
prime.
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All of gadget, pkdgrav and concept rely on FFTW∗ [45] to
perform the FFTs, delegating the performance critical part of the code
to this external library. Thus, as far as the PM method is concerned, all
three codes are of comparable performance. While concept does not
contain a (well-implemented version of) a more advanced gravitational
method with the same scaling but with higher resolution, gadget and
pkdgrav do, giving them a large advantage.

5.3.3 Advanced Methods
We are now familiar with the basic O

(
N2) PP and O(N logN) PM

method. The bad scaling of PP makes it practically unusable for actual
use†. The PM method on the other hand suffers from the lack of high
spatial resolution. Both of these methods can be extended, improving
their usability. They can also be combined into hybrid methods, harvest-
ing the strength of both the PP and PM method, without inheriting too
much of their bad aspects.

Tree Methods

The O
(
N2) scaling of the PP method came about because we insisted on

pairing up each particle with every single other particle. From the point
of view of some particular particle, a far away dense cluster of particles
act as a single, more massive particle. Thus, by somehow grouping
particles together prior to the direct summation, we can reduce the
number of particle-particle (or now particle-group) interactions. This is
the basic idea behind ‘tree methods’, which extend the basic PP method
with a tree, i.e. a recursive grouping of the particles into some hierarchical
structure. The gravitational force on a single particle from an entire
branch of the tree (i.e. all particles at a given level of the hierarchical
structure) is then either computed as the sum of forces from all daughter-
branches (‘twigs’) of the given branch, or as the single, collective force
due to the entire branch if the branch is deemed “far away” from the

∗Specifically, MPI-parallelised 3D in-place real-to-complex (and its complex-to-real
dual) FFTs are needed. The pyFFTW Python package wraps FFTW, enabling it to
be called from Python. However it does not include this particular pair of transforms,
and so concept calls FFTW from a small C function which is then incorporated into
concept via Cython. To this day this is the only C source code in concept.

†A noticeable counter example is grapesph [46], a smoothed-particle hydrody-
namics (a particle-based and mesh-free technique where continuous fluid quantities
like ρ(x) are described through convolution of some kernel W (x) with the particles)
code running on hardware specifically designed for the direct summation problem.
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particle in question. In the simplest version, this collective branch force
would be computed as the force from a single particle situated at the
centre of mass of the particles within the branch and with a mass equal
to the total mass of these particles.

Tree methods are then generally constructed by extending the PP
method with such a tree structure. For each round of force computation,
the tree must first be built. The lowest level of the tree is of course
the particles themselves, which we may refer to as ‘leaves’. The highest
level is the collection of all particles within the box, which we may refer
to as the ‘root’. Building the tree then amounts to grouping together
branches (starting with the leaves) into ever greater branches, until we
reach the root. This grouping can be done in many different ways, e.g.
based on the actual clusters of particles as described earlier, through
nearest neighbour searches. A much simpler approach is to just divide
up space recursively. For our cubic box, the simplest approach is to do a
recursive division into octants, forming what is known as an octree. The
recursion stops once a branch contain just a single particle.

For each branch, the particle distribution within now needs to be
boiled down to some simpler but approximate form, like the position of
the centre of mass and the total mass. More generally, we could compute
and store the first few terms needed for a multipole expansion of the
gravitational potential arising from the particles within the branch, with
the monopole corresponding exactly to just the specification of centre of
mass and total mass.

To compute the force on a given particle, the tree now has to be
‘walked’ with respect to that particle. Starting from the root, each branch
is recursively considered for direct summation, i.e. either the approximate
branch force is computed and applied after which the recursion ends, or
the branch is ‘opened’ meaning that the recursion continues down the
twigs. The last ingredient of such a tree algorithm is then some criterion
which can decide whether or not to open a branch with respect to a given
particle. Such a criterion should at least take into account the solid angle
extended by the branch as viewed from the particle location, but can
also depend directly on the particle itself, e.g. through the total force
the particle received in the last time step, from which one can construct
an estimate of the error introduced by not opening a branch further in
the current time step.

Both gadget and pkdgrav makes extensive use of tree methods.
In the case of gadget-2, a simple octree equipped with monopoles is
what is used. Regardless of the specifics, tree methods generally scale
like O(N logN) as each of the N particles now only receive forces from
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a logarithmically growing (due to the recursion) number of branches.
Tree methods thus scale similarly to the PM method. By tightening
the opening criterion, the accuracy (and computational cost) of tree
methods can be tuned. In the limit of always opening each branch until
a leaf is reached, the tree methods reduce to (an even slower version
of) the PP method. The generally claimed O(N logN) scaling of tree
methods is then only true for a “reasonable” opening criterion. In this
reasonable regime, tree methods can indeed allow for much higher spatial
resolution than the PM method. Although these have the same scaling,
the PM method is generally quite a bit faster in absolute terms, as
the construction of the tree itself also require significant computational
resources. To speed up tree methods, one may then reuse (parts of) the
tree over several time steps.

Adaptive Mesh Refinement

Just as a tree can be used to bunch particles in the PP method together
into larger groups, we can equip the PM method with a tree of ever
more refined meshes. This is once again most simply done using an
octree. Adaptive Mesh Refinement (AMR) [19, 47] methods can then
be thought of as being very analogous to tree methods, but with each
branch equipped with a mesh. To be truly useful in cosmology, this
multi-levelled mesh needs to be able to adaptively refine itself in regions
of high density variations.

The key problems any adaptive mesh method has to overcome are that
of non-trivial boundary conditions between cells of difference sizes, as well
as how to go about solving the Poisson equation on a multi-levelled grid.
An example of an N -body code using an AMR-extended PM method
is ramses. Here, the Fourier technique described in subsection 5.3.2 is
used to compute the potential at the root level, i.e. on a global mesh with
low spatial resolution. At finer levels, the Laplacian is approximated in
real space by finite differences, from which the potential is solved for via
relaxation techniques.

Perhaps more commonly, AMR techniques are used not alongside
PM in particle codes, but on its own in fluid dynamical codes where
the cells of the mesh are all there ever are. After all, once cells can
adaptively be made arbitrarily small, the need for an explicit particle
description diminishes. We shall look closer into numerical fluid dynamics
in chapter 6, though we shall keep our attention to grids of fixed size.
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Hybrid Methods

The PP and the PM method complement each other in that the first
is accurate and even fast for a small number of particles due to its low
overhead, while the latter is very efficient for large number of particles
but suffer from low spatial resolution. We can combine the two methods
in several ways forming ‘hybrid methods’, aiming to get the best of
both worlds. To do this, we want to split gravity into a short-range
and a large-range part, just as was done for the Ewald summation in
subsection 5.3.1. With the exact same splitting based on the error
function and its complement, the long-range potential solved through
the PM method is then the Fourier sum in (5.7), i.e. the potential in
Fourier space is changed from ∼ 1/k2 to ∼ exp(−k2x2

s )/k2, xs being the
force split scale, now determining the scale below which the PP method
should take over from the PM method. The Gaussian rapidly reduces the
long-range potential for |k| > x−1

s , leaving the small scale contribution
of gravity to the PP method.

With the long-range part of gravity efficiently taken care of by the
PM method, the remaining short-range contributions can be dealt with
using direct summation. This short-range force is exactly that of the real
space part of (5.8), though now we have no need for the sum over particle
images n, as we are guaranteed that only the nearest particle/image has
any measurable short-range contribution. This then reduces the PP part
of the hybrid scheme to a single N2 sum over particle pairs. To gain any
real benefit, we must now take into account that only nearby particles
have any non-negligible short-range interaction, i.e. we can ignore any
pair for which the separation is much larger than xs.

A critical part of a PP-PM hybrid scheme is then some sort of
grouping mechanism, allowing for efficient determination of neighbour
particles. In concept, such a hybrid scheme is implemented with a
simple grouping based only on which MPI process the particles belong
to (as a given MPI process only takes care of particles within a given
region). The resulting grouping of particles disregard the value of xs
entirely and generally results in much too few groups, cutting down on
the N2 operations by a suboptimal amount. This unfortunately leaves
concept with the PM method as the only scalable force implementation.

A hybrid method between the PP and PM method is unimagina-
tively dubbed PPPM or P3M. Another approach is to pair PM with
a tree method, resulting in a treePM method, which is the approach
of gadget. The tree structure then serves as the needed grouping
mechanism, with a tweaked opening criterion accommodating the expo-
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nential falloff of the short-range force. Instead of completely ignoring
the short-range interaction between distance particles as in the P3M
method, the treePM method do account for these, though through its
use of truncated multipole expansions of now large groups of particles.
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6 Fluid Dynamics

In this chapter we shall take a look at numerical implementations of
fluid dynamics. While chapter 5 gave a broad overview of N -body
techniques, i.e. standard numerical methods used when working with
particles, this chapter does not aim to do the same for computational
fluid dynamics (CFD). Instead we shall focus just on the two CFD
methods implemented in concept, known as the MacCormack (MC)
scheme and the Kurganov-Tadmor (KT) scheme.

6.1 Introduction
Conceptually, the particle (N -body) methods of chapter 5 can be used on
any species, as the particles simply trace out trajectories in phase space.
In the case of cold matter, the general distribution function f(t,x, q)
loses the q dependence, massively reducing the phase space volume
needed to be traced by the particles. For some phase space density of
particles needed in order to obtain a given precision, removing the q
dependence of f then drastically cuts down on the number of needed
particles. In the general case of species with non-vanishing pressure, e.g.
neutrinos, the q dependence remain and so each point in space x now
needs an entire q distribution of particles.

Consider for a moment a species with non-vanishing pressure, but
vanishing shear and higher-order moments. Due to the q dependence of
f from the pressure, a particle description would require each point x
to contain several particles, sampling the q distribution at that point
in space. Through the Boltzmann hierarchy formalism (3.23), we can
integrate this q distribution to obtain a list of fluid variables. From the
assumption of vanishing shear and higher-order fluid variables, all the
information of the q distribution is then contained in the pressure. By
changing from the Lagrangian (particle) description to an Eulerian (fluid)
description, {xn, qn} → {ρn, uin, Pn}, the three q dimensions effectively
collapse into the pressure variable, itself depending only on space x.
Here, the integer 1 ≤ n ≤ N labels the particles whereas the integer
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triple n = (nx, ny, nz), 1 ≤ nx, ny, nz ≤ Nm, labels grid coordinates
on an Nm × Nm × Nm grid. With the particles strewn out more or
less uniformly throughout a hypercubical phase space volume with a
density comparable to that of the grid points, we see that the fluid
description allows us to encode the system using much less information;
6N ∼ 6N6

m � 5N3
m, with 6 = 3 + 3 the number of canonical variables of

each particle (the dimensionality of phase space) and 5 = 1 + 3 + 1 the
number of 3D scalar fields/grids used for the fluid representation.

For a fluid with non-zero shear and higher-order fluid variables,
corresponding to large `max, these will also have to be represented as
numerical grids, enlarging the amount of information needed to fully
describe the state. Eventually then, the advantage of a fluid description
seemingly diminishes. For species with large `max, such as neutrinos,
the hope on which much of this work is based is that only the lower
moments will behave non-linearly, effectively partitioning the Boltzmann
hierarchy into a non-linear part (lower `) and a linear part (higher `).
We define this split to be at `nl so that moments with ` ≤ `nl are treated
non-linearly whereas moments with ` > `nl are treated linearly. Only a
few moments (`nl + 1, as the first moment is numbered as 0) then need
to exist as numerical 3D grids, whereas all higher-order moments are
solved linearly as described in subsection 3.3.2, with no non-linearity
being fed back from the non-linear evolution of the lowest moments.

6.1.1 Numerical Fluid Equations
Most of chapter 3 was spent on the development of the fluid equations
needed for the Eulerian description, with the primary equations being the
continuity and Euler equations. To solve such equations numerically, we
discretise space x, which is most simply done by placing a cubical mesh
throughout the simulation box, exactly akin to the ϕ grid of the PM
method describe in subsection 5.3.2. As mentioned in subsection 5.3.3,
adaptive mesh geometries can also be used, enhancing performance and
spatial resolution, but at the cost of much complication to the algorithms.
As only fixed, cubical meshed are implemented into concept, these are
the only ones we shall deal with here.

The system of fluid equations that is solved in concept is the non-
linear continuity and Euler equation in conservation form (3.34), but
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with GR source terms removed. This leaves us with
%̇ =− a3w−2∂iJ

i + 3H(w%− P) ,

J̇ i =− a3w−2∂j
J iJj
%+ P − a

−3w∂j
(
Pδij + ς ij

)
− a−3w(%+ P)∂iϕ ,

(6.1)
with the peculiar potential ϕ given by the Poisson equation (3.35). These
are then the equations we wish to solve numerically in this chapter. We
shall think of having `nl = 1, corresponding to evolving % and J i non-
linearly according to the continuity and Euler equation (6.1), but with P
and ς ij somehow given by linear theory. What linear theory provides are
the transfer functions TδP (k) and Tσ(k), from which we can construct
linear 3D fields P (x) (or P(x)) and σij (x) (or ς ij (x)) using the scalar
realisation (4.12) and rank-2 tensor realisation (4.14). At least some
of the missing non-linearity can be injected using non-linear realisation
schemes, which are explored in section 7.4.

We can exploit the symmetric property of ς ij so that we only realise
its 6 unique components, rather than all 9. Using its tracelessness we
could further reduce this number to 5, as we can then construct the
remaining diagonal component from the other two. This however require
us to have these two components of ς ij in memory simultaneously. Since
terms in (6.1) contains at most a single factor of ς ij , we can choose to
reuse the same memory to store each of the 6 components in turn. This
is the strategy adopted in concept.

6.1.2 General Considerations
This subsection serves as a very brief general introduction to the subset
of the field of computational fluid dynamics that we will need. CFD
can be viewed as a subset of the field of numerical analysis of partial
differential equations (PDEs). When studying PDEs analytically (i.e.
non-numerically), a given PDE is grouped into one of several major
classes with different behaviour. For us, the most important class is
that of hyperbolic PDEs, which can always be cast in the form of a
conservation equation, i.e. the time derivative of some quantity is given
exclusively by a sum of fluxes, meaning divergences of other quantities.
This has the physical interpretation that any change to the time varying
quantity is due to transport of this quantity. In our numerical set-up,
we think of small cubical cells each containing a single value of each
quantity. In the case of (6.1), each cell then has a single value of % and J i,
corresponding to a definite energy and momentum through integration
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over the cell. The energy is then changed due to energy fluxes ∂iJ i over
the 6 cell faces, while momentum is changed due to momentum fluxes
∂jJ iJj and pressure/shear fluxes ∂j(Pδij + ς ij ), again over the 6 cell
faces.

With hyperbolic PDEs we can then start from some initial condition,
i.e. a specification of all spatial fields at some time, after which we can
run the system forward (or backward) in time. In contrast, no analogous
evolution is to be found in e.g. the Poisson equation (3.35), which is
classified as an elliptical PDE. Here a static solution must be found from
a given boundary condition (periodicity, in our case).

The whole reason for using the ‘conserved’ fluid variables {%, J i,P, ς ij }
instead of a more familiar set like {ρ, ui, P, σij} was to exploit the con-
servative nature of the system, casting the fluid equations into what we
might call its manifestly hyperbolic/conservative form (6.1). A huge
complication is the fact that (6.1) of course contain terms other than
flux terms on the right-hand-side. Specifically, the Hubble term in the
continuity equation and the gravitational term in the Euler equation are
“proper” source terms. The classification of the pressure/shear flux as
either a flux term or a source term is less clear due to the pressure and
shear being treated linearly. At early, linear times the pressure/shear flux
will yield the correct physical fluxes, but at non-linear times these will
be uncorrelated (or at least less correlated) with the non-linearly evolved
J i, effectively converting the pressure/shear flux term into a source term.
Our actual equations (6.1) are then not purely hyperbolic. Our approach
is then to consider the various source terms as small relative to the flux
terms, only slightly perturbing the hyperbolicity of the system, though
this might not really be the case.

Stability

There exists a wealth of different numerical methods for solving hyperbolic
PDEs. Given some problem it is generally not at all straight forward
to determine which method will lead to best results. Most modern
methods concern themselves with the capturing of shock waves, which
is particularly tricky to get right. As our fluids are always collisionless,
this is not a concern of ours and so we should be able to get by using
less complicated methods.

A basic criterion for any method is that it ought to be stable, meaning
that the numerical solution does not simply blow up after a few time
steps. To demonstrate this concept of stability of the numerical solver,
we consider integrating the continuity equation over a small time, i.e. just
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a few time steps. In this limit, the Hubble expansion can be neglected,
removing the source term. We furthermore consider the velocity field to
be slowly varying in space, so that ∂iui ≈ 0. We then have just

ρ̇ ≈ −a−1ui∂iρ , (6.2)

where the velocity has been excluded from the differentiation due to it
being roughly constant over the short interval we are considering.

We now need discrete versions of the temporal and spatial derivatives.
For the temporal derivative, the most obvious discretisation is that of
forward Euler differencing;

ρ̇|jn = ρj+1
n − ρjn

∆t +O(∆t) . (6.3)

Here ρjn means the value of the density in the numerical grid at grid
point n ∈ N3 at time step j ∈ N, i.e. the numerical approximation to
ρ(j∆t,n∆x). The forward Euler difference (6.3) then simply means that
we can perform a time step by adding ∆t ρ̇|jn to the current state, which
indeed seems very reasonable. The forward Euler method is called an
explicit method since it gives us a direct algebraic equation for the state
at the next time step, given just the current state.

For the spatial derivative of (6.2), the forward Euler method would
treat left and right asymmetrically, for which we have no reason (unlike
in the temporal case where the future is unknown). Instead we should
use some symmetric difference, the general form of which is given in
(5.27). The lowest order version of this is the second order derivative

∂xρ|jn =
ρjnx+1,ny ,nz − ρ

j
nx−1,ny ,nz

2∆x +O(∆x2) . (6.4)

Substituting (6.3) and (6.4) into (6.2) we have

ρj+1
n ≈ ρjn −

∆t
2a∆x

[
ux
(
ρjnx+1,ny ,nz − ρ

j
nx−1,ny ,nz

)
+ uy

(
ρjnx,ny+1,nz − ρ

j
nx,ny−1,nz

)
+ uz

(
ρjnx,ny ,nz+1 − ρjnx,ny ,nz−1

)]
.

(6.5)

A tool for analysing whether a scheme like (6.5) is stable is von Neumann
stability analysis [48]. In the limit ∆t→ 0, our equation becomes just ρ̇ ≈
0, the Fourier space solution of which is of the form ρj+1

n = ξj(k)eikn∆x,
i.e. each eigenmode grow independently with some amplification factor ξ.
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Remembering that j is our time step index, we see that having |ξ(k)| > 1
will lead some modes to grow exponentially, rendering the numerical
scheme unstable.

Replacing ρj+1
n with ξj(k)eikn∆x in (6.5) and treating all directions

as equal, meaning ux = uy = uz =
√

(u2
x + u2

y + u2
z)/3 ≡ u/

√
3 and

kx = ky = kz ≡ k, we end up with

ξ = 1− i
√

3 u∆t
a∆x sin k∆x , (6.6)

for which we see that |ξ| > 1 for every finite k, making the forward Euler
second-order symmetric method (6.5) unconditionally unstable.

It turns out that our simple scheme can be stabilised using the Lax
method [49], which simply smooths out the solution by replacing the
original value ρjn on the right-hand-side of (6.5) by its spatial average
from neighbouring cells:

ρj+1
n ≈ 1

6
(

ρjnx+1,ny ,nz + ρjnx−1,ny ,nz

+ ρjnx,ny+1,nz + ρjnx,ny−1,nz

+ ρjnx,ny ,nz+1 + ρjnx,ny ,nz−1)
− ∆t

2a∆x

[
ux
(
ρjnx+1,ny ,nz − ρ

j
nx−1,ny ,nz

)
+ uy

(
ρjnx,ny+1,nz − ρ

j
nx,ny−1,nz

)
+ uz

(
ρjnx,ny ,nz+1 − ρjnx,ny ,nz−1

)]
.

(6.7)

Now doing the replacement ρj+1
n → ξj(k)eikn∆x and treating all direc-

tions equally, we end up with

ξ = cos k∆x− i
√

3 u∆t
a∆x sin k∆x , (6.8)

with the stability criterion |ξ| ≤ 1 leading to

∆t ≤ a∆x√
3 u

, (6.9)

which is known as the Courant-Friedrichs-Lewy (or just Courant) condi-
tion, most often seen in its 1D version where the

√
3 is absent and in

static space a = 1.
We might have argued intuitively that we indeed ought to keep the

time step size below ∆x/ẋ = a∆x/u, as otherwise information from
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one cell has time to travel further than to just its immediate neighbour
cells, which should be disallowed as our scheme only directly couples
neighbouring cells. The factor of 1/

√
3 is less obvious, but since in

practice the Courant condition is only a necessary and not sufficient
constraint, the real time step size is usually chosen as a small fraction
of what is allowed by this condition anyway. The most important
information from the stability analysis is the knowledge of whether a
method is stable at all.

The replacement of ρjn with its spatial average from neighbour cells
in (6.7) corresponds to keeping the numerical method as in (6.5) but
modifying the underlying differential equation (6.2), specifically as [48]
ρ̇ ≈ −ui∂iρ+ ∆x2/(2∆t)∂i∂iρ, with a suitable symmetric second-order
finite difference approximation for the Laplacian. That is, the Lax trick
which stabilised the method corresponds exactly to the addition of a
diffusion term to the underlying differential equation. One may argue
then that though the method is stable, it no longer solves the differential
equation that we wanted to solve. We can understand this in terms of the
amplification factor ξ (6.8). For k∆x� 1 corresponding to large scales,
we have ξ ≈ 1, whereas for larger k, ξ decreases. Remembering that
the eigenmodes grow as |ξ|j , this then means that the added diffusion
only change the solution at small scales, which is what we may expect
given that the averaging is spatially local. Generally then, we can safely
introducing numerical diffusion into a hyperbolic PDE without worrying
that it perturbs the solution much beyond the grid scale.

6.2 The MacCormack Method
The simplest CFD method implemented in concept is that of MacCor-
mack (MC) [50]. This is a reformulation of the Lax-Wendroff method,
which itself is the second-order version of the (temporally) first-order
Lax-improved forward Euler method analysed in the previous section.
I originally decided to implement a Lax-Wendroff-type method simply
because it was amongst the simplest possible second-order methods.
The specific MacCormack version was chosen because it is easier to
implement, requiring no explicit Jacobian and less memory than other
Lax-Wendroff-type methods.

We remind ourselves that the system of equations under consideration
is that of (6.1), with only the first term of both equations considered as
flux terms. Unlike the leapfrog method used to evolve the Hamiltonian
particle system in subsection 5.2.1, the MacCormack method updates
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the %n and the J in grids synchronously. To do this, secondary grids are
needed to store intermediate values, which one might think of as %n and
J in evaluated halfway through the time step. We shall denote these new
grids with a star, %?n and J i?n , and call them simply the ‘starred’ grids.
The introduction of this additional set of grids then doubles the memory
usage.

In the previous section we used the notation %jn to refer to the density
grid at time j∆t and grid point n∆x. As only a single % grid (now
two, with the starred grids) is present in memory, keeping the temporal
index around maps badly to the actual numerical implementation, and
so we shall drop it from now on. The MacCormack method consists
of a predictor step, populating the starred grids from the unstarred
(normal) grids, followed by a corrector step in which the unstarred grids
are updated according to the starred grids. For our system of equations
(6.1), the predictor step takes the form

%?n = %n −
1

∆x

t+∆tw

t

a3w−2 dt
3∑
i=1

(
J in+[δi1,δi2,δi3] − J in

)
,

J i?n = J in −
1

∆x

t+∆tw

t

a3w−2 dt
3∑
j=1

(
J iJj
%+ P

∣∣∣∣
n+[δj1,δj2,δj3]

− J iJj
%+ P

∣∣∣∣
n

)
.

(6.10)
This is very much analogous to the forward Euler method (6.5), the
difference being that (6.10) approximate the divergence asymmetrically
with respect to left and right. The notation n+ [δi1, δi2, δi3] should be
understood as vector addition, where the vector in the bracket takes on
the values of the unit vectors along the coordinate axes; ı̂, ̂ , k̂, for i = 1,
i = 2, i = 3, respectively. The divergence is thus approximated as the
difference between the local cell value and that of the right/upper/forward
neighbouring cells.

Just as in the particle drift operation (5.1), the state variables are
treated as constant over the predictor (as well as the corrector) step,
whereas the scale factor a(t) and the effective equation of state w(t) are
integrated properly.

The corrector step is quite similar to the predictor step, where now
we account for the left/lower/backward neighbouring cells. Crucially,
the corrector fluxes are constructed from the predictor (starred) values,
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which is what allows for second-order behaviour:

%n →
%n + %?n

2 − 1
2∆x

t+∆tw

t

a3w−2 dt
3∑
i=1

(
J i?n − J i?n−[δi1,δi2,δi3]

)
,

J in →
J in + J i?n

2 − 1
2∆x

t+∆tw

t

a3w−2 dt
3∑
j=1

(
J i?J?j
%? + P

∣∣∣∣
n

−
J i?J?j
%? + P

∣∣∣∣
n−[δj1,δj2,δj3]

)
,

(6.11)
where the arrows indicate in-place updates of the unstarred grids, com-
pleting the (flux part of the) time step. Due to the factors of 2 in the
denominators of (6.11) (no such factor appears in (6.10)), the forward
and backward differences are accounted for by the same amount as in
(6.4), but with the forward and backward differences evaluated effectively
half a time step out of phase.

For non-linear problems such as ours, the asymmetry between left
and right (and similar for the other dimensions) introduced by the Mac-
Cormack method (6.10) and (6.11) will manifest as spurious anisotropic
errors after multiple time steps. To counteract this, the direction speci-
fied by [δi1, δi2, δi3] should rotate in between time steps, taking on all 8
possible directions over a cycle of 8 time steps. That is, we should really
replace [δi1, δi2, δi3] for [±δi1,±δi2,±δi3] in (6.10) and (6.11), with the
three ± signs swapping back and forth between being a + and a − with
a period of 1, 2 and 4 time steps.

As we treat P (and ς ij ) linearly due to our choice of `nl = 1, the
evolution of the pressure is not solved by the MacCormack method, but
somehow given to us using linear theory. Thus, no starred version P?
appear in (6.11). Viewing the predictor step not as “half a spatial step”
as only three of the six faces are treated, but rather as half a time step,
one may argue that while the predictor step uses Pn(t) = Pn(j∆t) ≡ Pjn,
the corrector step ought to use Pj+1/2

n , i.e. the pressure given at a time
halfway in between time step j and j + 1. As Pn does not match the
correct non-linear pressure anyway, we choose to ignore this possible
slight gain in consistency and simply use the exact same grid Pn in both
the predictor and corrector step. After a full MacCormack (predictor
plus corrector) step, Pn is then re-realised from linear theory at the time
j + 1.
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6.2.1 Source Terms
The standard MacCormack method given by (6.10) and (6.11) treat our
system of fluid equations (6.1) as purely hyperbolic, ignoring all source
terms. These source terms include the “real” Hubble and gravitational
source terms, but also the pressure and shear flux, which is converted to
an affective source term because we do not treat the pressure and shear
as non-linear variables.

The MacCormack method can be extended [51] to include source
term evaluation in the predictor and corrector steps. This would then
require us to compute the gravitational potential ϕ twice for each time
step, which is not only more computationally demanding but also does
not play well with the leapfrog integration of the particle component, as
here gravity is only applied once per time step. Instead we choose to
view the MacCormack step as the fluid analogue of the particle ‘drift’.
The drifting of the particle component (updating of particle positions)
are then carried out simultaneously with the MacCormack step for the
fluid component. Note that these operations are independent of each
other, as the particle drift and the fluid MacCormack step each operate
entirely within the given component. The particle kick step is similarly
associated with the application of fluid source terms, which are not
independent operations since both cases involves the computation of the
global potential ϕ, due to both particle and fluid components.

The Hubble source term 3H(w%n − Pn) of the continuity equation
and the pressure and shear source term −a−3w∂j

[
Pnδij + (ς ij )n

]
of the

Euler equation are what is referred to as “internal source terms” in the
concept source code, meaning that they are constructed entirely from
quantities defined on the fluid component itself together with background
quantities (no interactions). Since the grids storing the fluid variables all
share the same grid size∗, these internal source terms can be evaluated
and applied directly for each cell. We approximate the divergence of the
pressure and shear using the second-order symmetric difference (6.4), to
keep it at the same order as the divergences handled by the MacCormack
steps.

The gravitational potential also lives on a grid, ϕn. As this grid is
shared among all particle and fluid components, its grid size may be
different from that of a given fluid component. To obtain the contribution
to this potential from a fluid component, the full machinery of the PM

∗In concept, multiple fluid components can coexist with different grid sizes Nm
(or equivalently different grid spacings ∆x). Within a given component however, all
fluid grids share the same grid size.



The MacCormack Method 93

method (see subsection 5.3.2) then has to come into play. Each fluid cell n
then act as a particle with mass a−3w%n∆x3 situated at ∆xn. If the fluid
grids and the potential grids happen to have the same grid size, Nm = Nϕ,
and we are using either NGP or CIC interpolation, the interpolations
between the fluid grid and the potential grid reduces to simple copying
of cell values, as each pair of grid points of the two grids lie exactly on
top of each other. That is, the density values assigned to the ϕ grid
through interpolation (5.21) from a fluid %n grid always just amounts to
ρn = a−3(1+w)%n. In these cases then, no interpolation convolutions are
actually carried out, and so the explicit deconvolutions ∆x3

ϕ/Wh of (5.26)
actively harm the accuracy of the resulting gravitational forces, why we
are better off without them. It seems reasonable that for Nm ≈ Nϕ, less
correction in the form of deconvolutions ∆x3

ϕ/Wh is needed than for e.g.
Nm � Nϕ. I have not found a totally self-consistent way of dealing with
these deconvolutions in the general case of a fluid with arbitrary grid
size.

As concept uses CIC interpolation and the vast majority of the
simulations I have run during my PhD has had Nm = Nϕ, the standard
case is that of no actual interpolation. The choice is then made to never
perform any deconvolution of the potential grid with regards to the fluid
density field. Exactly how this is made to work in the general case where
both particle and fluid components are present in the same simulation is
described in section 6.4.

6.2.2 Vacuum Corrections
The standard MacCormack method does not contain numerical diffusion
akin to that of Lax (6.7). Unlike the Lax-free forward Euler method
however, the MacCormack method remains stable in the von Neumann
sense without such added diffusion, though it does introduce dispersive
errors around large gradients. For a neutrino fluid the gravitational
source term does lead to somewhat strong gradients, but in practice
these behave nicely, perhaps due to the diffusive effects of the pressure.

Gravity also introduces a seemingly unrelated problem: The formation
of cosmic voids may rob some cells of their entire energy content. Due
to the finite time step size, this means that %n may become slightly
negative, which in turn leads to spurious unphysical behaviour as %n ≥ 0
is implicitly assumed throughout concept. Simply enforcing a minimum
value of zero for %n is not a working solution, as this introduces the
dreaded large gradients. Instead, some local smoothing scheme which
guarantees positivity of energy and conservation of energy and momentum
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is needed. After quite some trial and error, I found the following scheme
— which I have dubbed “vacuum corrections” — to be working well.

After each of the predictor and corrector step, each grid point n is
checked for negative densities, which are then corrected. In fact, after
the predictor step, the condition which triggers vacuum correction is not
just %n < 0, but that a cell n has lost a significant fraction of its energy.
Symbolically then, vacuum corrections for cell n takes place if%n + nf

2 (%?n − %n) < %vacuum (after predictor step) ,

%n < %vacuum (after corrector step) ,
(6.12)

where a density of zero is replaced by the small number∗ %vacuum, below
which the density should never drop. After the predictor step, the change
to the density is (%?n − %n)/2. The ‘foresight’ parameter nf then controls
the number of similar future time steps which should trigger vacuum
correction now. This is a user parameter which may be specified for each
individual component. It has a default value of nf = 30.

Once vacuum correction has been triggered for a cell n, either after
the predictor or after the corrector step, the correction is carried out as
follows:

%m → %m + fsff
∑

{m′ | 1≤(m′−n)2≤3 |m′ 6=m}

%m′ − %m
(m′ −m)2 for m | 1 ≤ (m−n)2 ≤ 3 . (6.13)

The above describe how the cells m of the 3× 3× 3 cell block with cell
n at the centre are pairwise smoothed. The smoothing corresponds to
averaging the density over pairs of cells, but with a weight proportional
to the inverse square of the distance between the cells. It should be
noted that as it stands, (6.13) really only works for vacuum corrections
taking place after a corrector step, as here the latest updated values are
stored in the unstarred %n grid. For predictor step vacuum corrections,
(6.13) should really be written exclusively using the starred grid %?n.

The ‘smoothing factor’ fs sets the overall amount of smoothing.
With a small fs and a large nf, the vacuum correction will take place
“adiabatically”, i.e. a gentle smoothing will take place over many time
steps. The smoothing factor is further parameterised as

fs = f ′s

(
6
1 + 12

2 + 8
3

)−1
, (6.14)

∗In concept, this is defined to be %vacuum = 102εm, where εm ≈ 2× 10−16 is the
double precision machine epsilon.
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with f ′s being a user parameter which defaults to unity. With f ′s = ff = 1,
the expression (6.14) results in the bad value in cell n being completely
distribution among its 26 neighbour cells, while cell n itself gets populated
with the inverse square weighted sum of the same neighbour cells.

The last factor, ff ≤ 1, controls the adiabaticity of the smoothing
in the case of a vacuum correction taking place after a predictor step.
For a corrector step vacuum correction then, ff = 1. In case of predictor
vacuum correction, linear extrapolation of the evolution leads to %n <
%vacuum after 2(%n − %vacuum)/(%n − %?n) time steps. The factor ff is
defined as the inverse of this, producing less smoothing for less imminent
vacuum problems;

ff =


1
2

%n − %?n
%n − %vacuum

(after predictor step) ,

1 (after corrector step) .
(6.15)

With fs and ff defined in (6.14) and (6.15), the smoothing of the density
is fully specified by (6.13).

Though negative values taken on by the momentum J i is of course
not unphysical, the momentum grids J in has to be smoothed as well, as
otherwise discontinuities will be induced in the velocity field ui ∝∼ J i/%.
The smoothing of J in follows the exact same prescription (6.13) with the
same values for fs and ff.

The vacuum corrections (6.13) cannot be carried out in-place, as the
value of cell m is generally needed to compute the corrections for cells
m′ 6= m. Also, any number of cells may need to be corrected during the
same time step. To implement the vacuum corrections, four new grids
needs to be allocated, storing the corrections to %n and J in.

As all the MacCormack method (6.10) and (6.11) does is to exchange
energy and momentum between neighbouring cells, the 3×3×3 smoothing
scheme of (6.13) is guaranteed to result in positive densities. In extreme
cases where several cells within a 3 × 3 × 3 block have gone negative
however, a single sweep of vacuum corrections may not suffice. Allowing
arbitrarily many such sweeps, positivity is indeed guaranteed for all cells.
However, repeatedly smoothing out the fluid damps structure on larger
and larger scales. By default, concept only performs a single vacuum
correction sweep after the predictor step, whereas it attempts up to∗

∗Letting the maximum allowed number of repeated vacuum correction sweeps be
proportional to Nm seems sensical. A value of Nm is however properly much too large,
as every pair of cells in the entire grid is able to communicate after just Nm/6 sweeps.
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Nm vacuum sweeps after a corrector step, after which it exits on error if
vacuum cells are still present.

6.3 The Kurganov-Tadmor Method
I have found that the MacCormack method with the vacuum correction
extension generally works well for evolving neutrino fluids. For neutrinos
with large masses (

∑
mν & 1 eV), bad behaviour was however seen

at late times, as described in the paper of chapter 10. We originally
thought that this was due to the somewhat simplistic vacuum correction
smoothing as described in subsection 6.2.2, as the erroneous behaviour
appeared precisely in the case of large neutrino mass which leads to more
structure and hence more extreme voids. To cure the issue, a second
CFD method was implemented into concept; the Kurganov-Tadmor
(KT) method. In the end the KT method did not succeed in curing the
bad behaviour, and because it is slower than the MC method it was
never used for much. As quite some time was spend implementing the
KT method into concept, I feel that a description of this method do
belong in this thesis.

The Total Variation Diminishing Feature

The Kurganov-Tadmor method [52] belongs to the class of MUSCL∗
schemes, which in turn can be viewed as higher-order versions of Go-
dunov’s scheme [54]. These are finite-volume methods, meaning that the
values stored at the grid points are thought of as cell-averaged values of
the quantity in question. The idea of MUSCL schemes is to reconstruct
the fluxes at the cell boundaries using piecewise polynomial reconstruc-
tion of the continuous field based on the sampled values at the grid
points.

The KT scheme is semi-discrete, meaning that it provides a method
for computing the needed fluxes, but does not otherwise restrict time
evolution. For a complete CFD method then, the KT method must
be augmented with some time evolution scheme. In concept, simple
second-order Runge-Kutta is used as the time integrator. With the KT
method being second-order in space, this makes it of exactly the same
order as the MC method. The possible benefits of the KT method are
then not ascribed simply to it being a higher-order method. Instead, it
guarantees that the evolution of the system is total variation diminishing

∗‘Monotonic upwind scheme for conservation laws’, [53].
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(TVD) [55]. This effectively means that small wrinkles at the grid scale
cannot form, allowing for stable evolution across steep gradients and
even good capture of shocks.

Godunov’s theorem states that linear numerical schemes for solving
PDEs are necessarily monotonicity preserving, i.e. they never produce
spurious oscillations. For our use case we may think of this feature as
the same as being TVD. We can construct such a linear scheme using
the MUSCL reconstruction of fluxes at the cell boundaries, modelling all
fluid quantities as piecewise constant. The resultant first-order scheme is
then TVD. Sticking to this first-order scheme is no good as even though
it is numerically very stable, it poorly resolves the physics. We can
generate a corresponding second-order MUSCL scheme using piecewise
linear reconstruction of the fluxes. Within some small time window, this
second-order method is better at tracking the physics accurately, but it
may generate oscillations as it is not TVD. The idea of the KT scheme
(and others before it) is to mix together the first- and second-order fluxes
to create a new flux which is both second-order and TVD.

As the KT method does not concern itself with the time integration,
we shall ignore the details of the equations we are actually trying to
solve (the continuity and Euler equation (6.1)). Instead, we write the
time evolution of any variable as

%̇n = − 1
∆x

(
F ∗nx+1/2,ny ,nz

− F ∗nx−1/2,ny ,nz

+ F ∗nx,ny+1/2,nz
− F ∗nx,ny−1/2,nz

+ F ∗nx,ny ,nz+1/2 − F ∗nx,ny ,nz−1/2

)
+ (source terms) ,

(6.16)

which is indeed completely general. The semi-discrete nature of (6.16) is
clearly visible with the continuous time derivative on the left-hand-side
and the discrete, numerical fluxes on the right-hand-side. Just as for the
MC method, the KT method does not (in its standard form) consider
source terms.

The Numerical Flux

We shall now briefly lay out the steps needed to compute the numerical
fluxes appearing in (6.16). The six fluxes correspond to the six faces
of the cell n = (nx, ny, nz), where half-integer indices refer to interface
values. The recipe for the flux is of course similar for all dimensions, i.e.
F ∗nx,ny−1/2,nz

is obtained from F ∗nx−1/2,ny ,nz
by permuting the first and

second index. Similarly, F ∗nx+1/2,ny ,nz
is obtained from F ∗nx−1/2,ny ,nz

by
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adding one to the first index. We shall then consider just F ∗nx−1/2,ny ,nz
,

which for brevity we can write as F ∗nx−1/2 as all dimensions decouple.
The MUSCL reconstruction of the flux at interface nx − 1/2 can be

done using cell information on either the left or the right side of the
interface, resulting in two different fluxes FL/R

nx−1/2 at this same interface.
The KT method defines the numerical flux to be the average of this left
and right flux, plus an additional term:

F ∗nx−1/2 = 1
2

[
FL
nx−1/2 + FR

nx−1/2 − max
T∈{L,R}

∣∣vTnx−1/2

∣∣(%Rnx−1/2 − %Lnx−1/2

)]
,

(6.17)
where the density % appears as we have the continuity equation in mind,
though so far the prescription is completely general. The %L/Rnx−1/2 are
then the MUSCL reconstructed values of % at the nx − 1/2 interface,
computed from the left and from the right. For a smoothly varying field
these will be close to equal, as they are estimations of the same field at
the same position. The difference %Rnx−1/2 − %Lnx−1/2 thus represent the
disagreement of the left and right reconstructions, which we can use as a
measure of non-smoothness. We see that if the right estimate of %nx−1/2

is larger than the left estimate, the numerical flux F ∗nx−1/2 is corrected
by a negative amount proportional to the difference of the estimations.
This lowering of the flux means that after the current time step, cell
%nx will receive a slightly smaller fraction of the energy of cell %nx−1
than it otherwise would (assuming F ∗nx−1/2 > 0), serving to minimise the
difference %Rnx−1/2 − %Lnx−1/2 in the next time step and thereby smoothing
out the density field.

In (6.17), the difference %Rnx−1/2−%Lnx−1/2 is multiplied by the absolute
value of the maximum possible comoving speed of information∗ at the
interface nx− 1/2, estimated using reconstructed values both from the left
and from the right. In concept this speed is computed as

∣∣ẋL/Rnx−1/2

∣∣+cs/a,
with ẋ = ux/a the comoving velocity and cs =

√
w the physical sound

speed. In terms of the conserved fluid variables, this becomes

∣∣vL/Rnx−1/2

∣∣ = a3w−2

∣∣Jx,L/Rnx−1/2

∣∣
%
L/R
nx−1/2 + PL/R

nx−1/2

+
√
w

a
. (6.18)

The above expression is not really correct, as the sound speed
√
δP/δ%

is not spatially constant and hence only approximately equal to
√
w .

∗Due to the entire system of fluid equations, not just the continuity equation in
isolation, though only in the direction perpendicular to the cell interface (here x).
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Also, the shear ς ij is completely absent, although it does contribute to
propagation of information. As (6.18) is really just a proportionality
factor used for numerical smoothing, this should not be critical. I have
experimented with including a term like a−1[∣∣(ςxx )L/Rnx−1/2

∣∣/(%L/Rnx−1/2 +
PL/R
nx−1/2

)]1/2 on the right-hand-side of (6.18), but it made no appreciable
difference. As this require ςxx (and ςyy and ςzz for the other directions)
to be realised even for the continuity equation, it dramatically increases
the computation time. We thus stick to the simpler (6.18).

We now specify what the MUSCL reconstruction looks like. We write
this in terms of %, but it is exactly the same for all other fluid variables:

%
L/R
nx−1/2 = %nx−1/2∓1/2

± 1
2φ
(
%nx−1/2∓1/2 − %nx−3/2∓1/2

%nx+1/2∓1/2 − %nx−1/2∓1/2

)(
%nx+1/2∓1/2 − %nx−1/2∓1/2

)
,

(6.19)
where the choice of L/R determines the signs of ± and ∓. In either case,
(6.19) does indeed express the interface values purely in terms of the cell
values. The flux limiter function φ(r) can take on a variety of different
forms, controlling the exact MUSCL reconstruction. We shall discuss
these soon.

We still have not explicitly written down the fluxes FL/R
nx−1/2 of (6.17).

These are simply the fluxes as dictated by the fluid equation in question,
i.e. the continuity equation (6.1) in our case, constructed at the interfaces
using (6.19). That is,

F
L/R
nx−1/2 = J

L/R
nx−1/2

t+∆tw

t

a3w−2 dt , (6.20)

with JL/R
nx−1/2 constructed using the procedure (6.19).

Flux Limiters

The last remaining missing piece of the KT method is the specification
of the flux limiter function φ(r) appearing in the MUSCL reconstruction
(6.19). We see that φ(r) = 0 reduces the MUSCL reconstruction to that
of the piecewise constant reconstruction, i.e. the first-order TVD scheme.
To obtain the second-order generally non-TVD reconstruction, we must
put φ(r) = 1.

More generally, we seek some smoothly varying function φ(r) which
results in the numerical flux being both second-order and TVD. It can
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be shown [56] that this is the case when
φ(r < 0) = 0 ,
r ≤ φ(0 ≤ r ≤ 1) ≤ 2r ,
1 ≤ φ(1 ≤ r ≤ 2) ≤ r ,
1 ≤ φ(r > 2) ≤ 2 .

(6.21)

Additionally, any limiter should have the property

φ(r)
r

= φ

(
1
r

)
(6.22)

which ensures that left and right are treated symmetrically.
Effectively (6.21) defines piecewise upper and lower bounds for φ(r).

The two extreme functions which lie exactly on these boundaries are the
‘minmod’ limiter [57]

φ(r) = max[0,min(1, r)] (6.23)

and the ‘superbee’ limiter [58]

φ(r) = max[0,min(1, 2r),min(2, r)] , (6.24)

both of which also satisfy (6.22). Using the minmod limiter (6.23) for the
MUSCL reconstruction (6.19) then results in the weakest second-order
and strongest TVD behaviour, making it rather dissipative but good
for problems with smooth solutions. At the other end of the spectrum,
the superbee (6.24) limiter has very little dissipation and so is good for
problems with very steep gradients. It is less suited for problems with
smooth solutions, as it tends to artificially steepen smooth regions.

A large set of standard limiters in between the minmod and superbee
limiter exists, though any decent function satisfying (6.21) and (6.22)
will be just as applicable. One of the earliest and most widely used flux
limiters which reside very much right in between the minmod (6.23) and
superbee (6.24) limiters are that of van Leer [59];

φ(r) = r + |r|
1 + |r| . (6.25)

For a given problem, exactly what flux limiter to use to a large extent
comes down to trial and error.

Figure 6.1 shows non-linear neutrino power spectra produced by the
Kurganov-Tadmor method with the different flux limiters (6.23), (6.24)
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Figure 6.1 – Neutrino power spectra at a = 1 from cosmological simu-
lations with non-linear matter particles and a non-linear neutrino fluid.
The neutrino mass hierarchy is degenerate with

∑
mν = 0.1 eV. Other

cosmological parameters are as defined in tables 2.1 and 4.1. The coloured
lines are the non-linear spectra produced using concept, whereas the
corresponding linear spectrum is shown in black. For the blue line, the
extended MacCormack method of section 6.2 was used, whereas for the
yellow, green and red lines the Kurganov-Tadmor method of this section
was used, with flux limiters as indicated on the legend.

and (6.25). We see that overall the three flux limiters results in very
similar power spectra, though a slight difference in power at small scales
can be seen in accordance to the proclaimed relative dissipation levels of
these limiters. Figure 6.1 also shows the corresponding power spectra
using the MacCormack method, which follow those of the Kurganov-
Tadmor method closely at large and intermediate scales, but does not
have the heavy suppression at small scales.

Figure 6.1 includes the entire k range on which the non-linear power
spectra have been measured. In both ends, spurious effects can be seen
which are normally not included by simply showing a narrower range in
k. At the lowest k, the non-linear spectra drops severely below the linear
spectrum. This is mostly due to ‘cosmic variance’, meaning that too few
k modes with very small k = |k| exist for their average to have converged.
This effect is further described in chapter 7. For the smallest scales,
k & 3 Mpc−1, bends in the non-linear spectra can be seen at the same
values of k in all non-linear spectra, though most strongly pronounced for
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the MacCormack spectrum as this is not already superficially damped by
strong numerical viscosity. These bends stem from the CIC deconvolution
present in the matter potential felt by the neutrinos. Exactly how gravity
is dealt with for fluids is described in the next section. In an attempt
to minimise this effect from the deconvolution, we will end up having
separate particle and fluid potential grids, as we shall see.

6.4 Gravity
As both the MacCormack method of section 6.2 and the Kurganov-
Tadmor method of section 6.3 do not handle source terms, such terms
must be added to the fluid time evolution by hand. Subsection 6.2.1 laid
out the basic principles of this with regards to the MC method, but the
same principles hold true for the KT method. The only source term not
described there is that of gravity, which we shall now deal with. This
will again be applicable regardless of which method is used to integrate
the flux terms.

Section 5.3 described several methods for computing the Newtonian
gravitational forces within a system of particles. The basic methods
where that of PP and PM, the first of which computed the gravitational
force on a particle by directly pairing it up with every other particle,
whereas the latter solved for the collective gravitational potential, which
could then be applied to each particle. Treating the fluid cells as particles,
the same basic two options are available when it comes to computing
gravity in the context of fluids. The single benefit of the PP method
over the PM method was its larger dynamic range. As the exact same
spatial discretisation imposed by the PM method is already present for
the Eulerian fluid grids, no additional resolution is there to be gained by
direct summation. Only the PM method∗ (and more advanced versions
thereof) is then sensical when it comes to fluids.

Fluid-only Simulations

As discussed in subsection 6.2.1, the PM method of subsection 5.3.2 is
almost readily applicable to fluid components. The two deconvolutions
of the ϕ grid (5.26), each corresponding to multiplication by ∆x3

ϕ/Wh in
Fourier space, arose from interpolations between particle positions and
grid point locations. Restricting ourselves to having the fluid grids being

∗Though the first part of the name ‘particle-mesh’ loses its meaning in the context
of fluids, we shall continue to refer to the method as ‘PM’.
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of the same size as the potential grid, Nm = Nϕ, no such interpolation
takes place for fluids, at least for the NGP and CIC interpolations, the
latter of which is what is used in concept. No deconvolutions should
then be present in the fluid PM method.

The fluid PM method starts out by copying %n onto the equally
sized potential grid ϕ. After an in-place FFT, the potential grid then
stores what in the syntax of subsection 5.3.2 would be called %h. The
potential values are then constructed as given by (5.26) but without the
deconvolutions;

ϕh = −4πGa−1−3w

k2 %h , ϕh=0 = 0 , (6.26)

where k = (2π/L)h and % = a3(1+w)ρ (3.29) has been used. An inverse in-
place FFT then results in ϕn, which can then be differentiated using finite
difference approximations like (5.28), resulting in Diϕn, the numerical
equivalent of ∂iϕ(x).

With Diϕn at hand, the question is how to apply it to J in in ac-
cordance with the Euler equation (6.1). As the gravitational source
term is −a−3w(% + P)∂iϕ, the naïve thing to do is just to carry out
the multiplication (%n + Pn)Diϕn for each grid point n, multiply by
a(t)−3w(t)∆t and subtract the result from J in. We can however do
better by integrating the scale factor over the time step, just as in
the particle kick operation (5.2). Here, the scale factor integral had
an integrand of a−1. This ultimately came from the potential scaling
ϕ ∝ a2

sρ ∝ a2a−3 = a−1, where the proportionality sρ ∝ a−3 implicitly
contains the assumption of the perturbations responsible for the potential
being matter perturbations, i.e. w = 0. For a general species then, we
would have ϕ ∝ a2

sρ ∝ a2a−3(1+w) = a−1−3w, the same factor as appears
in (6.26).

Insisting that the numerical application of the gravitational source
term takes the form

J in → J in − (%n + Pn)Di 〈ϕn〉t+∆t
t

t+∆tw

t

dt′
a(t′)3w(t′) , (6.27)

the time step integral of a−1−3w is then embedded in 〈ϕn〉t+∆t
t . We do

not combine this embedded time step integral with that appearing in
(6.27), as we want to separate the collective potential from the individual
species. That is, we include the factor a−3w explicitly in (6.27) because
it appears in the Euler equation (6.1), whereas we stay agnostic with
respect to the nature of the potential.
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When having multiple fluid components α, the right-hand-side of the
Poisson equation (6.26) becomes a sum over these components. Allowing
for multiple fluid components then, we can write the time step averaged
potential as

〈ϕh〉t+∆t
t = −4πG

k2 ∆t−1
∑

α∈ fluid
components

%α,h

t+∆tw

t

dt′
a(t′)1+3wα(t′) , 〈ϕh=0〉t+∆t

t = 0 ,

(6.28)
the Fourier transform of which is 〈ϕn〉t+∆t

t , needed in (6.27). In the case
of a single matter fluid (w = 0), equations (6.27) and (6.28) reduce to
J in → J in − (%n + Pn)Diϕn

r t+∆t
t dt′/a(t′), with the integral correspond-

ingly exactly to the one we have for the particle kick operator (5.2).
Indeed, since for matter, J = a4ρ, % = a3ρ, P = 0, integrating over a cell
volume we reobtain the exact form of the entire particle kick operator.

Combined Particle and Fluid Simulations

We have seen how the properly time step averaged potential due to all
fluid components are constructed (6.28). For simulations having both
fluid and particle components, we need a corresponding equation for
particles. From (5.26), we may write this as

〈ϕ′h〉
t+∆t
t = −4πG

k2
∆x6

ϕ

W 2
h

∆t−1
t+∆tw

t

dt′
a(t′)

∑
α∈ particle

components

%α,h , 〈ϕ′h=0〉
t+∆t
t = 0 ,

(6.29)
where %α,h = a3ρα,h is (the Fourier transform of) the density grid result-
ing from particle interpolation via (5.21).

Two deconvolutions ∆x3
ϕ/Wh appear in (6.29), although only one is

needed for the interpolation from particle positions to grid coordinates.
From subsection 5.3.2, we remember that this additional deconvolution
will be needed for the force interpolation back to the particle positions.
The prime in 〈ϕ′h〉

t+∆t
t was originally used to signal this additional

deconvolution, but now it also functions as a means to discern the time
step averaged fluid-only potential 〈ϕh〉t+∆t

t from the time step averaged
particle-only potential 〈ϕ′h〉

t+∆t
t .

In order to allow for fluid and particle components to interact, we must
add together the fluid-only potential (6.28) and the particle-only potential
(6.29) into a total potential. However, simply doing 〈ϕh〉t+∆t

t + 〈ϕ′h〉
t+∆t
t
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results in wrong deconvolutions when applied to both fluid and particle
components. Let us first consider the case of a fluid component. The
potential it feels due to itself and all other fluid components is just that of
〈ϕh〉t+∆t

t , with no deconvolution. The potential it feels from all particle
components will be that of 〈ϕ′h〉

t+∆t
t , but with one deconvolution instead

of two. This single deconvolution is retained as it stems from the particle
interpolation onto the grid, which remains even though the final force
is evaluated at the grid points. Thus, we may write the total time step
averaged potential felt by any fluid component as

〈ϕfluid
h 〉t+∆t

t = 〈ϕh〉t+∆t
t + Wh

∆x3
ϕ
〈ϕ′h〉

t+∆t
t , (6.30)

with the factor Wh/∆x3
ϕ cancelling out one of the two deconvolutions of

〈ϕ′h〉
t+∆t
t .
The total potential to be applied to particle components will be that

of the twice deconvolved particle-only potential 〈ϕ′h〉
t+∆t
t plus a singly

deconvolved fluid-only potential 〈ϕh〉t+∆t
t , where the single deconvolution

is needed for the upcoming force interpolation:

〈ϕ′particleh 〉t+∆t
t =

∆x3
ϕ

Wh
〈ϕh〉t+∆t

t + 〈ϕ′h〉
t+∆t
t

=
∆x3

ϕ

Wh
〈ϕfluid
h 〉t+∆t

t . (6.31)

In the end, we see that the total potential to be applied to particle and
fluid components only differ by a single deconvolution, reflecting the
force interpolation of the particles. As (6.31) still contains the additional
deconvolution, 〈ϕ′particleh 〉t+∆t

t
retains its prime.

Note that because 〈ϕh〉t+∆t
t and 〈ϕ′h〉

t+∆t
t are constructed from real-

space quantities and contain different k-dependent factors in (6.28) and
(6.29), at least two grids in memory are needed for their construction.
Thus, although the final relation in (6.31) seems to suggest that we can
get by with a single potential grid in memory for combined particle and
fluid simulations, we really cannot.
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7 Realisations

This chapter takes a closer look at the concept implementation of
realisations, i.e. the construction of a 3D real space field from its 1D
Fourier space transfer function. These realisations are what provide the
numerical bridge between linear and non-linear theory. The primary use
for realisation is then to generate the initial conditions for the non-linear
simulation, be it particle positions and momenta or fluid energy and
momentum densities.

For our non-linear fluid (neutrino) simulations where we split the
Boltzmann hierarchy into a non-linear and linear part at `nl, a second
use for realisations appear. Here, the effect from the linear moments
` > `nl on the non-linear moments ` ≤ `nl are taken into account by
realising the needed linear moments at each time step, generating a full
3D field from which e.g. spatial derivatives along each direction can be
computed.

Finally, for low `nl (in concept, only `nl < 2 is implemented),
realising the linear ` > `nl moments at late times introduces errors
because of the missing non-linearity. We can try to correct for this in
multiple ways, as we shall see.

7.1 Numerical Details
The mathematical construction of linear realisations was carried out in
section 4.3. Here, linear realisations of scalar (4.12), vector (4.13) and
rank-2 tensor (4.14) fields were developed. Quite a few subtleties intro-
duce themselves when attempting to implement these ideas numerically,
as we shall see in this section.

As usual, we discretise space by introducing a grid, mapping spatial
coordinates x = n∆x, n ∈ N3, with the cell width ∆x = L/Nm, L being
the box size and Nm is the number of grid points along each dimension
of the grid. Focusing just on the scalar field realisation (4.12) for now,
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this can then be written for a numerical grid as

δn(a) = L−
3/2
∑
h

e2πihn/LTδ(a, k)ζ(k)Rh , (7.1)

where V = L3 has been used and k = |k| with k = (2π/L)h, h ∈ Z3.
In (7.1), time a is treated continuously, while space (both real n and
Fourier h) is discrete. The continuous transfer function Tδ(k) and
primordial curvature perturbation ζ(k) are then sampled only at discrete
k, determined by the values undertaken by h, which are not explicitly
written in (7.1). For an infinite grid, we would have h ∈ Z3 \ 0, where
the removal of the DC mode ensures that the real space field has zero
mean,

∑
n δn = 0. Alternatively, we can assign Rh=0 = 0, where we

remember that Rh is the grid of complex Gaussian random numbers,
from which all 3D structure spring.

For our finite grid, the possible values of n = (nx, ny, nz) are restricted
to 0 ≤ nx, ny, nz < Nm, while h = (hx, hy, hz) is restricted to 0 ≤
|hx|, |hy|, |hz| ≤ Nm/2, with the value Nm/2 referred to as the Nyquist
frequency. Explicitly attaching this information to the Fourier sum (7.1),
we have

δn(a) = L−
3/2
∑

h∈
{

(hx,hy ,hz)∈Z3\0
∣∣ |hw|≤Nm/2

}e2πihn/LTδ(a, k)ζ(k)Rh

≡ F−1
scalar

[
Tδ(a, k)ζ(k)Rh

]
, (7.2)

with w ∈ {x, y, z} and F−1
scalar defined as a convenient shorthand notation

for the discrete inverse Fourier transform, including the L−3/2 normali-
sation and the values undertaken by h, corresponding to terms in the
Fourier sum.

Though (7.2) is written in terms of δ, it serves as the general pre-
scription for realising any scalar field from its transfer function. Thus,
substituting e.g. δ → δP , the realised field is now the pressure perturba-
tion.

Letting h visit all existing grid points, 0 ≤ |hx|, |hy|, |hz| ≤ Nm/2,
may in fact not be optimal, as the anisotropy of our cubic box then
trickles through to Fourier space, arbitrarily sampling some but not all
h for which |h| > Nm/2, or correspondingly |k| > π/∆x. It seems that
the exact effects from leaving out such ‘corner modes’ are not clearly
understood, see e.g. [60]. I have experimented with not including corner
modes into the concept realisations, but found no conclusive results.
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7.1.1 The Complex Conjugacy Symmetry
As described in section 4.3, the reality of δn forces

R−h = R∗h , (7.3)

as Rh is the only complex factor inside the Fourier transform (7.2). This
effectively cuts the amount of information stored in Rh in half, which
we can take advantage of numerically as the FFTW library [45] offers
such “real” Fourier transforms. Specifically, the numerical grid Rh then
only contains the points

−Nm/2 < hx, hy ≤ Nm/2 , 0 ≤ hz ≤ Nm/2 , (7.4)

i.e. only half of the z dimension∗. The set of values undertaken by h in
(7.2) is then somewhat larger than what is actually available in practice
(7.4). As this is just an implementation detail of the numerical FFT, we
shall not reflect this in our definition of scalar realisation (7.2).

The complex conjugacy symmetry (7.3) imposed onRh is then mostly
taken care of by the FFTW internals, as most of the “negative frequencies”
do not actually exist in memory. For h in the hz = 0 plane, −h is fully
contained within the same plane. As this plane exist in full in memory,
we have to manually ensure† that the complex conjugacy symmetry
R−hx,−hy ,0 = R∗hx,hy ,0 is satisfied.

For even‡ Nm, the Nm real-valued points along the real z dimension
has to be reused for the 1 + Nm/2 complex-valued points along the
Fourier space z dimension, where the additional point comes about
because the hz range (7.4) include both 0 and Nm/2. Considering a
complex number as a pair of real numbers, we then have 2 + Nm real
values along the Fourier space z direction, whereas in real space we had
Nm. As the amount of information must be the same for the real and
Fourier representation of the grid, there must be some redundancy in
the Fourier space representation. As seen in (7.4), we do not need both

∗Which dimension to cut in half does not matter. The z dimension is what is
chosen for the 3D MPI parallelised routines of FFTW.

†As we are using numerical Fourier transform routines specifically designed to
transform such “real” fields, one might expect the complex conjugate symmetry to
simply be enforced by FFTW, effectively overwriting R−hx,−hy,0 → R

∗
hx,hy,0 if non-

symmetric values are present. At least for the MPI routines, no such enforcement is
carried out. The z = 0 plane is simply assumed to be correctly symmetrised, with
erroneous results to follow if this is not the case.

‡FFTW does support odd Nm, but to keep things simple this is disallowed by
concept.
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the positive and negative Nyquist frequencies for any given dimension.
Thus, these must contain the same information, and are in fact equal.
At the hz = Nm/2 plane then, the complex conjugacy symmetry reads

R−hx,−hy ,Nm/2 = R−hx,−hy ,−Nm/2 = R∗hx,hy ,Nm/2 , (7.5)

i.e. we have the same situation as for the hz = 0 plane; the hz = Nm/2
plane must be symmetrised manually. It is to be understood that any
future occurrence of Rh satisfy these symmetries.

With only half the initial degrees of freedom on the hz = 0 and
hz = Nm/2 planes, we have effectively removed an amount of informa-
tion corresponding to one entire complex plane, exactly matching the
additional complex point along the z direction.

Measuring the Power Spectrum

From (4.2), we can compute the power spectrum numerically as Pδ(a, k) =
V −1 〈|δk(a)|2〉V , where the angle brackets denote shell averaging over all
k of the same |k| within the simulation box of volume V . Writing this
out explicitly, we have

Pδ(a, k) = V −1
[ ∑
h |h2=L2/(2π)2k2

1
]−1 ∑
h |h2=L2/(2π)2k2

δ2
h(a) , (7.6)

where the first sum simply counts the number of k modes with |k| = k.
As this number is finite, the averaging is never fully converged. This
is especially true for the lowest k, as here there are the fewest modes,
clearly seen in figure 6.1.

The primary numerical representation of δ is that of the real space
grid δn. This grid is realised using the F−1

scalar operator defined in (7.2).
Inverting the Fourier transform of this equation, we have

δh(a) = L3
∑

n∈
{

(nx,ny ,nz)∈N3
∣∣ |nw|<Nm

}e−2πihn/Lδn(a)

≡ L3/2Fscalar
[
δn(a)

]
, (7.7)

with w ∈ {x, y, z} meaning that the Fourier sum takes into account all
N3

m grid points. Equation (7.7) then defines the forward scalar Fourier
transform Fscalar, which constructs δh(a) from δn(a). Note that we
indeed have FscalarF−1

scalar = F−1
scalarFscalar = 1. With δh(a) from (7.7), we

have all we need to measure the power spectrum through (7.6).
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Though the numerically measured power spectrum is not extremely
accurate due to the aforementioned convergence issues, the ratio between
two power spectra can very accurately discern changes to the cosmological
or numerical parameters. This enhanced precision comes about because
the ‘cosmic variance’ due to the finite number of k modes is the same in
both power spectra, and so errors introduced to a large extent vanish
when taking the ratio. That is, if we use the same realisation, i.e. the
same random grid Rh.

Generating the Random Field

Typically Rh is populated using a deterministic stream of pseudo-random
numbers. Which particular stream is produced is set by the so-called
random seed. Keeping this seed the same for multiple simulations, the
exact same Rh is guaranteed. Alternatively, if we want to perform several
simulations of the same cosmology but with different realisations (in
order to increase the effective number of k modes and hence increase
the accuracy of Pδ(k)) we simply use a separate random seed for each
simulation.

Exactly how the stream of random numbers is mapped to the 3D
grid positions of Rh seems of little importance at first. The picture
is complicated by the addition of parallelism, where now the grid is
distributed among several processes, each of which have their own stream
of random numbers. In order for Rh to be independent of the number of
processes used to build it, we see that all processes should use identical
streams, i.e. random seeds. Furthermore, an explicit mapping from the
1D sequence of random numbers to the 3D grid positions are now needed,
as we do not want the same numbers to appear multiple times throughout
Rh.

We often have to perform convergence tests of our simulations. Here
I do not mean the convergence of the Pδ(k) computation for a given |k|,
but of the physics of the simulation. Here, convergence primarily refer
to the discrete time step size ∆t and grid cell width ∆x = L/Nm being
small enough so that the power spectra below some k does not change by
further lowering ∆t and ∆x. It would thus be nice if the aforementioned
mapping of the random number sequence to the grid has the property
that 〈|δk|2〉V is independent of the grid size∗ Nm, for any given k. This
is most straight forwardly achieved by a direct mapping between the

∗In concept, the ϕ grid is really reused for all power spectrum computations.
To be precise then, what we want is for 〈|δk|2〉V to be independent of Nϕ = Nm,
assuming that we keep the potential and the fluid grids of equal size.
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sequence of random numbers and the physical k value at each grid point,
rather than the integer triple h. Enlarging Nm corresponds to adding
more (higher) k modes, but all the lower modes are still there. The
random numbers should then be drawn “in shells”, from k = 0 and out.
This also solves the problem of having the realisations be independent of
the number of processes, and is the way Rh is constructed in concept.

Vector and Tensor Realisations

So far we have considered the necessary conditions of Rn, in order for
the scalar field realisation (7.2) to result in a real field. The only actual
condition was the complex conjugacy symmetry (7.3), which we then
had to manually satisfy on the z DC and Nyquist planes.

The realisation of a vector field uin from the transfer function of its
divergence is given in (4.13), where the additional factor −iki/k2 appears
inside the Fourier transform, inverting the divergence. We wish to write
down an expression for numerical vector realisation analogous to that
of scalar realisations (7.2). As we shall now discuss, the factor −iki/k2

excludes some of the grid points h from the Fourier sum, leaving out
specific modes. For now, we leave out the h specification:

uin(a) = L−
3/2
∑
h

e2πihn/L
[
−i k

i

k2Tθ(a, k)
]
ζ(k)Rh . (7.8)

As the random field Rh in (7.8) and (7.1) are the same, the presence of
the imaginary unit i in (7.8) is worrying for the reality of uin. However,
as iki is invariant under simultaneous inversion k → −k and complex
conjugation, the combination ikiRh and thus indeed the entire bracket
of (7.8) satisfy the complex conjugate symmetry.

With the vector realisation (7.8) in mind, we now take a closer look
at (7.5). Though this equation is written for the Nyquist frequency in
the z dimension, it holds for all dimensions. Normally we do not have to
worry about this symmetry condition for the x and y dimensions, as here
only half of the Nyquist planes are in memory. As ki in (7.8) changes sign
under inversion k→ −k, the condition (7.5) now relates a complex point
in the Nyquist half-planes to itself. As an example, consider ikiRh at the
grid point (−hx,−hy,−Nm/2) (which is not in memory). Using (7.5),
this value is unchanged under a sign change of hz → Nm/2. As the new
combination ikiRh must also as a whole obey a relation similar to that of
(7.5), we can also flip the sign of both hz = Nm/2 and ki. Choosing i = z,
this results in i(Nm/2)R−hx,−hy ,Nm/2 = i(−Nm/2)R−hx,−hy ,−Nm/2 =
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i(−Nm/2)R−hx,−hy ,Nm/2, or R−hx,−hy ,Nm/2 = 0. More generally, to
ensure reality of the vector realisation (7.8) of uin, we must require
hi = Nm

2 ⇒ Rh = 0. That is, we have to nullify the Nyquist plane (half
plane for i ∈ {x, y}) in dimension i, where i is given by uin. As Rn is
supposed to be equal for all fields, one might think that it would be best
to just always fill all Nyquist planes of Rh with zeros, including when
realising scalar fields. Alternatively∗ we can take this result to mean
that we should just remove these particular grid points from the Fourier
sum when realising vectors, i.e. leaving out the particular Nyquist plane
in the frequency sampling:

uin(a) = L−
3/2
∑

h∈
{

(hx,hy ,hz)∈Z3\0
∣∣ |hw|≤Nm/2−δiw

}e2πihn/L
[
−i k

i

k2Tθ(a, k)
]
ζ(k)Rh

≡ F−1
vector

[
Tθ(a, k)ζ(k)Rh

]
, (7.9)

where the Kronecker delta takes care of the removal of the Nyquist plane
along dimension i. As for F−1

scalar of (7.2), F−1
vector includes all the various

details of the specific Fourier transformation, including the avoidance of
the Nyquist plane and the vector specific −iki/k2 factor.

Finally, let us tackle the realisation of rank-2 tensors. Writing (4.14)
out for numerical grids, we have

(σij )n(a) = L−
3/2
∑
h

e2πihn/L
[
−3

2

(
k̂ik̂j −

1
3δ

i
j

)
Tσ(a, k)

]
ζ(k)Rh ,

(7.10)
where again the exact values undertaken by h is now to be worked out.

Unlike in the vector case, now the factor in front of the transfer
function in (7.10) is real, and so the complex conjugate symmetry requires
it to be invariant under inversion k → −k, which is indeed the case.
To ensure the reality of (σij )n, the same additional care at the Nyquist
planes must be taken as with the vector realisation. Ultimately, the
additional avoidance of the Nyquist plane of dimension i came from
a minus sign introduced by ki (under inversion) in (7.9). The same
condition is then required here for both i and j, with the complication
that it does not have to be satisfied for i = j, as the product k̂ik̂j then

∗This alternative interpretation is indeed the better one, as we might imagine
constructing Rh not from scratch by hand but instead extracting it from a given δn

grid (which in fact is what we shall do in section 7.4). Here of course, all Nyquist
planes of Rh will be populated in general.
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does not change sign under inversion k → −k. We can express these
more complicated conditions through more elaborate use of Kronecker
deltas:

(σij )n(a) = L−
3/2
∑

h∈
{

(hx,hy ,hz)∈Z3\0
∣∣ |hw|≤Nm/2−δiw−δwj+2δij

}e2πihn/L
[
−3

2

(
k̂ik̂j −

1
3δ

i
j

)
Tσ(a, k)

]
ζ(k)Rh

≡ F−1
tensor

[
Tσ(a, k)ζ(k)Rh

]
, (7.11)

where as usual F−1
tensor encapsulates everything special about the (rank-2)

tensor realisation.

7.2 Particle Realisation
In order for us to be able to realise a system of particles, we need
a strategy for converting realised grids into particle positions xn and
momenta qn, and we need to figure out which transfer function(s) to use.

7.2.1 The Zel’dovich Approximation
A common method for generating initial conditions for particles is that
of the Zel’dovich approximation [61]. At a = 0, the homogeneity of the
universe is achieved by positioning the particles at cubic grid locations,
xn(a = 0) = ∆xn, establishing a relation between the Eulerian grids and
the Lagrangian particles. Notationally, some implicit mapping between
particle indices and grid points n↔ n are now assumed.

At a later time, the particle positions are described through the
displacement field ψ(a,x). Keeping to the grid notation,

xn(a) = ∆xn+ψn(a) , ψn(a = 0) = 0 . (7.12)

Differentiation (7.12) with respect to a, we have ẋ = ψ̇, where the unim-
portant subscripts have been removed. Remembering the definition of
peculiar velocity, u ≡ aẋ, we can now insert this into the Newtonian limit
of the continuity equation for matter (3.41), δ̇ = −a−1∇ · u, obtaining
δ̇(a,x) = −∇ · ψ̇(a,x). Using the homogeneous boundary conditions
δ(a = 0,x) = 0, ψ(a = 0,x) = 0, we can integrate this relation simply
by removing the overdots;

δ(a,x) = −∇ ·ψ(a,x) , (7.13)
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which is the Zel’dovich approximation for the displacement field in terms
of the density contrast.

We seek to realise the displacement field on a grid, so that we may use
(7.12) to produce the particle positions. As ψ is a vector, it should be
realised using vector realisation (7.9). The transfer function to use should
then be that of the divergence ∇ ·ψ, corresponding to θ = ∇ · u from
Tθ of (7.9). From (7.13), this divergence is −δ, and so the realisation of
the displacement field takes the form

ψin(a) = F−1
vector

[
−Tδ(a, k)ζ(k)Rh

]
. (7.14)

The fact that we were able to construct particle positions from the
transfer function of the density (contrast) should not be surprising. After
all, we can construct the density field from the particle distribution
through simple interpolation, as in e.g. (5.21).

7.2.2 Particle Momenta
The Zel’dovich approximation of the previous subsection made use of
the relation ẋ = ψ̇ = a−1u. The particle velocities are then given
simply by the realised velocity field un, i.e. we should not attempt to
e.g. interpolate these grid values out to the newly established particle
positions xn of (7.12). With the peculiar velocity field un realised using
(7.9), the particle momenta are just

qn = amnun , (7.15)

where the relation between q and u is given in (3.11) and we again
assume some implicit mapping between particle indices n and grid points
n.

Velocities from the Displacement Field

The realisation of the particle positions (7.12) and momenta (7.15) are
constructed from Tδ and Tθ, respectively. Often, the momenta are
constructed from Tδ as well, as it is simply more convenient to only have
to provide a single transfer function to bootstrap an N -body code.

In order to relate the particle velocities to the displacement field, we
consider the limit where only matter perturbations contribute to the
gravitational potential, in which case we know that the evolution of δ
is described by the linear growth factor D(a), introduced in (3.18) and
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plotted in figure 3.1. With ψ̇ ∝ −δ̇ from (7.13), we can then write the
displacement field as

ψ(a,x) = D(a)
D(a� 1)ψ(a� 1,x) (7.16)

⇒ ψ̇(a,x) = Ḋ(a)
D(a)ψ(a,x) , (7.17)

where a� 1 is some initial time. With ψ̇ = a−1u = a−2m−1q, we can
then write the particle momenta as

qn = a2H(a)f(a)mnψn(a) , (7.18)

where
f ≡ d lnD

dln a = H−1 Ḋ

D
(7.19)

is the linear growth rate. Often, (7.18) is considered part of the Zel’dovich
approximation.

Constructing the momenta from the displacement field (7.18) instead
of from the actual velocity field (7.15) corresponds to the approximation
θ(a,x) = −aH(a)f(a)δ(a,x), i.e. the relation between momenta and
density is purely a function of the background. The inclusion of e.g.
massive neutrinos which affect not just the background but also has
significant perturbations is then not picked up by (7.18), and so just using
the honest velocity transfer functions as in (7.15) is much preferable. In
concept, both options are available.

Once the background is specified, computing the growth rate f
through (3.18) is a simple matter of integration. Yet, further approxima-
tions to (7.18) are often encountered, like e.g. f(a) ≈ Ωγ

m(a) where γ is
known as the growth rate index [62].

A second-order version of the Zel’dovich approximation exists, where
accelerations are taken into account. This method is referred to as 2LPT
(from ‘second-order Lagrangian perturbation theory’) [63], in which case
the Zel’dovich approximation might alternatively be called 1LPT. Using
2LPT thus has the potential to better capture non-linearities, allowing
the simulation to begin at a later time. However, I am not aware of any
2LPT implementation which do not rely on a second-order version of the
growth rate, f2, introduced either through a second-order version of the
growth equation (3.18) or simply through relations similar to f = Ωγ

m.
To achieve “general” 2LPT (e.g. also functioning in the case of having
massive neutrinos), I suspect that we would need input from second-order
perturbation theory.
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7.3 Late-time Normalisation
So far we have described the realisation of fluid fields and particle
systems from linear transfer functions, themselves computed using a
linear Einstein-Boltzmann code like class. As these transfer functions
are computed in the framework of linear perturbation theory, they do not
accurately describe the late-time non-linear universe. This is of course
the whole reason why we need non-linear N -body codes at all.

Traditionally, N -body codes solve the non-linear evolution of the
matter components, i.e. cold dark matter and baryons, while other com-
ponents like photons and neutrinos are not evolved. Indeed perturbations
of photons and of massless (or very light) neutrinos remain small all the
way up to the present time, and so for these species the linear treatment
remains applicable.

Leaving out such ‘relativistic species’ (photons and neutrinos) from
the N -body evolution then leads to a slight decrease of the gravita-
tional potential, affecting the clustering of matter. The first solution
which comes to mind is simply to include the missing contributions
to the potential from the relativistic species, which might be straight-
forwardly obtained using linear theory. This possibility is explored
in subsection 7.3.2, where we will find that complications arise due
to incompatibilities between the general relativistic linear theory and
the Newtonian framework generally pervading N -body simulations. A
theoretically less attractive and indeed more limited approach is that
of back-scaling, which nevertheless historically has served the N -body
community well.

7.3.1 Back-scaling
Instead of attempting to explicitly take into account the missing rela-
tivistic perturbations on the N -body particles, the back-scaling approach
can be utilised to guarantee the correct general relativistic late-time
matter power spectrum at linear scales, effectively faking the presence of
the missing relativistic species by slightly reshaping the initial matter
distribution.

We seek a matter transfer function at some initial time ai, with the
property that when evolved Newtonianly into the present, it reproduces
the general relativistic effects encapsulated by the matter transfer func-
tion at the present. We thus take the present-day matter transfer function
Tδcdm+b

(a = 1, k) and ‘undo’ its Newtonian, linear time evolution. The
Newtonian and linear evolution of matter is precisely what is given by
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the scale-independent growth factor D(a) introduced in (3.18). We may
then define

T ′δcdm+b
(ai, k) ≡ D(a = ai)

D(a = 1) Tδcdm+b
(a = 1, k) (7.20)

to be the back-scaled matter transfer function, the prime denoting that
this is different from the actual transfer function. Thus, the realisation
of T ′δcdm+b

does not actually result in the correct density field at time
ai. However, Newtonian evolution of this field will have the effect of
‘reapplying’ the growth D(a = 1)/D(a = ai), resulting in the correct
density field at the present time. While the back-scaling of the transfer
function in (7.20) is done in linear theory however, the N -body evolution
of the realised field will be fully non-linear. Thus, the non-linearly evolved
matter field at a = 1 will have a power spectrum matching that from
Tδcdm+b

(a = 1, k) only at linear scales, which is precisely what we are
after.

In writing (7.20), we have used the notation Tδcdm+b
to mean the

combined δ transfer function for cold dark matter and baryons. Explicitly,
this is constructed from the individual transfer functions like

Tδcdm+b
=

sρcdmTδcdm + sρbTδb
sρcdm + sρb

, (7.21)

where the mean densities are needed as the additive quantity is that of
energy density ρ, or equivalently energy density perturbations δρ = sρδ ∝
sρTδ.

We can now use the back-scaled transfer function of (7.20) to perform
the realisation of the particle displacement field ψn(ai) (7.14), from which
we can readily obtain particle positions (7.12). To generate matching
momenta we use the technique of (7.18), where these are similarly
obtained directly from ψn(ai).

Though the back-scaling technique works well in practice, it has
two principle drawbacks. First, the realisation of the modified transfer
function (7.20) effectively makes the particle distribution fictitious, in the
sense that it does not match the actual particle distribution. The only
exception is at the time a = 1, where the fictitious particle distribution
match up with the physical one. To obtain correct results at any other
time, one then has to redo the simulation, starting from a transfer
function back-scaled from another time than a = 1. As we are usually
concerned just with the present-day predictions, this is not a major issue
in practice.
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A more severe drawback of the back-scaling technique is the as-
sumption that D(a) correctly describes the linear matter evolution. As
described in e.g. subsection 7.2.2, D(a) fails to accurately predict the
matter growth in cosmologies with massive neutrinos. For realistic high-
precision simulations then, the back-scaling approach is not appropriate.

7.3.2 Relativistic Perturbations and the N-body Gauge
As described in the beginning of this section, a strategy seemingly more
straightforward than that of back-scaling is to just realise the true transfer
function at the initial time and take the gravitational contributions from
the relativistic species directly into account throughout the simulation.

Gravitational Potential of Relativistic Species

Assuming light neutrinos, both these and photons remain linear through-
out cosmic history, and so we can simply realise the δργ+ν(a,x) field
from the linear photon and neutrino transfer functions using (7.2). The
PM method, described for fluid components in section 6.4, can then
be used to compute the gravitational potential contribution from these
relativistic perturbations. In fact we can skip some steps, realising this
potential directly using (5.16). In the syntax of (7.2), we can write this
potential realisation as

ϕGR,n(a) = −4πGa2F−1
scalar

[
TδρGR

(a, k)
k2 ζ(k)Rh

]
, (7.22)

where the ‘GR’ subscript remind us that we think of this potential as
that generated by the “relativistic” species, which we for now think of as
photons and neutrinos. The equation (7.22) itself is however completely
general∗.

The syntax used for the transfer function in (7.22) generalises that
used in (7.21), where now Tδρ = Tδsρ = sρTδ. Written out in full in the
case of photons and neutrinos, the transfer function of (7.22) would
then be TδρGR

= Tδργ+ν
= (sργ + sρν)Tδγ+ν

= sργTδγ + sρνTδν , where the
neutrino term could be written out further to explicitly account for all
three neutrino species.

∗For a different use case of this general framework for including gravitational
interactions from linear species, I would like to mention the Bachelor’s project of
Katrine Alice Glasscock, which I co-supervised together with Steen Hannestad during
the first half of 2018. Here she used linear realisation (7.22) to study the effects of
dark energy perturbations on the non-linear matter evolution, using the concept
code.
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The N-body Gauge

Realising the relativistic potential (7.22) in each time step, finite dif-
ferencing it to obtain a force and applying this force to the particles,
we can successfully take the relativistic species into account. However,
since GR is a gauge theory, the value of the transfer functions depends
upon our gauge choice. Usually in N -boy simulations, the particles are
initialised from transfer functions in some gauge (typically synchronous),
after which the notion of a gauge is completely forgotten about in the
Newtonian framework. To apply the linear but general relativistic poten-
tial (7.22) to the particles throughout time, we now have to choose some
gauge in which to perform the time evolution. Such a gauge choice then
augments the N -body simulation with a dynamical space-time, in turn
perturbing the Newtonian physics, the assumption of which the entire
simulation code is built upon.

One solution to this problem arising from the collision of the Newto-
nian and relativistic worlds would be to rewrite the entire N -body code
in a general relativistic framework, as is the approach of the gevolution
code [36]. A more subtle and less radical solution is presented in [64,65],
where they demonstrate the existence of a gauge in which the Newtonian
evolution of our N -body system is unperturbed to first order, in the
matter-only case. This miracle gauge is the N -body gauge, which demon-
strates that for normal matter-only Newtonian N -body simulations, the
missing GR effects can be absorbed into the gauge. Should one wish to
express the final results in some more conventional gauge, a simple gauge
transformation can then be applied, effectively adding in GR effects after
the fact.

Settling for the N -body gauge then seems like the natural choice.
The class code can operate and produce transfer functions in either the
synchronous or the conformal Newtonian gauge [30], but not the N -body
gauge. The gauge transformations relating these gauges are [66]

δNb
α (a, k) = δ

s/c
α (a, k) + 3aH(1 + wα)θ

s/c
tot (a, k)
k2 , (7.23)

θNb
α (a, k) = θ

s/c
α (a, k)− 3

k2∂τ
[
aHθ

s/c
tot (a, k)

]
+
{
h′(a, k)/2 s
−3φ′(a, k) c ,

(7.24)

where ‘s’, ‘c’ and ‘Nb’ respectively indicate synchronous, conformal
Newtonian and N -body gauge, α labels the species and a prime denotes
differentiation with respect to conformal time τ . The h and φ are the
synchronous and conformal Newtonian metric perturbations, respectively,
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the latter of which is defined in (3.26). The total velocity divergence is
given by θtot = [

∑
α sρα(1+wα)]−1∑

α sρα(1+wα)θα. Though the transfer
functions for θtot, h and ψ are not by default available as outputs in
class, they are computed internally and so can readily be added by
trivial additions to the source code. Note that the higher-order pressure
and shear stress are gauge-independent to first order, and so we do not
explicitly transform these to N -body gauge.

The N-body Gauge Metric Perturbation

With N -body gauge transfer functions in accordance with (7.23), we
can now realise the relativistic potential (7.22) similarly in N -body
gauge, which we can then apply to the Newtonian particles, similarly
initialised from N -body gauge δ and θ transfer functions. As mentioned
previously, the N -body gauge has a flat spacetime in the case of a
matter-only universe, which was why this gauge served our Newtonian
matter simulation well. As we now do have (small) perturbations in the
relativistic species, non-Newtonian effects introduce themselves even in
N -body gauge.

As demonstrated in [12, 64], the metric perturbations in N -body
gauge can be taken into account by a new potential contribution γ, so
that the total relativistic potential felt by the particles are that from the
relativistic species (7.22) minus γ. This potential takes the form

γ(a, k) = − 1
k2 (∂τ + aH)

[
HNb

T (a, k)
]′ + 8πGa2

k2 Σtot(a, k)

= − 1
k2 (∂τ + aH)

[
HNb

T (a, k)
]′ + [φ(a, k)− ψ(a, k)] , (7.25)

where φ and ψ are the metric perturbations in conformal Newtonian
gauge (3.26) and HT is a perturbation in the N -body gauge metric,
specifically the trace-free component of the spatial metric, as defined
in [67]. The total shear stress Σtot = (3/2)

∑
α sρα(1 + wα)σα, where the

factor 3/2 comes from the definition (3.38) together with (3.21). The
last equality of (7.25) then follows from (3.46).

The metric perturbation H ′T is not readily available in class, though
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it can be constructed from available quantities∗ [21];

[
HNb

T (a, k)
]′ = 3aH

sρtot + sPtot

{
−δP s/c

tot (a, k) +
[

sP
s/c
tot

]′ θs/ctot (a, k)
k2

+ 2
3Σtot(a, k)

}
.

(7.26)

The class installation that comes with concept includes
[
HNb

T
]′ in its

output, from which γ(a, k) (7.25) can be constructed.
Using the Poisson equation (5.16) we can relate the γ potential to a

fictitious density field

δρmetric(a, k) = k2

4πGa2γ(a, k) (7.27)

= − 1
4πGa2

{
(∂τ + aH)

[
HNb

T (a, k)
]′

+ k2[φ(a, k)− ψ(a, k)]
}
,

where the missing minus sign compared to (5.16) comes about due to
γ being defined with the opposite sign of our other potentials. With
(7.27), we can treat the metric as a species on equal footing with e.g.
photons and neutrinos. Adding the metric to the set of relativistic
species — the potential from which affect the N -body particles — then
amounts to redefining δρGR = δργ + δρν + δρmetric, where the photon
subscript γ should not be confused with the metric potential. With Tδργ
and Tδρν obtained directly from class (after application of the N -body
gauge transformation (7.23)) and Tδρmetric

constructed from other class
output via (7.27), the realised relativistic potential (7.22) now contains
everything needed for the N -body particles to correctly follow the general
relativistic N -body gauge solution at linear scales.

Figure 7.1 shows the potential contribution from each species. Though
the matter components dominate, the contributions from the relativistic
species amounts to several percent of the total at large scales. At early
times, the three neutrinos are barely indistinguishable. Throughout
time, the massless neutrino mimic the photons, whereas we clearly see
a matter-like behaviour for ν2 and ν3 at the present. The contribution
from the metric is seen to be comparable to that from the photons and
neutrinos, at least at early times.

∗The first term of (7.26) has the opposite sign of the arXiv version of [21]. The
sign shown here is correct.
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Figure 7.1 – Potential contributions from the various species at three dif-
ferent scale factors. The values plotted are the potential transfer functions
Tϕ = −4πGa2k−2Tδρ in N -body gauge and in units of c2. The cosmology
is as specified in table 2.1. The grey band indicates linear scaling of the
vertical axis.

Due to the wildly oscillatory behaviour of the metric perturbations,
the PM grid on which the relativistic potential ϕGR = ϕγ + ϕν − γ is
realised need to have much better resolution than were we to neglect
the metric perturbations. The metric perturbations similarly oscillate
rapidly in time, meaning that fine time stepping is needed to accurately
resolve the resulting force. For N -body codes with global (and hence
fine) time stepping like concept, this is not much of an issue. For codes
using multi-level time stepping however, we might wish to only apply the
linear force a relatively few number of times during the simulation. This
is perfectly fine for all of the other slowly varying potential contributions,
but not for the oscillatory metric contributions. One strategy to correct
for this is to realise the average of the potential over the given time step.

In concept, Tδ is chosen as the canonical ` = 0 transfer function
in stead of e.g. Tδρ = sρTδ or Tϕ = −4πGa2k−2Tδρ. We are thus in need
of Tδmetric

= Tδρmetric
/sρmetric. As the fictitious metric species does not

have a physical background density, we then have to decide on some
sρmetric(a) ourselves. Mathematically, the choice of sρmetric(a) is completely
irrelevant. Numerically however, I have found that sρmetric(a) ≡ sργ(a)
works noticeably better than e.g. having sρmetric(a) constant, due to spline
interpolations over δmetric(log a, log k). This comes from the fact that
the envelope of the oscillating δρmetric(a) follows δργ(a) reasonably well,
as can be seen from figure 7.1.
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7.4 Non-linear Realisations
We now go beyond the linear realisations based purely on the linear
transfer functions and the static random field Rh. For the photon,
massless neutrino and metric realisations of the previous section, linear
realisation should be adequate throughout the simulation time span.
Unless the neutrino mass is not very small, the late-time behaviour of
neutrinos will be non-linear, and so this is the example we will keep in
mind for this section, although the developed procedures are completely
general.

Remembering back to chapter 6, our strategy for non-linear neutrino
simulations was to evolve the energy density %n(a) and momentum density
J in(a) non-linearly using the continuity and Euler equation (6.1). The
additional dependencies of the pressure Pn(a) and shear stress (ς ij )n(a)
will instead be solved linearly, in our case by class. We referred to this
particular choice as `nl = 1, meaning that the ` = 0 and ` = 1 moments
(% and J i) of the Boltzmann hierarchy are solved non-linearly, while all
higher moments are solved linearly.

7.4.1 Forward Fourier Transforms
We have previously defined the operations F−1

scalar (7.2), F−1
vector (7.9)

and F−1
tensor (7.11), which construct real space scalar, vector and rank-2

tensor grids from the linear transfer function and the random field. The
corresponding forwards Fourier transform Fscalar was straight forwardly
defined in (7.7). We now define the forward Fvector and Ftensor as well.

The numerical vector and tensor Fourier operators are slightly trickier
to define due to their embedded k dependent factors. To begin, we can
perfectly well use Fscalar on the individual scalar fields making up uin(a)
and (σij )n(a). From (7.7) we then have uih(a) = L3/2Fscalar[uin(a)],
holding separately for each component i. Multiplying (3.37) by ki and
summing over i, we can now define a grid of Fourier space divergences
θh(a) in terms of uih(a). This comes out to

θh(a) = ikiuih(a)
= L

3/2ikiFscalar[uin(a)]
≡ L3/2Fvector[uin(a)] , (7.28)

where the last line of (7.28) defines Fvector to be the ki weighted sum
of three scalar Fourier transforms. With θh(a) = L3/2Tθ(a, k)ζ(k)Rh we
see from (7.9) that we indeed have FvectorF−1

vector = F−1
vectorFvector = 1.



Non-linear Realisations 125

Using (3.39), the equivalent relation for the scalar shear stress be-
comes

σh(a) = −kik
j

k2 (σij )h(a)

= L
3/2

[
−kik

j

k2

]
Fscalar[(σij )n(a)]

≡ L3/2Ftensor[(σij )n(a)] , (7.29)

where we again have FtensorF−1
tensor = F−1

tensorFtensor = 1.
Using (7.28) and (7.29) within a simulation that evolves both the

velocity and shear stress non-linearly (corresponding to `nl > 1), we
can now obtain non-linear predictions for the scalar variables θ(a, k)
and σ(a, k). We can express these in terms of power spectra exactly
analogous to (7.6), i.e.

Pθ(a, k) = L−3 〈|θh(a)|2〉V ,

Pσ(a, k) = L−3 〈|σh(a)|2〉V .
(7.30)

We have not yet mentioned the pressure. As this is a scalar, it obeys the
same realisation equations as the energy density;

δPh(a) = L
3/2Fscalar[δPn(a)] , (7.31)

PδP (a, k) = L−3 〈|δPh(a)|2〉V , (7.32)

following (7.7) and (7.30).
From (4.10) and (4.11) we have the relation T 2

δ (a, k)ζ2(k) = δ2(a, k) =
Pδ(a, k). With the generalised power spectra (7.30) and (7.32), the same
relation holds for θ, δP and σ. While the left expression T 2

δ (a, k)ζ2(k) is
purely linear, the right expression Pδ(a, k) may be non-linear if it results
from a power spectrum measurement in a non-linear simulation. We
could opt to split the power spectrum into two variables, one specifically
linear and the other non-linear. Instead we choose to keep Pδ(a, k) as is
and just always think about it as the non-linear power spectrum, unless
explicitly stated otherwise. Thus, T 2

δ (a, k)ζ2(k) = Pδ(a, k) is only really
true at linear times. Similarly, the variable δ(a, k) may be taken as either
its linear or non-linear version. For writing equations which may be
interpreted either linearly or non-linearly, we adopt the agnostic δ(a, k)
in place of the specifically linear Tδ(a, k) or non-linear Pδ(a, k).
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7.4.2 Dynamic “Random” Field
The linear realisations presented in section 7.1 were based on the linear
transfer function T (a, k) together with a static random field Rh. To
develop non-linear realisations, we then have to compensate for both of
these.

Equations (7.7), (7.28), (7.29) and (7.31) all describe what we might
call inverse realisations. That is, they produce a 3D Fourier grid —
e.g δh(a) — from its 3D real space counterpart. If we write these
Fourier grids in terms of the scalar quantity and the random field,
δh(a) = L3/2δ(a, k)Rh from e.g. (4.9), we can solve for the random field:

Ryh(a) = L−
3/2 yh(a)
y(a, k) , y(a, k) =

{√
Py(a, k) (linear)

Ty(a, k)ζ(k) (non-linear) ,

y ∈ {δ, θ, δP, σ, . . .} ,
(7.33)

where a separate expression for the random field is generated for each of
the quantities y, and for each y we can choose between linear y(a, k) =
Ty(a, k)ζ(k) or non-linear y(a, k) =

√
Py(a, k) behaviour

By construction, all the various random fields of (7.33) coincide at the
initial time of the simulation, where they all equal the usual primordial
random field; Ryh(a = ai) = Rh. If we now consider linear evolution
of yh(a) and hence also of y(a, k), we see that Ryh(a) stays constant
as the evolution of each mode depends only on |k|. Contrary, when
yh(a) represents a non-linearly evolved grid, Ryh(a) changes over time.
Particularly, non-Gaussianities developing in yh(a) cannot be divided
out by the use of Ty(a, k) or

√
Py(a, k) .

With yh(a) a genuinely non-linear grid, we still have two options for
y(a, k) in (7.33). If we pick y(a, k) =

√
Py(a, k) , i.e. compute y(a, k) as

the square root of the power spectrum of the non-linear grid yh(a), the
ratio yh(a)/y(a, k) in (7.33) will have a shell-variance of unity, cancelling
out the non-linear growth of any particular |k| mode. As only entire
shells are constrained in this way, the 3D grid points of Ryh(a) making
up a given shell will still undergo non-linear evolution. Thus, choosing
y(a, k) =

√
Py(a, k) results in a dynamic Ryh(a) where the phases of

the random numbers correctly track the non-linear evolution of y, while
none of the mode growth is captured, preserving the shell-variance
〈|Ryh(a)|2〉

V
= 1.

The other choice in (7.33), y = Ty(a, k)ζ(k), replaces the non-linear
power spectrum in the above explanation with that of the linear power
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spectrum. While still tracking the evolution of the underlying phases
correctly, this choice does not cancel out any non-linear deviation from
linear growth. Thus with y = Ty(a, k)ζ(k), the shell-variance of the
random field is now allowed to evolve away from unity, 〈|Ryh(a)|2〉

V
6= 1.

Specifically, clustering will tend to increase this variance. This then means
that Ryh(a) retain the non-linear evolution of y, or more specifically the
non-linear evolution of y that exists on top of the linear evolution. This
is why the y = Ty(a, k)ζ(k) is labelled as ‘non-linear’ in (7.33): It divides
out only the linear evolution, leaving non-linear growth in Ryh(a).

7.4.3 Injecting Non-linearity
With the dynamic “random” field (7.33) at hand, we have everything
we need to create non-linear realisation schemes. With scalar, vector
and rank-2 tensor realisations defined as in (7.2), (7.9) and (7.11), we
simply substitute the primordial random field Rh for one of its dynamical
versions Ryh(a) defined in (7.33). Additionally, we include a species index
α′, Ryh(a)→ Ryα′h (a), labelling the species from which the random field
has been produced. Writing the possible non-linear realisations out for
all of our four quantities, we have

δα,n(a) ≈ L−3/2


F−1
scalar

[
yα′,h(a)

Tδα(a, k)ζ(k)√
Pyα′ (a, k)

]
(linear)

F−1
scalar

[
yα′,h(a)

Tδα(a, k)
Tyα′ (a, k)

]
(non-linear) ,

(7.34)

uiα,n(a) ≈ L−3/2


F−1
vector

[
yα′,h(a)

Tθα(a, k)ζ(k)√
Pyα′ (a, k)

]
(linear)

F−1
vector

[
yα′,h(a)

Tθα(a, k)
Tyα′ (a, k)

]
(non-linear) ,

(7.35)

δPα,n(a) ≈ L−3/2


F−1
scalar

[
yα′,h(a)

TδPα(a, k)ζ(k)√
Pyα′ (a, k)

]
(linear)

F−1
scalar

[
yα′,h(a)

TδPα(a, k)
Tyα′ (a, k)

]
(non-linear) ,

(7.36)
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(σij )α,n(a) ≈ L−3/2


F−1
tensor

[
yα′,h(a)

Tσα(a, k)ζ(k)√
Pyα′ (a, k)

]
(linear)

F−1
tensor

[
yα′,h(a)

Tσα(a, k)
Tyα′ (a, k)

]
(linear) ,

(7.37)

where both the linear and non-linear option for y(a, k) from (7.33) are
shown. Note that we do not require α = α′ in general, so that the
random field associated with some quantity of one species may be used
for the non-linear realisation of some quantity of another species.

For non-linear realisation of δα,n(a) to come up in practice, none of
the fluid variables of species α has to be evolved non-linearly, which we
may indicate as `nl = −1. In order for yα′,h(a) to exist∗ we then must
have α′ 6= α. I have not yet tested this case, but it seems plausible that
the realisations of the linear photon, neutrino and metric (the so-called
‘relativistic species’) perturbations of subsection 7.3.2 can be improved
by letting these be realised using the correctly evolved random phases of
the matter distribution† Rδcdm+b

h (a), enabling e.g. the exact 3D positions
of neutrino overdensities to match up with the corresponding positions
of matter clusters. As we do not want to further inject the non-linear
growth of matter into the relativistic species, we would then opt for the
linear option of using

√
Pδcdm+b

(a, k) in (7.34).
Though all of (7.35), (7.36) and (7.37) are implemented in concept,

the focus has been on the case `nl = 1, meaning that only δP and σij
need to be non-linearly realised. Furthermore, only the possibility y = δ
has been implemented, meaning that the inherited phases are always
those of the energy density. Lastly, though I did tinker with the linear
option of using the numerically measured power spectrum to divide
out the non-linear growth, I ended up removing its implementation as
defects‡ in the power spectrum too easily propagated through to the
non-linear realisation. With this limited set-up, the specific non-linear

∗We can of course always construct yα′,h(a) using linear realisation in the case
that yα′ is not a non-linear variable. However this reduces any of the “non-linear”
realisations back to their linear versions.

†Though the matter is treated as particles, the phases Rδcdm+b
h and Rθcdm+b

h

can still be constructed using (7.33), with δcdm+b,h and θcdm+b,h produced using
interpolation (5.22). Here, θcdm+b,h can be constructed from the grid-interpolated
particle velocities using (7.28).

‡I have since improved greatly on the implementation of the power spectrum
computation, so that it now yields much smoother spectra. It would thus be interesting
to reintroduce the ‘linear’ options of (7.34) through (7.37).
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realisations of the pressure and shear stress become

δPn(a) ≈ L−3/2F−1
scalar

[
δh(a)TδP (a, k)

Tδ(a, k)

]
, (7.38)

(σij )n(a) ≈ L−3/2F−1
tensor

[
δh(a)Tσ(a, k)

Tδ(a, k)

]
. (7.39)

For the above approximations to be exact, the content in the brackets
should of course be the fully non-linearly evolved δPh(a) and (σij )h(a),
respectively. Thus, (7.39) and (7.38) are equivalent to

δP (a,k) ≈ TδP (a, k)
Tδρ(a, k) δρ(a,k) , (7.40)

σij (a,k) ≈ Tσ(a, k)
Tδρ(a, k)δρ(a,k) , (7.41)

where we have swapped the grids for fields and multiplied the numerator
and denominator on the right by sρ, just to make the physics clearer. Both
(7.40) and (7.41) are exact at linear times, since here y(a,k) ∝ Ty(a, k).
For (7.40) to hold at non-linear times, the ratio TδP (a, k)/Tδρ(a, k) =
δP (a, k)/δρ(a, k) corresponding to the (squared) sound speed must be
independent of non-linearity. That is, though neither δP (a, k) nor δρ(a, k)
is well described by linear theory, (7.40) amounts to the assumption that
the sound speed is. Similarly, (7.41) amounts to the assumption that
the ratio σ(a, k)/δρ(a, k) is well described by linear theory at non-linear
times, though neither σ(a, k) nor δρ(a, k) is.

A separate assumption of (7.40) and (7.41) is that the 3D structure
of the pressure and shear, corresponding to RδP (a,k) and Rσ(a,k),
follow that of the energy density Rδρ(a,k). This indeed seems very
reasonable, and at least for the pressure the only sensical choice. From
the appearance of the shear stress in the energy-momentum tensor (3.20),
T ij = Pδij + (ρ + P )(uiuj + σij ), we might also suggest Rθ(a,k) as a
good choice for the realisation of σij . We can even imagine using the
product Rui(a,k)Ruj (a,k), where we use each component of the velocity
field rather than their combined divergence as in (7.28) to generate the
random fields.

A last option which I have not pursued in practice is to model the
non-linear evolution of a given quantity analytically. As an example, the
non-linear pressure realisation might then be written as

δPα,n(a) ≈ L−3/2F−1
scalar

[
yα′,h(a)

TδP (a, k)ζ(k)sδPα(a, k)√
Pyα′ (a, k)

]
, (7.42)



130 Realisations

which is just (7.36) with the linear option, except for the introduction
of the new variable sδPα(a, k). As the non-linear power spectrum in
(7.42) divides out all the non-linear growth of yα′,h, we will obtain
the correct non-linear pressure from (7.42) if TδP (a, k)ζ(k)sδPα(a, k) =√
Pyα(a, k) , with

√
Pyα(a, k) the square root of the unknown non-

linear power spectrum. Since at linear times this is exactly given by
TδP (a, k)ζ(k), we have sδPα(a � 1, k) = 1, or generalised to other
quantities syα(a � 1, k) = 1. The role of syα(a, k) is then that of a
non-linear transfer function, capturing the growth of k modes on top of
that from linear theory. With a good model for sδPα(a, k), the non-linear
realisation scheme (7.42) will then result in a pressure grid of correct
non-linear variance, though the phases within each k shell will still be
locked to those of yα′,h.

In light of the newly introduced sy(a, k), we can reinterpret the
approximations (7.40) and (7.41) or equivalently (7.38) and (7.39) to be

sδP (a, k) ≈ sδρ(a, k) , (7.43)
sσ(a, k) ≈ sδρ(a, k) , (7.44)

i.e. the deviation from linearity of the non-linearly evolved δρ(a, k) is
inherited by both δP (a, k) and σ(a, k) (on top of the time evolved phases,
similarly inherited from δρ(a,k)).

Conserved Variables

Throughout this chapter we have discussed the realisations of δn, uin, δPn
and (σij )n, though it is really their ‘conserved’ counterparts %n, J in, Pn
and (ς ij )n that we are after. To relate the two, we might simply use the
definitions (3.29), (3.31), (3.32) and (3.33) of the conserved quantities,
leading to

%n = a3(1+w)
sρ(1 + δn) , (7.45)

J in = a1−3w(%n + Pn)uin , (7.46)
Pn = a3(1+w)(wsρ+ δPn) , (7.47)

(ς ij )n = (%n + Pn)(σij )n , (7.48)

where we see that in order to construct the ‘compound’ variables J in and
(ς ij )n we first have to realise %n and Pn. However, since both (%n + Pn)
and uin in the case of J in or (%n + Pn) and (σij )n in the case of (ς ij )n
contain a set of underlying phases, multiplying them together alters the
phases in a non-trivial manner (convolution in Fourier space). On top of
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this, J in and (ς ij )n now also receive an enhancement due to the non-linear
growth of %n and possibly Pn.

In all, the direct multiplications in (7.46) and (7.48) lead to further
enhancement of non-linearities. If we decide that we do not want this,
we can simply replace (%n + Pn) with the background value (s%+ sP) =
a3(1+w)

sρ(1 + w), leading to

J in = a4
sρ(1 + w)uin , (7.49)

(ς ij )n = a3(1+w)
sρ(1 + w)(σij )n . (7.50)

Importantly, (7.49) and (7.50) are identical to (7.46) and (7.48) to linear
order. Both of these options are implemented in concept. During the
work on the paper of chapter 10, we generally found that the added
non-linearity from (7.48) led to better results.
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8 The CONCEPT Code

Throughout my PhD, concept (the ‘COsmological N -body CodE in
PyThon’) has been the code in which I have implemented the linear and
non-linear neutrino evolution, along with all of the necessary peripherals.
As mentioned in the introductory section 1.4, the code is free and open-
source and available on GitHub∗. The code was originally written for my
Master’s thesis [22]. This chapter serves as a listing of what has been
implemented into concept during my PhD. The underlying physics and
the numerical details of the methods will not be discussed here, as this
is done in part I and in chapters 5 through 7 of part II, respectively.

The main result of a concept computation is that of power spectra,
described theoretically in chapter 4 and numerically in chapter 7. Though
several types of power spectra are described, only δ power spectra are
implemented in concept. When running with multiple components, e.g.
matter particles and a neutrino fluid, combined power spectra of multiple
species can also be outputted. Besides power spectra, snapshots† (i.e.
complete dumps of the 3D particle and/or fluid system) can also be
outputted, from which a concept simulation can restart itself. Lastly,
2D projected and full 3D renders of the particles and fluids can be
produced. Examples of the former can be seen on the cover of this thesis.

Today concept consists of 16 × 103 source lines of Python code,
together with 8 × 103 lines of auxiliary code used to install, compile,
run and test the main code, as well as an additional 13 × 103 lines
of comments. The code base is a factor ∼ 4 larger now than at the
beginning of my PhD.

∗https://github.com/jmd-dk/concept
†The default snapshot format is an HDF5 file containing all needed information.

To interoperate with other N -body codes, it can also output to (and read from) the
gadget-2 ‘unformatted binary Fortran’ snapshot type, though here only particles are
supported.

https://github.com/jmd-dk/concept
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8.1 Software Aspects
In this section we briefly describe the software architecture of concept,
with special emphasis on the prevalent use of Cython.

8.1.1 Cython
Though concept is written in Python, it achieves C-like performance
thanks to Cython [23], which is both a Python → C transpiler and a
programming language in its own right, aiming to be as close to the
Python language as possible. The Cython language may be viewed as a
very nearly complete superset of both C and Python, allowing for a very
large “dynamic range” of the level of abstraction. This in turn allows for
simultaneous optimised low-level scientific code and high-level dynamic
control code.

For low-level operations (e.g. pointer arithmetic), usually one has
to rely on features of Cython which introduces syntax which breaks
pure Python compatibility, meaning that though the code reads mostly
like Python, it can only be executed after transpilation to C code using
Cython. Through my insistence of keeping everything pure Python
compatible, concept ended up containing within it its own transpiler∗
which converts the pure Python source code of concept into optimised
Cython code, which then further transpiles to optimal C code. Thus,
concept is one of the very few codes (possibly even the only one) that
enjoys the full advantage of the dynamic nature of Python as well as of
the performance and low-level control offered by C.

The concept code can then be run in both pure Python mode and
in compiled C mode. Whereas the former makes for easy introspection,
efficient debugging and rapid development, the latter decreases the overall
computation time of a typical simulation by ∼ 2 orders of magnitude.

8.1.2 Libraries and Installation
Besides the Python/Cython/C stack and their accommodating standard
libraries, concept makes further heavy use of several other libraries,
including MPI for the parallelisation framework, GSL for various numer-
ical methods such as spline interpolation, FFTW for MPI-parallelised

∗On top of this, my transpiler further lowers the barrier between Python and
Cython by e.g. autogenerating Cython header files. It also performs quite a few
optimisations through direct manipulation of the source code, like loop unswitching
and caching of constant expressions, which can otherwise be difficult for the C compiler
to infer from the often cryptic C code generated by Cython.
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Fourier transforms and HDF5 for MPI-parallelised file reads and writes.
Furthermore, the cosmology codes class and gadget are needed for
linear input and testing, respectively.

To make all of this work together, various Python/Cython packages
which wraps the above C/C++/Fortran libraries must be installed and
properly linked. On top of this, concept itself makes use of quite a few
Python packages, including the standard numerical ones like NumPy
and SciPy. In addition, concept rely on many newly included features
of the various libraries and packages, so that the entire software stack
must be very up-to-date for concept to run.

The Installation Script

All in all, this makes concept extremely cumbersome to install. To fix
this, a complete installation script is provided, which installs concept
along with all of its dependencies, the dependencies of these dependencies,
and so on right down to the Linux kernel headers and C/C++/Fortran
compilers, should they be missing on the system. With this, concept
should be trivially installable on any Linux system, and indeed is on any
such system of which I have tested.

To give some idea of the scope of this installation script, I will mention
that it consists of 4.4× 103 lines of Bash code∗, not counting comments.
It is also highly flexible, allowing already installed components to be
used if requested. In practice when working on a computer cluster, I
always let the installation script install everything from scratch, except
for MPI where it is better to use an existing installation, as otherwise
specific optimisations such as InfiniBand might not be enabled.

The concept installer can be downloaded and invoked directly using
the following command;

bash <(wget -O- https://raw.githubusercontent.com\
/jmd-dk/concept/v0.2.0/installer)

with version 0.2.0 the latest release version as of this writing.

8.2 Numerical Methods
Throughout chapters 5 through 7, various numerical methods and tech-
niques for implementing N -body particles, fluid flows and realisations
have been described. We mostly focused on the methods which have been

∗As the only hard dependency, the installation script then requires Bash (version
≥ 3.0) or another Bash-compatible shell to be preinstalled on the system.
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implemented into concept, but sometimes more advanced methods
were also described, and some methods in concept are not implemented
in full generality. This section then serves as a specification of exactly
which methods are present in concept. It also contains a description
of the global time step determination and the parallelisation strategy
adopted.

Though not strictly part of the actual numerical methods, let me
briefly describe the unit system implemented in concept. When solving
physical problems using floating point numbers, one should choose to
work in a unit system so that the typical sizes of these numbers are
about unity, as operations on very small or very large numbers leads to
larger relative errors. For a cosmological simulation code, a good system
of units might then be something like {Mpc,Gyr, 1010M�}, which is the
default unit system∗ of concept. Within concept a complete mapping
between a large set of typical cosmological units exist, including physical
constants like the speed of light. Each of the three base units can then
be specified programmatically in the parameter file. This comes in very
handy when doing comparisons to other codes with fixed unit systems.
For example, one can obtain gadget units by specifying the set of
basic units as {kpc h−1, km s−1, 1010M� h−1}, while pkdgrav units are
obtained by {boxsize,

√
8π/3H−1

0 , 3H2
0/(8πG)boxsize3}. The choice of

units will also be reflected in outputs such as power spectra, why the
units are always explicitly attached along with any output.

8.2.1 Gravity
The gravitational interaction between particles are implemented in three
separate ways, using the PP, PM and P3M methods, all described in
section 5.3. Of these, P3M is the method with simultaneous large
spatial resolution and good performance. However, its implementation in
concept is very sub-optimal, as the ‘domains’† are used for the grouping
of the particles, effectively cutting down the number of operations relative
to the PP method by the number of CPU cores squared, but retaining
the O(N2) scaling. In actuality then, the PM method is the only scalable
gravitational method implemented.

For fluid components also, the PM method is the only implementation
of gravity. The necessary generalisation of this method to simultaneously

∗Note that concept has no need for units outside of the span of the basic units
of length, time and mass.

†These refer to the partitioned chunks of the box volume, each of which is
designated to a unique MPI process as described in subsection 8.2.4.



Numerical Methods 137

incorporate particle and fluid components was laid out in section 6.4.
This generalised method reduces to the standard PM method in the case
of particle-only or fluid-only simulations, and is what is implemented in
concept.

Throughout this thesis, the particle mass has consistently been writ-
ten as mn, allowing each particle n to have a mass separate from the
others. In concept, all particles within a component shares the same
mass. Usually we run simulations where matter (cold dark matter and
baryons) is treated as a single component, but concept is fully capable
of distributing the total mass of matter into any number of components,
where now each component are allowed to have its own particle mass
and number.

Generalised Interaction Framework

During the first half of 2017, together with Steen Hannestad I co-
supervised Kathrine Bundgaard Henriksen on her Bachelor’s project
on self-interacting dark matter. As part of this project, Kathrine im-
plemented the self-interaction into concept. In order to make such an
implementation accessible, I refactored the PP and PM methods into
a combined framework of interactions, in which the gravitational part
was extracted from the underlying strategies adopted in these methods.
As I knew that I someday would like to rewrite the P3M method, I
did not care to refactor this into this new unified framework∗. A new
force can then be built from existing primitives, with all of the technical
parallelisation aspects taken care of automatically.

Though the complete self-interaction of Kathrine has not become part
of concept, this generalised interaction framework has. As mentioned
in the introductory section 1.4, I plan to soon reimplement the P3M
method, which will then become part of this framework.

Another benefit of this modular framework is that each force can
be enabled/disabled for each individual component. Furthermore, two
components interacting via some force may want to use different methods
for this same force. This would be the case for simulations including
both matter particles and a neutrino fluid, in the case where the particles
use P3M amongst themselves, but has to interact with the neutrino fluid
using PM. The interaction framework is general enough to handle such
asymmetries.

∗Hence the badly named gravity_old.py in the concept source tree.
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8.2.2 Time Integration
In concept, particles are evolved using the Leapfrog integration scheme
of subsection 5.2.1, with a global time step ∆t. For fluids, the time
integration is performed by the much more involved MacCormack (MC)
or Kurganov-Tadmor (KT) methods, described in section 6.2 and 6.3,
respectively.

To make the MC method positivity preserving (while also helping
to stabilise the method in general) I found that it had to be augmented
with numerical viscosity at grid points with an energy density close to
zero. The resulting “vacuum correction” scheme of mine is described in
subsection 6.2.2.

Though the KT method is much more sophisticated than the MC
method, I have found that it does not lead to better results in practice,
in the case of a massive neutrino fluid. In fact, the numerical viscosity
obtained with the KT method is much more than that of the MC method,
as seen in figure 6.1.

In an attempt to lessen the numerical viscosity of the KT method, I
have additionally implemented an improved version of the same scheme
[68], which uses more precise estimation of the local propagation velocities
at cell interfaces. In practice, this more complicated prescription led to
minute differences, and so only the basic KT method is kept in concept.

Time Step Limiters

The particle Leapfrog and the fluid MC or KT method share the same
time step size ∆t, which is then the same for all particles and fluid
cells. We have seen how the Courant condition (6.9) for fluids limits
the maximum size of ∆t, above which the numerical fluid dynamics
become unstable. However, the Courant condition (6.9) considers only
the continuity equation. Here, u should be the maximum peculiar velocity
of any fluid elements. We can replace this with the maximum of the
right-hand-side of (6.18) times a, where (6.18) is an estimate of the local
physical velocity. We can then write the Courant condition as

∆t < min
α∈ fluid

components

∆xα,m√
3

[
a3wα−2 max

n

∣∣Jα,n∣∣
%α,n + Pα,n

+
√
wα
a

]−1
(fluids) ,

(8.1)
where n runs over all grid points and √wα is the physical sound speed,
approximated as a spatial constant. The minimisation over all fluid
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species α means that the fluid with the highest propagation speed (com-
pared to its grid spacing ∆xα,m) sets ∆t for all fluids.

The Courant condition (8.1) is extended to particle components by
setting w = 0 and replacing the peculiar velocity (first term in the
bracket) with |un| = a−1m−1|qn|. Thus,

∆t < min
α∈ particle

components

a∆xϕ√
3m

[
max
n
|qn|

]−1
(particles) , (8.2)

where now the grid spacing is taken from the potential grid. This should
just be some distance specifying the smallest scale at which the particles
operate. When using the PM method for gravity, ∆xϕ is then appropriate.
When using the PP or P3M method, we should replace ∆xϕ with the
comoving softening length ε described in subsection 5.3.1.

In addition to the fluid Courant condition (8.1) and what we might
call the particle Courant condition (8.2), four further time step limiters
are defined:

∆t <


(Gsρm)−1/2 (gravitational dynamical time scale) ,
H−1 (Hubble time) ,
tf − ti (simulation time span) ,
min
α
ẇ−1
α (time scale of non-relativistic transition) .

(8.3)

The first one restricts the time scale based on the physics of gravitation,
rather than on the numerical resolution like (8.1) and (8.2). Such physics
based time step limiters are helpful in odd cases of completely or very
nearly static particles/fluids. The next two states that the time step
size should be below the Hubble time (at the time of the given time
step) and the entire simulation time span, with ti and tf the initial and
final time, respectively. The first guarantees that the scale factor a does
not change much over the time step, while the second ensures that the
entire simulation consists of multiple time steps. The last time step
limiter of (8.3) only comes into effect when having species with time
varying equations of state, such as massive neutrinos. The condition
then states that the equation of state should not change much over the
time step, which is needed for a gradual transition from the relativistic
to the non-relativistic regime.

In actuality, each of the time step limiters (8.1), (8.2) and (8.3) have
individual constant factors multiplied on their right-hand-side, each
of which is some small fraction. In concept these factors have been
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manually tuned to ensure convergence over the range of simulations
considered.

Every eighth time step, ∆t is allowed to increase slightly, as long as
all of (8.1), (8.2) and (8.3) are satisfied. Here the number 8 is chosen
in order to minimise anisotropic defects induced by the MacCormack
method as described in section 6.2.

8.2.3 Realisations
A high-level description of linear scalar, vector and rank-2 tensor realisa-
tions of fluid variables was described in section 4.3. Chapter 7 further
elaborated on the numerical implementations, while also generalising the
linear realisations to particles and introduced various non-linear fluid
realisation techniques.

In concept, many of these options for realisation are implemented,
though not all. For linear realisations, the primordial random grid Rh is
generated as described in subsection 7.1.1, i.e. the random numbers are
drawn “in shells” so that the cosmic variance in the power spectrum at a
given k is independent of the grid size (for fixed box size). Particles may
only be realised linearly, i.e. using this primordial Rh. The Zel’dovich ap-
proximation of subsection 7.2.1 is implemented, where particle positions
are generated from the displacement field ψn. The particle momenta can
either be constructed directly from the θ transfer function, or alterna-
tively inferred from ψn using the Newtonian matter-only approximation
(7.18).

Regarding the late-time normalisation of the power spectrum dis-
cussed in section 7.3, concept can be run either with or without
back-scaling, specified for each component individually. When running
without back-scaling, correct large-scale behaviour of matter must be
achieved by direct interaction with linearly realised photon, neutrino
and metric perturbations, as described in subsection 7.3.2. For such
linear realisations, the δρ transfer function is averaged over the time step
according to

〈Tδρ(k)〉t+∆t
t

=
[
t+∆tw

t

a2(t′) dt′
]−1 t+∆tw

t

a2(t′)Tδρ(t′, k) dt′ , (8.4)

where the a2 weight is needed since what we really want to average
over is the gravitational potential. It is then really 〈Tδρ(k)〉t+∆t

t
that is

used in place of Tδρ
(
a(t), k

)
in e.g. (7.22). For slowly varying transfer
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functions this does not make much of a difference, but it is important
for the rapidly oscillating metric perturbations.

By default concept runs class in synchronous gauge and trans-
forms the resultant transfer functions to N -body gauge, though one can
specify some other gauge to use (must be one of N -body, synchronous
or conformal Newtonian).

Subsection 7.4.3 lays out several non-mutually exclusive possibilities
for doing non-linear realisations of fluid variables. The only options
implemented in concept is that of (7.38) and (7.39), where the pressure
and shear stress of some species are realised using the non-linearly
evolved energy density of the same species. Also, the scaling from energy
density to respectively pressure and shear stress is done via the ratio of
linear transfer functions, as opposed to using the power spectrum of the
non-linearly evolved energy density.

Though we have focused on the case of `nl = 1 during my PhD,
meaning that both the energy density % and the momentum density J i
are evolved non-linearly, non-linear realisation is also implemented fully
for J i, meaning that concept can also be run in `nl = 0 mode.

The ‘compound’ fluid variables J i and σij can be realised either
from the real-space product of two 3D grids as in (7.46) and (7.48), or
they might alternatively be realised just from the realised ui and σij
multiplied with background variables, as in (7.49) and (7.50).

As an alternative to using class to bridge together the non-linear
and linear Boltzmann hierarchy at ` = `nl, simple truncation of the
non-linear hierarchy is also implemented, corresponding to disregarding
fluid variables with ` > `nl completely.

A general framework for optional approximations is built into concept,
though as of now the only approximation implemented is that of P = wρ.
With `nl = 1 and closing the non-linear hierarchy using truncation rather
than linear theory input, we can obtain the perfect fluid approximation
P = wρ 6= 0, σij = 0 by enabling this approximation.

8.2.4 Parallelisation
We shall now briefly discuss the parallelisation strategy used in concept.
The box volume is partitioned into a number of equally shaped cuboids,
one for each MPI process, which in turn is mapped to a single physical
CPU core. We refer to these subvolumes as ‘domains’. All of the
cubic grids (including the fluid grids, the particle displacement grid and
the potential grids) are then distributed according to these domains.
Similarly, particles are distributed according to which domain they
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currently reside in, meaning that they may be exchanged between MPI
processes when crossing domain boundaries.

The cuboidal domains are chosen such that they have the largest
ratio of volume to surface area possible, given the number of MPI
processes. For cubic domains, we then need a cubic number of processes.
This generally leads to optimal performance as it minimises particle
exchanges. In this respect, the worst performance is gained for a prime
number of processes, where the domains are forced to take the form of
‘slabs’, meaning that they span the simulation box along two of the three
dimensions.

For fluids, this simple optimal cuboidal partitioning scheme leads to
optimal performance throughout time, as the minimisation of domain
boundaries imply minimisation of neighbouring grid cells belonging to
separate processes. Information about neighbour cells are of course
needed for the spatial derivatives during the non-linear fluid evolution.
In practice, each local grid in concept is constructed with a ‘ghost
layer’ around it (with a thickness of two grid cells), storing a local copy
of the neighbouring cells belonging to a different process.

For particles, having a static partitioning of space is not optimal,
as clustering inherently leaves some domains with a surplus of particles
relative to others, serving to skew the CPU workload balance.

As concept uses FFTW for its 3D FFTs, it is subject to the memory
layout criterion imposed by FFTW. Here, the volumetric partitioning
has to be in the form of the aforementioned ‘slabs’, meaning that before
a global FFT can be carried out, the processes must redistribute the
particles and/or fluids according to this slab decomposition, which in
general is an expensive operation. Were we to choose the slab decom-
position as the main domain decomposition as well, we could avoid this
transformation of the decomposition. It is unclear whether this would
lead to an increase in the performance in actual simulations.

Muti-node CLASS Computations

The details of the integration of class into concept is described in the
next section. Here we note that class is OpenMP parallelised over the
k modes, meaning that a given k mode is solved for by a single CPU
core. Also, as class is not MPI parallelised, it cannot be run across
multiple compute nodes. For usual class runs this is no issue at all. In
order to produce smooth and accurate transfer functions for the pressure
and shear of massive neutrinos, as well as for the N -body gauge metric
perturbation

[
HNb

T
]′ given in (7.26), we found that we needed to increase
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massive neutrino precision parameters a lot, as described in the papers
of chapter 9 and 10. A single class computation could then span several
days, hence the need to distribute the class computation across multiple
compute nodes (effectively just increasing the number of CPU cores).

To implement this, whenever a class computation is to be made from
within concept, the code effectively switches from MPI to OpenMP
mode, with one ‘node master’ MPI process calling class on each compute
node, which then spawns off threads which are assigned to the remaining
MPI processes on each compute node, one thread per CPU core. When
all class runs on all compute nodes are completed, the results are
gathered by the global master MPI process, i.e. send to a single compute
node, whereafter the usual MPI mode of concept can resume.

8.3 Integration with CLASS

One of the major strengths of concept compared to other cosmological
N -body codes is its complete integration with class, achieved through
the ‘classy’ Python wrapper.

As described in the previous section, some of the class computations
needed may take a very long time, and so the results of all class
computations are automatically dumped to HDF5 files, storing the
background and perturbations of all the species and variables needed
for the given concept simulation, together with a specification of the
parameters fed to class. The filename of these HDF5s are generated
by hashing the (sorted) set of class parameters, and so each class run
is uniquely mapped to a filename. Over time, a large library of class
results is then generated by concept, which will be reused whenever
the same class computation is requested in the future.

The class background and perturbations are stored in concept
using GSL cubic spline objects, with the splines being over log a and
log k. The class transfer functions are further detrended using a power
law before they are splined, yielding excellent spline results. These are
then converted to N -body gauge on request.

Quite a few small modifications to the class source code has been
made, mostly just to construct and/or provide access to additional
transfer functions like

[
HNb

T
]′.

As the needs from the class code grew over the course of my PhD,
I also managed to discover a couple of bugs in the source code, which
have been pointed out to the authors. A critical bug in the Runge-Kutta
integrator still remains at the time of this writing. When installing
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concept using the installation script, class will be installed and patched
with all the necessary modifications. I also believe that the adoption of
Python 3 by class to a large extent was fuelled by the need of concept
for this support.

8.3.1 The CONCEPT CLASS Utility
For the project of implementing linear species into the pkdgrav code,
fully described in chapter 9, I chose not to marry pkdgrav to class in
a similar fashion as I had done in the case of concept, as this would be
much too time consuming. As concept already had all of the necessary
facilities, including a native multi-node way of executing class, caching
results to disk and processing the results (including the N -body gauge
transformation), I instead opted to extend concept with a side utility
capable of storing processed class results in a neatly organised HDF5
file. This utility was simply dubbed the ‘class utility’ when referred
to from within concept, though from the outside world it should be
called the ‘concept class utility’ to avoid confusion.

The key difference between the contents of the automatically cached
HDF5s and the HDF5s produced by the class utility is this: The cached
HDF5s simply contain the raw results from class, meaning that each
k mode exist in isolation. The HDF5s of the class utility produces a
single 2D {a, k} grid on which all perturbations are tabulated, making
further interpolations much easier. The range and number of a values
can also be specified, in addition to the gauge (N -body, synchronous or
conformal Newtonian). The range of k is of course also specifiable, but
that is also true for the raw HDF5s.

Additionally, which species to save to the processed HDF5 file can
be specified, along with an `max,HDF5 per species indicating which mo-
ments to include, i.e. `max,HDF5 = 0 ⇒ {δ}, `max,HDF5 = 1 ⇒ {δ, θ} or
`max,HDF5 = 2⇒ {δ, θ, δP, σ}. Another difference between the raw and
processed HDF5 is then that the processed HDF5 contains δP , whereas
the raw HDF5 contains δP/δρ as this is what class provides.

Species can also be “added together” so that e.g. the combined δ
and θ transfer functions for cold dark matter and baryons are provided,
rather than the individual transfer functions for each species, letting
concept carry out the weighted sum at interpolated points.

Besides the class data, the processed HDF5s also contain a spec-
ification of the class parameters used as well as of the unit system
employed by concept at the time of running the class utility (the
dynamic system of units in concept is described in section 8.2). This
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is important as the background quantities and transfer functions will be
stored in these units. Having a mutable unit system then allows users of
the class utility to specify whatever units they want, and so they do
not have to worry about any manual unit conversion.

In all, the concept class utility seeks to provide the best possible
presentation of class perturbations (and background quantities) for
use with large cosmological simulations, making the interfacing of other
simulation codes with class trivial by essentially using concept as a
wrapper around class.

The class utility is the latest addition to the collection of such
side utilities of concept, of which there are presently 8. Honourable
mentions include power spectra measurements directly from a snapshot∗,
snapshot introspection and displaying coloured animations of 2D renders
directly in the terminal.

∗The snapshot may either be a concept or a gadget snapshot. The utilities
may also be run on entire directories of snapshots.
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9 Linear Neutrinos

This chapter contains the paper ‘Fully relativistic treatment of light
neutrinos in N -body simulations’, which I co-authored together with
Thomas Tram, Jacob Brandbyge and Steen Hannestad. It was put on
arXiv and submitted to JCAP in early November 2018. We are currently
awaiting response from the referee.

I have carried out slight syntactic modifications to the paper in order
for its notation to blend more seamlessly with that used in this thesis.
The most noticeable difference not adapted for is the use of an overdot
as differentiation with respect to conformal time, whereas in the main
part of this thesis an overdot refers to differentiation with respect to
cosmic time. Also, a sign error has been corrected in equations (9.11)
and (9.13).

In the paper we demonstrate how linear species — including photons,
massive but light neutrinos and the metric itself — can successfully
be added to conventional N -body simulations using the N -body gauge
framework of [64, 65], described in subsection 7.3.2. This results in
the correct general relativistic large-scale behaviour without the use of
back-scaling (see subsection 7.3.1).

To demonstrate the method, it was implemented in both concept
and pkdgrav. I wrote both of these implementations simultaneously,
with the majority of the work carried out during my stay at the Institute
for Computational Science at the University of Zürich, May and June of
2018. While I did the concept implementation by myself, the pkdgrav
implementation has received inputs from several other people, though
the primary class interfacing was carried out by me. This was done
using the concept class utility as a bridge between pkdgrav and
class, as described in subsection 8.3.1.

Below I list the extensions to pkdgrav itself that I have implemented
in order for it to be able to run with the linear species.

• Read in and store the class background andN -body gauge transfer
functions from an HDF5 file produced with the concept class
utility.
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• Replace the existing internal Friedmann solver with the tabulated
class background.

• Replace the existing back-scaled and σ8 dependent method for
particle initial condition generation with direct realisation based
on the class δcdm+b and θcdm+b transfer functions, using the
Zel’dovich approximation.

• Realise the total density perturbation field from all linear species
on a grid. The density perturbations are averaged over the time
step according to (8.4).

Together, these items extend pkdgrav with a ‘class mode’. When
running pkdgrav, one can now choose whether to run it in its original
mode or in this new class mode. I could not have carried out the above
without much help from the main authors of pkdgrav; Joachim Stadel
and Douglas Potter. Furthermore, the implementation of the grid on
which to realise the density field from the linear species, as well as the
PM technique used to compute forces on the particles from this grid,
was implemented by Hugues de Laroussilhe.
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9.1 Introduction
In the coming few years, new, large galaxy surveys such as those from
LSST [1] and Euclid [2] will provide extremely precise measurements of
the large scale structure of our Universe. This in turn requires numerical
simulations of structure formation to be accurate at the sub-percent level
over a wide range of scales.

One important ingredient in this quest is to include massive neutrinos
which are known to make up at least 0.1% of the total energy density at
present. Even at this lower limit the inclusion of neutrinos changes the
matter power spectrum at the 3–4% level, substantially more than the
required precision of these surveys.

Over the past decade, a substantial effort has been devoted to the
inclusion of massive neutrinos in N -body simulations. One approach is
to use a particle representation of the full neutrino distribution function
(e.g. [3–12]). This, however, is very numerically challenging because of
the large number of particles needed to properly follow the neutrino
distribution function. Another scheme assumes that neutrino perturba-
tions remain linear [13–15]. A simple scheme which is known to work
well for small neutrino masses is to use the linear neutrino density field
calculated by realising the linear neutrino transfer function on a grid [13].
An improvement on this is to solve the linear theory neutrino equations,
but use the full non-linear gravitational potential calculated in the simula-
tion [14,15]. However, in both cases this scheme only works for relatively
small neutrino masses where neutrino perturbations remain linear at all
times. Finally, there are hybrid schemes coupling the two approaches [16],
as well as approaches based on other approximate solutions (e.g. [17,18])

Another effect which must be taken into account comes from the inclu-
sion of general relativistic effects. This can be done fully relativistically
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in the weak field limit (see e.g. [19]). However, as has been shown (see
e.g. [20] and references therein), even N -body codes such as gadget [21],
pkdgrav [22] and ramses [23] which are inherently Newtonian, can in
fact be used to obtain results which are valid in the weak field limit of
GR. In the case of pure ΛCDM models, i.e. models with only one matter
component, this can be done via backscaling. The inclusion of massive
neutrinos complicates matters, and the backscaling method becomes
highly non-trivial. However, massive neutrinos can be included using the
method presented in [24–26]. This requires neutrinos to be light enough
that they can be treated as a purely linear component. In this case the
neutrino density field can be realised at each timestep in a Newtonian
simulation and thus be used to calculate the neutrino contribution to the
local gravitational potential. This method was first introduced in [13] and
shown to lead to sub-percent errors in the calculation of the matter power
spectrum for neutrino masses up to around 0.3 eV. When neutrinos are
added to the simulation using this method the N -body simulation still
contains only one matter component and this makes it possible to use
the framework presented in [24–26].

In this paper we show that by extending the method to include
massive neutrinos we can run Newtonian N -body simulations which are
fully consistent with GR, including massive neutrinos, without compro-
mising the speed and scalability of standard N -body codes. We test our
framework using two different N -body codes and demonstrate that we
obtain fully consistent results.

In Section 2 we discuss the theoretical set-up needed to include
massive neutrinos and GR. In Section 3 we present our numerical results,
and finally Section 4 contains a discussion and our conclusions.

9.2 Method and Implementation
As was shown in [24–26], Newtonian N -body simulations containing only
dark matter (or any other highly non-relativistic component) can be
made compatible with general relativity.

For pure matter (i.e. a pressureless component) the continuity and
Euler equations for the density contrast δ and peculiar velocity v can be
written as

δ̇ +∇ · v = 0 , (9.1)
(∂τ +H)v = −∇φ+∇γ , (9.2)
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where a dot denotes differentiation with respect to conformal time τ and
H = ȧ/a is the conformal Hubble parameter with a being the cosmic
scale factor. The quantity γ is a correction which can be subtracted from
the peculiar potential, φ, in the simulation. The potential φ is the total
potential from all species, i.e.

∇2φ = ∇2
∑
α

φα = 4πGa2
∑
α

δρα , (9.3)

with α ∈ {cdm,b, γ, ν} running over all species∗.
From [20], the Fourier space equation for γ can be written as

γk2 = −(∂τ +H)ḢT + 8πGa2Σ , (9.4)

where Σ is the total anisotropic stress of all species and HT is the trace-
free component of the spatial part of the metric in N -body gauge (see
e.g. [27]). In appendix 9.A we calculate γ in Fourier space with massive
neutrinos included. We then have everything we need for this approach
to fully consistently take massive neutrinos into account.

Concretely we split the total potential φ − γ experienced by the
matter in the simulation into a contribution coming from the matter
itself (calculable using standard techniques in the N -body simulation),
φsim, and a contribution coming from photons, neutrinos, and the GR
correction γ, φGR:

φ− γ ≡ φsim + φGR , (9.5)

with φGR given by

∇2φGR ≡ ∇2
(
φγ + φν − γ

)
≡ 4πGa2

(
δργ + δρν + δρmetric

)
(9.6)

≡ 4πGa2δρGR .

Here δρmetric is a fictitious density perturbation which amounts to the
GR potential correction γ,

∇2γ = −4πGa2δρmetric . (9.7)

Following the same prescription as in [26], at each timestep in the
simulation we realise δρGR in Fourier space, solve its Poisson equation
(9.6), transform to real space and apply the force from φGR to the

∗The subscript γ refers to photons and should not be confused with the variable
γ, representing the relativistic potential correction.
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matter particles, in addition to the usual force from the matter particles
themselves (corresponding to φsim).

To compute δρGR in linear perturbation theory, a class [28] compu-
tation has been run in advance, providing us with δργ and δρν in either
synchronous (‘s’) or conformal Newtonian gauge (‘c’), ḢT in N -body
gauge (‘Nb’) as described in appendix 9.A, as well as Σ (which is gauge
independent in linear perturbation theory and can be calculated from
its algebraic relation to φ − ψ in conformal Newtonian gauge), all as
functions of a and k. From ḢNb

T and Σ, we obtain δρNb
metric(a, k) using

(9.4) and (9.7). We then transform δργ and δρν to N -body gauge,

δρNb
α = δρ

s/c
α + 3H(1 + wα)

θ
s/c
tot
k2

sρα , (9.8)

with θtot the total peculiar velocity divergence of all species and wα =
sPα/sρα the equation of state parameter of species α (both obtainable
from class), after which we add δρNb

γ and δρNb
ν to δρNb

metric, resulting
in δρNb

GR. The realisation of this δρNb
GR(k) on a grid in real space is done

using the formalism outlined in appendix A of [18].
In figure 9.1 we show the individual contributions to φGR from pho-

tons, neutrinos, and the GR correction γ. For the case of massless
neutrinos we reproduce the results from [26]: For small (superhorizon)
values of k all three contributions asymptotically approach k-independent
values, while for larger k all three contributions oscillate and damp. For
the case of massive neutrinos, we see that, as expected, the neutrino con-
tribution ceases to oscillate as soon as neutrinos become non-relativistic
(T/mν ∼ 1/3 around z ∼ 60). From this point on it grows rapidly,
essentially following the matter evolution. We also note that the photon
and γ contributions remain almost unchanged in the case of massive neu-
trinos so that by far the largest difference between models with different
neutrino masses comes from the neutrino component itself, rather than
from photons or the GR correction γ.

We initialise the simulation using class in the same way as was
described in [18]. Initial conditions for the density and velocity fields are
generated using the N -body gauge δcdm+b and θcdm+b transfer functions
from class at the initialisation time, i.e. we do not use higher order
methods such as 2LPT. In this particular case this is completely un-
problematic since we study effects pertaining to very large scales where
structures are completely linear at the initial time.
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Figure 9.1 – Individual contributions to φGR ≡ φγ + φν − γ at three
different scale factors. The left plot shows the case of massless neutrinos,
the right plot shows the case of

∑
mν = 0.1 eV. The potentials are all in

N -body gauge. The grey bands indicate regions where the vertical axes
scale linearly.

9.3 Numerical Set-up and Results
In order to test the effect of massive neutrinos including GR corrections
we perform a suite of N -body simulations, primarily using the publicly
available concept N -body solver [18]. All concept simulations in this
work use cosmological parameters as listed in table 9.1. We use a degener-
ate neutrino hierarchy, i.e. three neutrinos of equal mass. The concept
simulations all begin at a = 0.01, use 10243 matter particles and the
potential grids (both φsim and φGR) are of size 10243. All concept
simulations are carried out in box sizes of either (16384Mpc/h)3 or
(1024Mpc/h)3, the power spectra from which are patched together to
give the ones shown in figure 9.2, 9.3 and 9.4.
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Parameter ΛCDM
∑
mν = 0.10 eV

As 2.215× 10−9 2.215× 10−9

ns 0.9655 0.9655
τreio 0.0925 0.0925
Ωb 0.049 0.049
Ωcdm 0.264 0.262
Ων 3.77× 10−5 2.37× 10−3

h 0.6731 0.6731

Nq,ν 1000 1000
lmax,ν 1000 1000

Table 9.1 – Cosmological parameters and numerical settings for the class
runs used. We use the exact relation Ωcdm = 0.2643−Ων .

9.3.1 Main Results
In figure 9.2 we show ratios of matter power spectra with and without the
corrections from φGR included. The effects from including the different
terms (φγ , φν , −γ) in φGR are shown. It can be clearly seen that at early
times models with and without neutrino mass behave identically because
the neutrinos are still close to relativistic. Once neutrinos become non-
relativistic the relative contribution from φν increases significantly and
dominates over the other components, whereas the photons and the
metric component (γ) are close to identical in the two cases. This is
completely expected given the behaviour of φGR seen in figure 9.1.

In figure 9.3 we show the well-known suppression plot, comparing
models with

∑
mν = 0.1 eV to

∑
mν = 0, with and without the full

φGR included.
The dashed lines show results from running purely Newtonian sim-

ulations. We find the usual suppression in the semi-linear to non-
linear regime (explained in detail in numerous other works, see e.g.
[3–9,11,14–17,29]).

Notice that in the limit of small k there are noticeable differences.
At the initial time the model with non-zero neutrino mass has slightly
more power, but over time the model with neutrino mass has slower
growth of structure and therefore the power ratio drops with time. This
phenomenon can be explained in the following way: At the initialisation
time the amplitude of matter fluctuations (δ) is proportional to τ2, i.e.
the conformal time at this particular a, squared. For the models shown
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Figure 9.2 – Relative matter (CDM and baryons) power spectra with and
without GR effects. Three levels of GR effects are considered; photon per-
turbations only (dotted lines), photon and neutrino perturbations (dashed
lines) and photon, neutrino and metric perturbations (full lines). The left
plot shows the case of massless neutrinos, the full lines of which are equiv-
alent to figure 2 in [26], the right plot shows the case of

∑
mν = 0.1 eV.

The power spectra are in N -body gauge.

here this τ2 differ by approximately 0.5%, and therefore the difference
in power is approximately 1%.

Over time the Newtonian models lack any contribution from photon,
neutrino and metric perturbations on large scales and since the matter
density is lower in the model with neutrino mass, the matter fluctuations
grow correspondingly slower, leading to suppression of power over time.

The thin, horizontal dashed lines show the ratio of solutions to
the purely Newtonian linear perturbation equations for non-relativistic
matter, i.e. the ratio of the growth functions, D, squared. Both models
have almost the same background evolution. However, the model with
massive neutrinos has no source term from the neutrinos acting on the
CDM. We normalise the ratio such that it matches exactly at the initial
time. The fact that the simulations match the simple Newtonian linear
theory result is a nice consistency check of the code.

The full curves show the result of simulations with φGR included.
The thin black lines show the results from class (i.e. linear theory), and
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Figure 9.3 – Relative matter (CDM and baryons) power spectra between∑
mν = 0.1 eV and

∑
mν = 0 cosmologies. Dashed lines are without any

GR effects and full lines with all GR effects included. Black lines indicate
the corresponding linear results from class, where again full lines are
in full GR (default class) and the dashed lines show the k-independent
Newtonian growth rate. The power spectra are in N -body gauge.

as can be seen the N -body results match exactly in the linear regime. As
expected we see a slight increase in the ratio just before the non-linear
scales (only clearly visible at a = 1). For large k we find the expected
result, namely that there is an exact match between Newtonian and GR
simulations.

For the simulations with φGR included the difference on large scales
is far smaller. At the initialisation point the difference is the same as
in the Newtonian case, since they start from the same class output.
However, at later times the lack of cold dark matter is, to a large extent,
compensated by the presence of neutrino and photon fluctuations. On
super-horizon scales these are comparable in importance to the matter
fluctuations and therefore the suppression becomes much less pronounced.

Finally, we note that the bump seen around k ∼ 6× 10−3 h/Mpc in
the initial ratio arises from the difference in matter-radiation equality
between the two models (see e.g. [30]), and that it propagates differently in
the two models. In the Newtonian simulations it remains fixed in k-space,
whereas in the GR case it moves to the left over time. This difference is
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caused by the GR corrections during evolution (i.e. it essentially amounts
to the difference between the left and right panels in figure 9.2).

9.3.2 Comparison with PKDGRAV

In order to test the robustness of our calculation we have additionally
implemented the GR effects in the state-of-the-art publicly available
code pkdgrav. Results from this exercise are shown in figure 9.4. As
can be seen, pkdgrav provides results which are identical to those of
concept to within a very small margin, even though the two codes are
fundamentally different.

pkdgrav is a pure tree code, but with a grid structure implemented
very recently precisely for the use case laid out in this paper. As seen in
figure 9.4, the results from the GR implementation in pkdgrav match
those from the GR implementation in concept very accurately. Through
the newly added class mode of pkdgrav, all pkdgrav simulations
use the exact same cosmology and initial conditions∗ as the concept
simulations. Similarly, the box size is chosen as (16384Mpc/h)3 and
the simulations begin at a = 0.01. The number of particles is however
reduced to 5123, as we are only interested in the linear regime.

Figure 9.4 do not show the pkdgrav lines at the lowest k modes
around k ∼ 10−3 h/Mpc, as here they begin to deviate from the expected
results by a few percent. We can achieve agreement in this region by
increasing the box size, which then simply moves the inaccurate region
to the left. We suspect that this can be explained by the time stepping
scheme used by pkdgrav, where all (major) time steps last for the same
length of cosmic time. A new time stepping scheme based on the scale
factor (at least at early times), rather than the cosmic time, is under
construction.

Our pkdgrav simulations ended prematurely due to a hardware
failure, and so the pkdgrav lines for a = 1.00 in figure 9.4 are really
constructed from power spectra at a = 0.50, which we have extrapolated
to a = 1.00 using linear theory.

9.4 Discussion
We have presented a framework for calculating the effect of light neutrinos,
as well as photon and GR corrections in Newtonian N -body codes. The
approach is based on the cosira code presented in [26], in which radiation

∗Up to an effective change of random seed.
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Figure 9.4 – Relative matter (CDM and baryons) power spectra between∑
mν = 0.1 eV and

∑
mν = 0 cosmologies, similar to figure 9.3. The

coloured lines show the concept results and are identical to those in
figure 9.3. Cyan lines show the corresponding pkdgrav results.

(photons and massless neutrinos) were included consistently to leading
order in the N -body solver gadget. The method involves the realisation
at all times of the radiation perturbation field and the scalar potential
quantity γ on a grid in the code. This grid is subsequently added to the
ordinary potential grid to account for the effects of radiation and GR
corrections to the Euler equation.

In this work we have extended the formalism to account for the
possibility of massive neutrinos which complicates the calculation of γ
somewhat. As in the case of massless neutrinos, we use the class code
to calculate the quantities necessary to construct γ in linear perturbation
theory, i.e. the general relativistic potential correction γ as well ass the
energy density perturbations of photons and massive neutrinos. These
are then realised on a grid in the N -body simulation. We have tested
the implementation in two different solvers: concept, which is a PM
code fully interfaced with class, and pkdgrav, which is a tree code to
which has been added a potential grid in order to implement the effects.

We find that we can calculate the effects pertaining to the addition of
massive neutrinos, photons and GR corrections at the per mille level on
large scales, where structure formation is purely linear. On smaller scales
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we find, as expected, that the effects of massive neutrinos are completely
dominated by the absence of a clustering matter component, and that our
results are identical to those found in a completely Newtonian N -body
run.

The corrections studied here are typically at the level of a few percent
on large scales, large enough that they should be included when comparing
against data from future very large surveys such as Euclid [2] and
LSST [1].
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9.A Computing γ

Here we will go through the steps necessary to calculate the quantity γ,
appearing in (9.4). We will assume a spatially flat universe throughout
this section. We start from the following definition of γ from equation 4.12
in [20]:

γk2 ≡ −
(
∂τ +

ȧ

a

)
ḢT + 8πGa2Σ (9.9)

= −
(
∂τ +

ȧ

a

)
ḢT + k2(φ− ψ) , (9.10)

where the last line provides a convenient way of obtaining the total shear
from quantities available in class.

Given that we run the simulations using N -body gauge we will now
fix our discussion to this gauge. In N -body gauge, we have HNb

T = 3ζ,
where ζ is the comoving curvature perturbation, leading to

ḢNb
T = 3ζ̇ = 3

ȧ

a

[
− δP

c

ρ+ P
+ σ

]
, (9.11)

where we have used the conservation equation for ζ in comoving gauge
(equation 41 in [31]). The following gauge transformation of δP c is valid
in both the Synchronous and Newtonian gauges since B = 0 in those
gauges:

δP c = δP s/c + Ṗ
θs/c

k2
. (9.12)



Computing γ 163

Combining the equations, we find the following formula:

ḢNb
T = 3

ȧ

a

1

ρ+ P

[
−δP s/c + Ṗ

θs/c

k2
+ (ρ+ P )σ

]
. (9.13)

Three of the quantities in this equation, δP , Ṗ and σ are not readily
available in the standard version of class. Thus, it is convenient to
modify class slightly to output this quantity. We need a formula for Ṗ
inside class that also includes non-cold dark matter. From equation 3.14
in [32] we find

Ṗα = − ȧ
a
(5Pα − pα) , (9.14)

where p is the pseudo-pressure defined in [32]. For any pressureless
species, pα ' P ' 0, and for relativistic species we have pα ' P . We
can then write the time-derivative of the total pressure in terms of the
total pressure and pncdm,tot:

Ṗ =
∑
α

Ṗα = − ȧ
a

(
4P + Pncdm,tot − pncdm,tot

)
. (9.15)

Using this prescription we have modified class to provide ḢNb
T in

N -body gauge, which through (9.10) provides the quantity γ.
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10 Non-linear Neutrinos

This chapter contains the paper ‘νconcept: Cosmological neutrino sim-
ulations from the non-linear Boltzmann hierarchy’, which I co-authored
together with Jacob Brandbyge, Steen Hannestad, Troels Haugbølle
and Thomas Tram. It was put on arXiv and submitted to JCAP in
December 2017. Due to issues with convergence for large neutrino masses
as described in the paper, the referee has requested two major revisions.
Though I doubt that we can solve this issue before then, we plan to
resubmit it in late December 2018.

The version of the paper presented here includes the first batch of
revisions, and so it differs somewhat from the version found on arXiv. In
addition, slight syntactic modifications to the paper have been made in
order for its notation to better match that used in the main thesis. The
most noticeable difference not adapted for is the use of an overdot as
differentiation with respect to conformal time, whereas in the main part
of this thesis an overdot refers to differentiation with respect to cosmic
time. An error relating to this difference has been corrected in (10.10).

In the paper we demonstrate our framework for solving the non-
linear neutrino hierarchy up to `nl = 1, while using linear higher order
moments. The paper is rather large and touches on many aspects in this
thesis, including the non-linear equations from the Boltzmann hierarchy
(section 3.2), numerical fluid dynamics (sections 6.2 and 6.4), linear
(section 7.2) and non-linear realisations (section 7.4). It also contains
numerical results of such non-linear neutrino simulations, which other
than that of figure 6.1 have been left out of the main body of this thesis.
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10.1 Introduction
The large scale structure in our Universe has been mapped to unprece-
dented precision during the past decade and provided a spectacular
amount of information on cosmological parameters. Within the coming
few years large scale structure surveys such as Euclid [1] and LSST [2] will
increase the available amount of data by yet another order of magnitude.
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These surveys are likely to provide the first evidence for non-zero neutrino
masses, and eventually enable a precise measurement of the neutrino
mass. This is possible because neutrinos have a significant influence on
the formation of structure and lead to damping of fluctuations on small
scales. However, the sensitivity of large scale structure formation to the
neutrino mass also requires neutrinos to be modelled accurately in e.g.
N -body simulations.

In order to follow non-linear structure formation of collision-less
species it is necessary to solve the collision-less Boltzmann equation,

d
dtf(x,p, t) = 0 . (10.1)

However, solving the equation in the full 6+1 dimensional case is currently
not numerically feasible. For cold dark matter the problem can be greatly
simplified because the CDM particles have no thermal velocity, reducing
the problem to effectively 3+1 dimensions while the perturbations are
linear. The most commonly used method for tracking structure formation
with CDM is to represent the distribution function, f , with particles and
follow these in phase space.

Unfortunately, neutrinos cannot easily be followed in the same way
because their thermal velocities are larger than, or comparable to, the
gravitationally induced streaming velocities. Several schemes have been
devised for studying non-linear neutrino structure formation:

• Using a particle representation of the full neutrino distribution
function (e.g. [3–10]). This requires a much larger number of
particles than for CDM because the momentum dependence of
the distribution function must be tracked. Furthermore, if the
simulation is started early the neutrino structures will be completely
noise dominated because of the large thermal velocities.

• Assuming that neutrino perturbations remain linear [11–13]. A
simple scheme which is known to work well for small neutrino
masses is to use the linear neutrino density field calculated by
realising the linear neutrino transfer function on a grid [11]. An
improvement on this is to solve the linear theory neutrino equations,
but use the full non-linear gravitational potential calculated in the
simulation. [12,13]. However, in both cases this scheme only works
for small neutrino masses where neutrino perturbations remain
linear at all times.
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• A hybrid combination of the 2 former methods where the neutrino
component is initially followed with linear theory but later on,
as the thermal velocities approach the gravitationally induced
streaming velocities, followed with N -body particles [14].

Here, we want to take a somewhat different approach. We start
from the full momentum-dependent Boltzmann equation and use the
BBGKY [15–17] approach to turn this into a hierarchy of velocity moment
equations. For a perfect fluid this hierarchy closes at order 1 and leads
to the continuity and Euler equations. However, because neutrinos have
a large anisotropic stress component we need to go beyond order 1 in
the hierarchy. We demonstrate this by solving the two first moment
equations in full non-linear theory while treating the stress and pressure
perturbations in linear theory (scaled by the non-linear density field)
leads to very accurate results.

We note that the approach of closing the equations at the second
moment was also pursued in [18], where the Boltzmann equation for
neutrinos is similarly recast into hierarchy form, and the integrated (fluid)
equations are then solved. However, in [18] the solution is restricted to
non-relativistic particles and the moment hierarchy is closed using an
estimate of the second moment gained from the motion of test particles.
In this work we use a version of the second moment which guarantees
that the solution has the correct behaviour in the linear regime while
also allowing for fully non-linear evolution of structure. Furthermore the
method presented here works for both relativistic and non-relativistic
fluids.

The paper is structured as follows: In section 10.2 we describe the
theoretical considerations needed to formulate the hierarchy equations.
In section 10.3 we discuss the needed linear theory evolution and how
to set up initial conditions for the simulations. Section 10.4 contains
a review of the numerical methods employed in the simulations, and
section 10.5 gives a discussion of our main results. Finally, section 10.6
contains our conclusions.

10.2 Theory
10.2.1 The Non-linear Boltzmann Equation
The Boltzmann equation is an evolution equation for the distribution
function (a function of 7 parameters) which we choose in their covariant
form, namely xµ and P i. This 7-dimensional problem can be recast
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into a 4-dimensional one by taking moments of the Boltzmann equation.
The reduction of the dimensionality from integrating out the momen-
tum dependence comes at the price of an infinite hierarchy of moment
equations.

The symmetric energy-momentum tensor has 10 independent compo-
nents which are related to the distribution function, f , via the integration

Tµν ≡
√−g

∫
d3P f

PνP
µ

P0
. (10.2)

These 10 components can be used to define 10 fluid variables, namely δ,
ui, δP/δρ and σij . The relations are given by

T 0
0 = −sρ(1 + δ) , (10.3)

T i0 = −sρ

(
1 + δ + w + δP

δρ
δ

)
ui , (10.4)

θ = ∂iu
i , (10.5)

T ij = sρ

(
w + δP

δρ
δ

)
δ
i
j + sρ

(
1 + δ + w + δP

δρ
δ

)(
uiuj + σij

)
, (10.6)

with sρ the average density, sP the average pressure and w ≡ sP/sρ. Finally,
δ
i
j is the Kronecker delta and σij is traceless. These terms are progres-

sively higher order in the velocity expansion. The zero order term is δρ,
first order terms are ui and θ, while δP and σij are second order terms.

The moment equations can be found by integrating the non-manifestly
covariant Boltzmann equation for f (see [19,20]),

Pµ
∂f

∂xµ
− PµP λΓ iµλ

∂f

∂P i
= 0 , (10.7)

over the invariant volume element d3P I, which for contravariant momen-
tum variables P i is given by

d3P I = mc

P0

√−g d3P , (10.8)

with d3P = dP 1 dP 2 dP 3.
The following moment equations will be derived in the conformal

Newtonian gauge with line-element [21]

ds2 = −a2(1 + 2ψ)dτ2 + a2(1− 2φ)dx2 . (10.9)
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10.2.2 The Moment Equations
Zeroth moment: The continuity equation
Multiplying the Boltzmann equation (10.7) with P0 and integrating, we
recover the general relativistic continuity equation in the weak-field limit:

δ̇ =− (1 + w)(θ − 3φ̇)− 3 ȧ
a

(
δP

δρ
− w

)
δ

− θδ − ui∂iδ

+ 3
(

1 + δP
δρ

)
φ̇δ − δP

δρ
θδ − ui∂i

(
δP

δρ
δ

)
− (∂iψ − 3∂iφ)

(
1 + δ + w + δP

δρ
δ

)
ui , (10.10)

where a dot implies differentiation with respect to conformal time.

First moment: The Euler equation
To get the Euler equation, we must multiply the Boltzmann equation
with P0P

i/P 0, which after integration gives

u̇i =−
[
ȧ

a
(1− 3w)− ψ̇ − 5φ̇

]
ui −

[
δ̇ + ẇ + ∂τ (δP/δρ)δ)

]
ui + δij(1 + δ)∂jψ

1 + δ + w + (δP/δρ)δ

− 1
sρ
(
1 + δ + w + (δP/δρ)δ

)[δik(∂j + ∂jψ − 3∂jφ) + δkjδ
il∂`φ

]
T jk .

(10.11)

The continuity and Euler equations could also be found from energy-
momentum conservation, i.e. ∇µTµν = 0.

The second moment: Pressure and anisotropic stress
The second moment equation is found by multiplying the Boltzmann
equation with the factor PiP j/P 0 and then integrating, i.e. from the
equation

√−g
∫

d3P
PiP

j

P0P 0

(
Pµ

∂f

∂xµ
− PµP λΓ kµλ

∂f

∂P k

)
= 0 . (10.12)

Defining the third cumulant as

Πµλ
ν ≡
√−g

∫
d3P f

PνP
µP λ

P0P 0 , Tµν ≡ Πµ0
ν , (10.13)
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and likewise for higher moments, and using the covariant derivative

∇µΠjµ
i = ∂µΠ

jµ
i + Γ jµνΠ

νµ
i + ΓµµνΠ

jν
i − Γ νiµΠjµ

ν , (10.14)

one can arrive at the second-moment equation which gives the time-
derivative of T ij

∇µΠjµ
i = Γ 0

µνΠ
jµν

i , (10.15)
or equivalently

∇0T
j
i = Γ 0

00 T
j
i + 2Γ 0

0kΠ
jk
i + Γ 0

k`Π
jk`

i −∇kΠ
jk
i . (10.16)

The time-evolution of T ji will depend on the third moment and a
contracted version of the fourth moment of the distribution function.
This is analogous to the continuity equation where δ̇ depends on T i0 and
δT ii .

10.2.3 Closing the Hierarchy
The equation for ∇0T

j
i is complex and depends on several higher order

moments. Instead of solving it directly to get the inputs to the continuity
(δT ii ∼ δP ) and Euler (T ij ∼ σij , δP ) equations we will estimate these
non-linear terms from their linear counterparts as follows.

Assuming the ratio δP/δρ to be independent of the amplitude of the
perturbations, we find

δPnl(k) ' δρnl(k)
(
δP (k)
δρ(k)

)
l
, (10.17)

where ‘l’ stands for linear and ‘nl’ for non-linear.
Since σij has the same velocity order as δP we will likewise estimate

σij,nl(k) ' δρnl(k)
(
σij(k)
δρ(k)

)
l

. (10.18)

We shall refer the reader to appendix 10.A for more details on the
realisations.

10.2.4 The Continuity and Euler Equations in
Conservation Form

For the numerical implementation it is preferable to express the fluid
equations using conserved quantities only. To this end, we define the
‘conserved’ density %, current J i, pressure P and anisotropic stress ς ij as

% ≡ a3(1+w)ρ , (10.19)
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J i ≡ a4(ρ+ P )ui , (10.20)
P ≡ a3(1+w)P , (10.21)
ς ij ≡ (%+ P)σij , (10.22)

where the effective equation of state w is given by

w(a) ≡ 1
ln a

∫ a

1

w(a′)
a′

da′ . (10.23)

With these variables, the continuity (10.10) and Euler (10.11) equations
become

%̇ =− a3w−1∂iJ
i

+ 3aH(w%− P)
+ a3w−1J i∂i(3φ− ψ)
+ 3(%+ P)φ̇ (10.24)

and

J̇ i =− ∂j
[
a3w−1 J

iJj
%+ P + a−3w+1ς ij

]
− a−3w+1∂iP
− a−3w+1(%+ P

)
∂iψ

− a3w−1 J
jJi

%+ P ∂
iφ

+
[
a3w−1 J

iJj
%+ P + a−3w+1ς ij

]
∂j(3φ− ψ)

+ J i(ψ̇ + 5φ̇) . (10.25)

The claim of conservation of the chosen variables can be checked by
spatially averaging (10.24) and (10.25), indeed leading to ṡ% = ṡJ i = 0.

In our simulations we neglect the difference between φ and ψ (which
is sourced by anisotropic stress), neglect time-derivatives of φ and ψ and
disregard terms of order ∂iφui and higher, from which terms with ∂iφJ i
and ∂iφσij vanish. Thus only the first two terms of (10.24) and the first
three terms of (10.25) are kept.

10.3 The Linear Computation
We compute the linear evolution of all species using the Einstein-Boltzmann
code class [22, 23]. In the notation of [21], the distribution function is
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Table 10.1 – Cosmological parameters and numerical settings for the
class runs used.

Parameter ΛCDM
∑
mν = 0.15 eV

∑
mν = 0.3 eV

∑
mν = 1.2 eV

As 2.3× 10−9 2.3× 10−9 2.3× 10−9 2.3× 10−9

ns 1.0 1.0 1.0 1.0
τreio 0.097765 0.097765 0.097765 0.097765
Ωb 0.05 0.05 0.05 0.05
Ωcdm 0.250 0.247 0.243 0.224
Ων 3.48× 10−5 3.29× 10−3 6.57× 10−3 2.61× 10−2

Nq,ν · · · 2310 1154 344
`max,ν · · · 2000 2000 1601

expanded as
f(τ,x,p) = f0(q)

[
1 + Ψ(τ,x,p)

]
, (10.26)

and the evolution equation for Ψ(q, k, q̂ · k̂) is then solved in Fourier
space. The angular dependence of Ψ is expanded in Legendre multipoles
resulting in an infinite hierarchy which is then truncated at some finite
`max. We refer the reader to [21] for the derivation of the equations.

In this work we do not investigate effects due to the precise neutrino
mass hierarchy chosen, and so each neutrino species gets assigned exactly
1/3 of this total mass

∑
mν . Though unrealistic, this is a perfectly good

choice for method testing as its leaves
∑
mν as the only free neutrino

parameter, which is precisely the parameter on which the dampening of
the matter power spectrum is sensitive.

Neither class nor camb [24, 25] produce accurate neutrino transfer
functions at their default precision settings since both codes are optimised
to produce accurate CMB and matter power spectra, which do not
depend strongly on the late-time neutrino evolution. By increasing the
precision parameters of both codes, we have found that agreement can
be established at the 1%-level or better. We refer the interested reader
to appendix 10.B for more details.
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Figure 10.1 – Linear δP/δρ for
∑
mν = 1.2 (top), 0.3 (middle) and 0.15

eV (bottom), as function of a (left) and of k (right). Note that all plots
share the same legend, so that e.g. the blue line on the left corresponds to
k = 0.02 Mpc−1 while the blue line on the right corresponds to a = 0.02.
The dashed lines show the corresponding w (a2w for the left plots). For
the class precision settings used, see table 10.1.

10.3.1 δP/δρ and σ in linear theory
Following the notation of [26], δP , δρ and σ are related to the Legendre
multipoles of Ψ` as

δρ = 4π
(
Tν,0
a

)4 ∫ ∞
0

f0 dqq2εΨ0 , (10.27)

δP = 4π
(
Tν,0
a

)4 ∫ ∞
0

f0 dq q
4

3εΨ0 , (10.28)

(sρ+ sP )σ = 8π
(
Tν,0
a

)4 ∫ ∞
0

f0 dq q
4

3εΨ2 . (10.29)

The effective sound speed squared, δP/δρ, turns out to be extremely
challenging to compute numerically. The real δP/δρ is expected to
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Figure 10.2 – Linear σ for
∑
mν = 1.2 (top), 0.3 (middle) and 0.15 eV

(bottom), as function of a (left) and of k (right). As in figure 10.1, all
plots share the same legend. For the class precision settings used, see
table 10.1.

be a smooth and monotonic function of a, but because the monopole
perturbation Ψ0 is highly oscillatory until q � ε, the discretisation of
the systems can easily lead to pathological behaviour of δP/δρ unless
an extremely large number of momentum bins is used. We find that in
some cases it is necessary to use well over 2000 bins (compared to the
standard class setting using 5 bins) before the results converge over the
required range of a.

Furthermore, reflections from the large-` boundary used to close
the system of equations can lead to spurious effects such as coherent
oscillations of δP/δρ. We find that we need `max & 2000 to ensure
convergence (compared to `max = 17 in the standard setting). Running
class at such extreme precision-settings requires several hundred CPU-
hours for a single model, which should be compared to the ∼ 10 CPU
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seconds required at default precision. The runtime of class is still a
small fraction of the total runtime, but we nevertheless store the class
runs to the disk in order to avoid unnecessary recalculations.

Figure 10.1 shows the linear δP/δρ resulting from three class com-
putations with different neutrino masses. These are the linear δP/δρ
values used in our simulations. The slight k-dependence makes the local
pressure substantially lower than what would be found by approximating
δP/δρ ' w, especially for lower (more realistic) neutrino masses. Failure
of taking this k-dependence into account leads to a mismatch between the
equations solved in class and those solved in concept, which manifests
as spurious generation of oscillations in the neutrino density field.

Figure 10.2 shows the linear σ resulting from the same three class
computations as was used for figure 10.1. These are the linear σ values
used in our simulations. The high k modes have not quite converged at
early times, but since σ falls off rapidly with k these oscillatory high k
modes should only contribute a very low amount of noise to the real-space
σ.

10.4 Implementation Details
The methods developed in this paper has been implemented into the
concept code, a new cosmological code capable of simultaneously
evolving N -body particles (matter) and fluids (neutrinos), interacting
under mutual and self-gravity. We have fully integrated the class
code into concept, including an MPI-parallelised method of calling
class from concept, enabling multi-node class computations. With
this integration the concept code has easy access to the evolution
of background and linear variables, from which realisations of particle
distributions and fluid fields are made. Such realisations are used both
for initial condition generation and to close the Boltzmann hierarchy
during the N -body simulation.

The code is mostly written in Python. For performance, the code
may optionally (and preferably) be compiled to C code via Cython. For
further optimisations and to lower the Python/Cython barrier, a custom
Python→ Cython transpiler is built in as part of concept. The code
is MPI-parallelised with a fixed spatial domain decomposition, dividing
up the simulation box into rectangular boxes of equal volume. Each MPI
process is then responsible for what goes on within one such domain.
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10.4.1 Dynamics
In concept the collections of either N -body particles or fluid variable
grids, which are to be evolved dynamically, are grouped into components.
Particle components consists of a fixed number of particles N , of equal
mass m, whereas fluid components consists of a fixed set of regular,
cubic grids of fixed resolution, one for each scalar fluid variable. In
the simulations carried out for this paper, baryons and dark matter
are grouped together into one particle component, while the neutrino
component consists of grids storing %(x), J i(x), P(x) and ς ij (x). Of
these fluid variables, only % and J i are treated as non-linear variables,
evolved via (10.24) and (10.25) with terms neglected as described in
subsection 10.2.4. Since J i is a vector quantity, this requires 4 grids.
The higher-order variables P and ς ij are not evolved non-linearly, but
realised at each time step anew. Storing the full ς ij would require 6
additional grids (5 if we took advantage of the tracelessness). However,
as ς ij is only needed once during each time step (in the Euler equation),
a single grid is used to store each of its components in turn.

In each time step, all particles and fluid elements are evolved forward
in time by the same amount ∆τ . A leapfrog time integration scheme is
used, in which every other time step is either a ‘kick’ or a ‘drift’ step.
In a ‘kick’ step, all source terms in the evolution equations are applied.
For particle components, the only source term is that of gravity. For
fluid components, a term is considered a source term if it is not a flux
(divergence) term of one of the lower-order variables % and J i. Explicitly,
the partition of terms into flux and source terms is

%̇ = −
flux term︷ ︸︸ ︷
a3w−1∂iJ

i +
source term︷ ︸︸ ︷

3aH(w%− P) , (10.30)

J̇ i = − a3w−1∂j
J iJj
%+ P︸ ︷︷ ︸

flux term

− a−3w+1
[
∂jς ij + ∂iP +

(
%+ P

)
∂iψ

]
︸ ︷︷ ︸

source terms

. (10.31)

The MacCormack method
In ‘drift’ steps, particle positions xi are updated according to their
momenta, while the fluid grids are evolved according to the flux terms of
(10.30) and (10.31). To solve these two coupled equations simultaneously,
the simple MacCormack [27] finite difference method is used. This method
consists of a predictor followed by a corrector step, here illustrated for
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the flux term of the continuity equation:

%?(x) = %(x)−
3∑
i=1

1
|∆xi|

[
J i(x+ ∆xi)− J i(x)

] ∫ τ+∆τ

τ
a3w−1 dτ ,

%(x)→ 1
2
[
%(x) + %?(x)

]
−1

2

3∑
i=1

1
|∆xi|

[
J i?(x)− J i?(x−∆xi)

] ∫ τ+∆τ

τ
a3w−1 dτ .

(10.32)
Here the slopes in ∂iJ

i are approximated by the difference between
neighbouring grid points along each dimension. The size of the spatial
step |∆xi| = ∆x is then just the grid spacing, which in concept is the
same for all dimensions. In the predictor step, a temporary %?(x) grid is
build from “rightward” differences of %(x), whereas in the corrector step
%(x) is updated from “leftward” differences of %?(x).∗ In the corrector
step, J i? is needed, and so the predictor step needs to have been carried
out on both the continuity and Euler equation before the corrector step(s)
can be applied. This effectively doubles the amount of memory needed to
store the non-linear % and J i variables. In (10.32), all fluid variables on
the right-hand side are implicitly evaluated at the current time τ . One
might argue that a more self-consistent treatment of the time-dependent
function a3w−1 was to similarly evaluate this at time τ , rather than
integrating over the time step interval. The choice of keeping the integral
is inspired by [28].

For particle components, the leapfrog method ensures that xi and pi
are always out-of-sync by ∆τ/2. That is, instead of letting e.g. xi evolve
by an amount ∆τ ahead of pi and then syncing up the system by letting
pi evolve by ∆τ , we first ensure that xi and pi are out-of-sync by ∆τ/2,
leading them to ‘leapfrog’ past one another at every time step. This
then treats xi and pi symmetrically, which is the key to the stability of
the leapfrog method [28]. The predictor and corrector steps in which the
MacCormack scheme splits up a single (‘drift’) time step can be thought
of as two half time steps, each of duration ∆τ/2. For fluids, applying
gravity out-of-sync by half a time step then means that the gravitational
forces applied are those matching the time right after the predictor and
before the corrector step. In this way, though gravity is only applied half

∗As we are in 3D, “rightwards” might be taken to refer to the (+1,+1,+1) direction.
In total, 8 possible directions (±1,±1,±1) exist. To avoid spurious generation of
anisotropy, concept cycles through these 8 directions over a period of 8 time steps.
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Figure 10.3 – 1D test simulations demonstrating the density smoothing
extension to the MacCormack method. At time ti, a sinusoidal wave with
minimum density close to 0 is assigned a velocity field which diverges away
from this minimum. This wave is then evolved to time tf under self-gravity,
leading to rapid growth of the low-density region. The same simulation is
carried out using particles and a fluid with w = 0.

as often as flux terms, it is applied fairly with respect to the predictor
and corrector step.

The bare MacCormack method as illustrated in (10.32) is not positivity-
preserving, meaning that it is possible for %(x) to take on slightly negative
values, regardless of the smallness of ∆τ . This can be prevented using
e.g. total variation diminishing (TVD) extensions [29, 30] to the method,
where flux limiters are applied in order to diminish discontinuities, effec-
tively smoothing out the fluid. We choose a simpler solution, in which a
check for negative densities is inserted after each MacCormack step. If a
cell with negative density is found, % and J i of the surrounding block
of 27 cells are smoothed out slightly.∗ This operation is quick and only
perturbs the fluid in low density regions, as well as in regions with large
density gradients.

To stabilise the method we found it necessary to apply the smoothing
not only when the density of a fluid cell became negative, but also
when a cell lost a large fraction of its total energy. This is needed
because the MacCormack method introduces dispersive errors around
steep gradients, which makes some kind of artificially added viscosity
necessary. Figure 10.3 demonstrates the effect of this smoothing. We
see that the smoothing leaves the overall evolution intact, but erases

∗Here, smoothing is performed on each pair of cells in such a way as to preverse
their total energy and momentum, with the amount of smoothing inversely proportional
to their squared mutual distance.
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discontinuities. We do not expect this to seriously perturb our neutrino
fluid, as here the pressure term acts as to smooth out the fluid, making
it very hard for sharp discontinuities to arise.

Time step size
The size of ∆τ is chosen to be as large as possible without affecting
the physics. Here the most important limiter is the (global) Courant
condition, which we may write as

∆τ < ∆x√
3 (c
√
w + |u|max)

, (10.33)

|u|max =

a
−1 max

i
|pi|/m , (particles)

a3w−1 max
x

∣∣J i(x)/[%(x) + P(x)]
∣∣ . (fluids)

Thus the particle or fluid element with largest Courant number sets the
global pace of time. For fluid components, (10.33) states that ∆τ should
be small enough so that a sound wave travelling with speed c

√
w on

top of the bulk flow with maximal peculiar speed |u|max cannot traverse
an entire (comoving) grid cell within a single time step.∗ For particles,
the story is very much similar, except w ≡ 0 and the value of ∆x has
to be redefined. As particles by definition do not live on a grid, no
inherent grid spacing exists. However, since gravitational interactions are
implemented using the particle-mesh method (see subsection 10.4.2), we
use the grid spacing of this mesh as the corresponding ∆x for particles.

10.4.2 Gravity
The concept code has a rather modular interaction framework, in
which different interactions and numerical methods may be assigned
to different components. Currently only gravity is implemented, but
several methods are available. For particle components, gravity can be
computed using either the particle-particle (PP), particle-mesh (PM)
or particle-particle-particle-mesh (P3M) method. Because both the PP
and P3M methods are based on direct summation, they are virtually
exact. However, in the current concept version PP and P3M are too
time-consuming for large simulations and we therefore use the code in

∗As seen from figure 10.1, the actual, local sound speed
√
δP(x)/δ%(x) might be

somewhat greater than c
√
w , and so (10.33) might not be a strong enough condition.

We correct for this by simply multiplying the right-hand side of (10.33) with a small
fraction.
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PM set-up. As this method works by solving the Poisson equation on a
mesh, it has an intrinsic limit to the force resolution.

As fluid components already have an intrinsic resolution limit, nothing
is lost by using the PM method, and so only this method is implemented
for fluid components. The remainder of this subsection lays out how the
PM method is implemented, first for particle-only simulations and then
for simulations with both particle and fluid components.

The PM method
The basic strategy of the PM method for particle-only simulations is as
follows. Construct the total density field ρ(x) on a mesh via interpolation.
Now Fourier transform this mesh in-place; ρ(x)→ ρ̃(k). Convert the grid
values to that of the Fourier transformed Newtonian peculiar gravitational
potential, ρ̃(k)→ ϕ̃(k), using the Poisson equation

ϕ̃(k) = −4πGa2

|k|2 ρ̃(k) , ϕ̃(0) = 0 . (10.34)

Now perform an inverse Fourier transform to obtain the potential in
real space, ϕ̃(k) → ϕ(x). Finally, use finite difference techniques to
obtain approximations for −∂iϕ at each grid point and interpolate the
resulting forces back to the particle positions and apply them. Note that
a separate mesh is needed to store the forces −∂iϕ. The fast Fourier
transforms used automatically impose the needed periodic boundary
conditions.∗

Though the same grid in memory is used to store ρ(x), ρ̃(k), ϕ̃(k)
and ϕ(x) values, we shall refer to this grid consistently as the ϕ grid. In
concept, the cloud-in-cell (CIC) method is used for the interpolations
to and from the ϕ grid. This method distributes each of the particles
throughout the ϕ grid, with a weight at each grid point xm given by the
geometric overlap between the particle and the grid point, where both
the particle and the grid point are imagined to have a cubic shape with
side lengths equal to the grid spacing of the ϕ mesh, ∆xϕ. Denoting the
weight at mesh point xm of a particle at xp by W (xm − xp), we have

W (x, y, z) =


(

1− |x|
∆xϕ

)(
1− |y|

∆xϕ

)(
1− |z|

∆xϕ

)
if all |x|, |y|, |z| < ∆xϕ,

0 otherwise .
(10.35)

∗concept uses the fftw library for MPI-parallel 3D in-place real FFT’s.
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Note that the weights (10.35) are only non-zero for the 8 grid points
closest to the particle. With the CIC weights (10.35), we can write down
the interpolation as a convolution,

ρm(x) = W (x)
∆x3

ϕ
∗ ρ(x) , ρ(x) = m

a3

N∑
i=1

δ(x− xi) , (10.36)

where ρm is the mesh-interpolated density and the factor a−3 is needed
since ρ is physical while x is comoving. It is to be understood that
numerically, all fields are only defined at the grid points. Thus, though
x in (10.36) is in some sense a discrete variable, this notion clashes with
the convolution operation. Instead, let x be continuous but make the
distinction that numerical grids (e.g. ρm) are only defined at the grid
points, unlike their physical counterparts (e.g. ρ).

In the Poisson equation (10.34), the actual density ρ is needed.
Though what lives on the grid is really the interpolated values ρm(x) ∝
W (x) ∗ ρ(x). Simply ignoring this difference leads to errors on scales
comparable to the grid spacing ∆xϕ. We correct for this by “undoing”
the CIC convolution while in Fourier space, where the convolution with
W (x) turns into multiplication of W̃ (k). The Poisson equation (10.34)
then becomes

ϕ̃m(k) = −4πGa2

|k|2
∆x3

ϕ

W̃ (k)
ρ̃m(k) , ϕ̃m(0) = 0 , (10.37)

where again, the subscript ‘m’ indicates that this is a numerical grid.
The Fourier transform of the CIC weight (10.35) is

W̃ (kx, ky, kz) = ∆x3
ϕ

[
sinc

(∆xϕkx
2

)
sinc

(∆xϕky
2

)
sinc

(∆xϕkz
2

)]2
.

(10.38)
Equation (10.37) results in a properly deconvolved potential on the ϕ
grid, though our interest is really the resulting forces at the locations
of the particles. Since another CIC interpolation is used to interpolate
the forces from the grid points and onto the particles, a total of two CIC
deconvolutions are actually needed. The potential actually calculated
in particle-only simulations is then ϕ̃m(k)∆x3

ϕ/W̃ (k). Note that this is
not the most accurate grid representation of the potential, but it does
lead to the most accurate forces after one additional CIC convolution.
Finally, just as we replaced a3w−1∆τ with the integral of a3w−1 over the
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time step in (10.32), here we replace the a2 in (10.37) with its average
value over the time step. Thus what is really computed on the ϕ grid is

∆x3
ϕ

W̃ (k)
ϕ̃m(k) = −4πG

|k|2
[ ∆x3

ϕ

W̃ (k)

]2
ρ̃m(k)∆τ−1

∫ t+∆τ

τ
a2 dτ , (10.39)

where again, the DC (k = 0) mode is to be disregarded.

Generalising the PM method
We shall now take a closer look at the needed generalisations to the PM
method necessary when both particle and fluid components are present
in the same simulation.

We can extend the CIC interpolation scheme to fluid components
by specifying a coordinate xp for each fluid element, which should be
taken to be at the center of each grid cell. Just as with particles, the
CIC interpolation treats fluid elements as cubes with side lengths equal
to the grid spacing ∆xϕ of the ϕ grid, regardless of the resolution
of the fluid grids themselves.∗ If the fluid grid happens to be of the
same resolution as the ϕ grid, all grid points coincide and the CIC
interpolation (10.35) reduces to the trivial mapping, i.e. the interpolated
and the original grids are equal. In effect then, for fluids with a grid size
matching that of the ϕ grid, no CIC interpolation is carried out, and so
we are actually worse off if we insist on performing the deconvolutions.
Thus, to solve gravity properly, separate computations and ϕ grids
are needed for particle and fluid components. Essentially, one grid,
ϕparticles, solves the Poisson equation as already described, including the
deconvolutions, while another grid, ϕfluids, solves the Poisson equation
without the deconvolutions.† Importantly, both ϕparticles and ϕfluids

should account for the total gravitational potential from both particle
and fluid components.

With two separate grids for particle and fluid components, we can
construct the mesh-interpolated densities of all particle components

∗Interpolating a homogeneous low resolution fluid grid onto a high resolution ϕ grid
thus leaves ϕ with a lot of empty cells. A better fluid interpolation would distribute
each fluid cell over the corresponding volume in the ϕ grid. As all simulations for this
paper use the same grid size for fluid and potential grids, this is of no concern for our
results.

†It is unclear whether carrying out CIC deconvolutions improves or worsens the
results for fluids with resolutions different from that of the ϕ grid. In concept, the
ϕfluids grid is never deconvolved, regardless of the resolution of the fluid grids.
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ρparticlesm and of all fluid components ρfluidsm by generalisation of (10.36):

a2ρparticlesm (x) = W (x)
∆x3

ϕ
∗
∑
α

mα

Nα∑
i=1

δ(x− xα,i)∆τ−1
∫ τ+∆τ

τ

dτ
a
,

(10.40)

a2ρfluidsm (x) =
∑
α

%α(x)∆τ−1
∫ τ+∆τ

τ

dτ
a3wα+1 , (10.41)

with only the particles being convolved. Here, α in equation (10.40) runs
over all particle components, while α in equation (10.41) runs over all
fluid components. Allowing for multiple fluid components with different
w introduces different integrands of the integrals over the time step,
which is why these integrals must be moved from the common potential
(10.39) and onto the individual densities. As both ρparticlesm and ρfluidsm are
numerical grids, they can immediately be used in the Poisson equation
for ϕfluids

m , while a CIC convolution is required for them to be used in the
Poisson equation for ϕparticles

m . Accounting for the single CIC convolution
of (10.40), we end up with

∆x3
ϕ

W̃ (k)
ϕ̃particles
m (k) = −4πG

|k|2
[( ∆x3

ϕ

W̃ (k)

)2
a2ρ̃particlesm (k) +

∆x3
ϕ

W̃ (k)
a2ρ̃fluidsm (k)

]
,

(10.42)
∆x3

ϕ

W̃ (k)
ϕ̃fluids
m (k) = −4πG

|k|2
[ ∆x3

ϕ

W̃ (k)
a2ρ̃particlesm (k) + a2ρ̃fluidsm (k)

]
,

(10.43)

where, as usual, we ignore the DC modes. The implementation of the two
ϕ grids in concept is as memory efficient as possible. Equation (10.40)
and (10.42) and their Fourier duals all live on one grid, while (10.41) and
(10.43) and their Fourier duals live on another grid. A single additional
grid is used for the final forces −∂iϕparticles

m and −∂iϕfluid
m .

From (10.42) and (10.43), we see that constructing the two versions
of the potential from the densities requires 4 FFT’s. Realising Pν(x)
and all 6 components of ς ij,ν(x) requires a total of 1 + (1 + 6) = 8 FFT’s,
where the one additional FFT is is due to the construction of ρ̃ν(k),
needed for the non-linear realisations as described in subsection 10.2.3.
We choose to keep ρ̃ν(k) around as a separate grid, which further increase
the memory consumption, but saves us from having to recompute ρ̃ν(k)
1 + 6 times. In total, these 12 FFT’s per time step take up about half
(for simulations with grid size 12003) of the computation time.
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Figure 10.4 – Real space density plots for the
∑
mν = 1.2 eV simulation

with grid size 6003. All plots have dimensions 512 Mpc/h× 512 Mpc/h and
a depth of 8.5 Mpc/h. The color scale is different for each plot. For the
neutrino plots, the color scalings are linear, though with different absolute
values. Each matter plot has its own non-linear color scaling.

10.5 Results
In order to test the code and compare against the hybrid neutrino method
of [14], we have performed a suite of different simulations, which are
presented in table 10.2 and table 10.3. Table 10.1 also specify the Ων
corresponding to

∑
mν in each simulation. We have furthermore used

a flat cosmology with ΩΛ = 0.7, Ωb = 0.05, Ωcdm = 0.25−Ων , h = 0.7,
ns = 1 and As = 2.3 · 10−9.

In order to get the linear theory predictions needed for the initial
condition as well as the realisation of σ/δρ and δP/δρ we have run class
with settings given in table 10.1, as described in section 10.3.

Figure 10.4 shows slices of the simulation volume in concept at 4
different redshifts. The density fields of both the CDM particle compo-
nent and the neutrino grid component are displayed. The suppression of
small scale structure in the neutrino component due to free-streaming is
clearly visible.

10.5.1 The Neutrino Power Spectra
In figure 10.5 we show the absolute matter and neutrino power spectra
from simulations B, D, and F, with parameters given in table 10.2.
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Table 10.2 – concept simulations used in this work. All simulations are
started at zi = 49.

Sim
∑
mν [eV] Lbox [Mpc/h] Npart

CDM Ngrid
ν

A 0.15 512 6003 6003

B 0.15 512 12003 12003

C 0.30 512 6003 6003

D 0.30 512 12003 12003

E 1.20 512 6003 6003

F 1.20 512 12003 12003

G 1.20 1024 12003 12003

H 1.20 512 16803 16803

Table 10.3 – Simulations run with the hybrid neutrino code presented
in [14]. All simulations are started at zi = 49. Neutrinos with q/T ≤ 8
are realised as N -body particles at a redshift of ∼ 10. The remaining high
momentum part is kept as a linear source term on the grid. See [14] for
further information on the hybrid method.

Sim
∑
mν [eV] Lbox [Mpc/h] Npart

cdm Ngrid
ν Npart

ν

X 0 512 5123 0 0
Y 1.2 512 5123 5123 10243

In general we find that there is a very significant increase in neutrino
power beyond the linear perturbation theory prediction, in accordance
with many previous investigations. In order to make a more quantitative
comparison we show matter and neutrino power spectra for the 1.2 eV
case, see table 10.3, predicted using the hybrid neutrino grid/particle
method from [14]. Out to k ∼ 0.2–0.3Mpc−1 the agreement is excellent.
At higher k several effects become important, which makes the comparison
hard:

• concept is run as a particle mesh code and thus has no short
range force included. This leads to lower matter power at late
times.
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• The hybrid code has a significant white noise component in the
neutrino power spectrum.

• For large neutrino masses, the concept neutrino power spectra
develop an unphysical bump for large k at late times. The remainder
of this subsection describe the probable cause and seriousness of
this bump.

Originally, we hypothesised that the unphysical bump seen in the neutrino
power spectra at late times and small scales were due to our simplistic
smoothing (described in subsection 10.4.1) being inadequate for larger
neutrino masses, where a proper smoothing is especially important due
to larger spatial gradients in the neutrino fields. We tried replacing the
MacCormack+smoothing method with the Kurganov-Tadmor [31] TVD
method, but the problem persisted. After much investigation, we are
now convinced that the bump stems from our use of the PM method.
Usually, a PM method is coupled with another method, such as direct
summation (resulting in P3M) or a tree (resulting in treePM), where
gravity is split into a short- and long-range part, typically by multiplying
the Fourier space gravitational potential by a decaying exponential in
k2. This ensures that the long-range part — handled by the PM method
— is smooth at the grid scale regardless of how non-linear the system
may become, which in turn leads to accurate (long-range only) forces
via numerical differentiation. In our concept simulations, where the
PM method is responsible for the entirety of the force, the gravitational
contributions from k modes around the grid scale will be extremely
inaccurate as soon as significant structure has formed at this scale. This
is a well-known effect in particle-only simulations and is in fact the whole
reason to explicitly add on a separate short-range computation. Unlike
with particles where this more or less random force at the grid scale
leads to a relatively benign decrease in power, we see an increase in
power for our neutrino fluid. This is because neighbouring fluid elements
are much more tightly coupled than nearby particles: If a single fluid
element receives a large kick due to a steep gradient in ϕ, the continuity
equation will ensure that the neighbouring fluid elements will in- and
decrease their density dramatically in the next time step, increasing the
power at the grid scale. With time, these over- and under-densities in
single fluid elements will diffuse out to neighbouring cells, propagating
the unphysical power bump to larger scales.

The steep gradients in ϕ at late times is due to the non-linear
clustering of the particles, not the neutrino field, which ought to remain
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smooth at the grid scale throughout time. This further explains why we
see the unphysical bump regardless of which method we use for the fluid
dynamics. Furthermore, it can explain why the bump grows with the
neutrino mass, and indeed is unnoticeable in the 0.15 eV case. For all our
neutrino mass choices, ϕ is primarily shaped by the particle distribution,
and so very similar steep gradients are expected at late times in all
simulations. The size of the unreasonably large momentum updates to
the neutrino cells is thus roughly independent on the neutrino mass.
The lower the bulk velocity of the neutrino fluid, the larger the relative
error due to this momentum update will be. As the heavier neutrinos
move much slower than their lighter counterparts, these are affected more
strongly. Additionally, because the lighter neutrinos become unrelativistic
later than the heavier ones, these continue to have a strong pressure for
a longer time, which serves to smooth out local over-/under-densities.

10.5.2 Neutrino Suppression of the Relative Total
Matter Power Spectra

In addition to the absolute power spectra it is of interest to investigate the
relative suppression of power in models with massive neutrinos relative to
standard ΛCDM with massless neutrinos. We show these in figure 10.6
for a = 0.5 and 1 and for the three different choices of

∑
mν .

For all neutrino masses we see exactly the same trough-like shape of
the suppression which was first noticed in [3] and which is a generic feature
of comparing any model with suppressed structure growth to a standard
ΛCDM model. As non-linear structure formation progresses, larger scales
in the neutrino simulations collapse which in turn diminishes the amount
of relative suppression and shifts the trough position to smaller k-values.
These dynamical movements in the relative power spectrum were also
found in [11].

The maximum suppression in the relative power spectrum at z = 0 for
the lower neutrino masses can be fitted with the relation ∼ −10Ων/Ωm,
which is in very good agreement with the findings in [3]. In contrast, the
linear theory suppression is roughly given by ∼ −8Ων/Ωm.

10.5.3 Comparison with the Hybrid Code
Figure 10.7 shows the time evolution of the concept and hybrid absolute
neutrino power spectra for

∑
mν = 1.2 eV. For a = 0.5 there is very

good agreement out to k ∼ 0.3–0.4Mpc−1, where the hybrid simulation
becomes dominated by neutrino particle shot noise. At lower redshift
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Figure 10.5 – Absolute matter (left) and neutrino (right) power spectra
at z = 0 for

∑
mν = 1.2 eV (top), 0.3 eV (middle) and 0.15 eV (bottom).

the concept neutrino power spectrum increases faster than do the
hybrid one. As described in subsection 10.5.1, we suspect this surplus of
concept neutrino power to be due to inaccuracies induced by the PM
method.

10.5.4 The Effect of Anisotropic Stress
In figure 10.8 we show neutrino power spectra at various a for the 1.2
eV simulation. For comparison we also show the same spectra for a
simulation in which we have used δP/δρ = w and σ = 0 (i.e. the perfect
fluid limit).
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(left) and a = 1.0 (right).

From the figure it is evident that this approximation leads to an
inaccurate neutrino power spectrum, with too much power on all scales.
The effect of neglecting σ is known to increase neutrino fluctuations on
all sub-horizon scales in linear theory [32]. This effect can be seen in the
figure for small k, but the figure also demonstrates that a similar effect
occurs in the non-linear regime.

10.5.5 Convergence
In figure 10.9 we show neutrino power spectra at a = 0.5 and a = 1 for
the three different neutrino masses for different choices of box size and
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Figure 10.7 – Neutrino power spectra
∑
mν = 1.2 eV.

grid size.
Several different effects can be seen in this plot. The lowest resolution

runs (512 Mpc/h box size and 6003 grid) in general exhibit more power
at large k than the other runs. This happens due to errors introduced
by the CIC deconvolutions (as described in section 10.4.2), leading to
more power in the neutrino component. It can be seen that this error
is very small in the high resolution runs, and excellent convergence is
achieved for 0.3 eV and 0.15 eV.

However, for the highest mass (1.2 eV) another effect plays a signif-
icant role. As described in sebsection 10.5.1, errors arising from the
failure of the PM method to resolve the actual gravitational potential
leads to an increase in power at intermediate-to-high k and late times.
This effect becomes even more significant when the grid size is increased,
perhaps simply because of the much greater number of cells on which
the error is introduced. The increased neutrino power at a = 1 seen in
the high resolution runs for 1.2 eV is therefore in all likelihood unphys-
ical. However, for masses more relevant to standard model neutrinos
(∼ 0.15 eV) this effect is absent and therefore even at this stage not a
significant source of worry.
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∑
mν = 1.2 eV. The two concept simulations

share the exact same initial conditions for both the matter particles and
the neutrino fluid.

10.6 Conclusions
We have developed a new method for following neutrinos through non-
linear clustering, based on the fully non-linear Boltzmann equation.
Our solution is based on the equivalence of the momentum dependent
Boltzmann equation to the velocity moment expansion of the same
equation. Based on the assumption that moments of order v2 and higher
are mainly sourced by linear perturbations we have truncated the velocity
hierarchy at this order. This amounts to solving the fully non-linear
continuity and Euler equations for neutrinos, but with v2 source terms
derived from the linear perturbation theory solution.

At the starting point of the simulation these v2 terms can be found
simply from the transfer functions provided by class and based on the
same set of random numbers used to generate the density and velocity
fields. However, at later times this method fails because terms such as
δP and σij correlate with the density in the simulation at the given (not
the initial) time. We have therefore developed a prescription for how
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Figure 10.9 – Absolute neutrino power spectra at a = 0.5 (left) and
a = 1.0 (right) for different box and grid sizes.

to generate v2 terms correlating with the density field in the simulation
and used these as source terms in the continuity and Euler equations.

We have found the method to be both very promising, and established
that the method can be used to reliably calculate fully non-linear neutrino
power spectra. Unlike most methods developed so far which work well
for either small, or large neutrino masses, the method presented here has
the potential to work equally well for all masses. We stress again that
the bad convergence behaviour seen for the largest neutrino mass (1.2
eV) is most probable due to the limitations of the gravitational solver of
concept, and not an inherent problem with the method of non-linear
neutrino evolution proposed here.
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Particle based methods in general suffer from noise related issues
when neutrino masses are small because the thermal velocity component
requires vast numbers of neutrino particles to sample properly. Con-
versely, linearised grid based methods break down for high neutrino
masses because of non-linearities in the neutrino component. We have
made a comparison between the method developed here and the hybrid
method described in [14] and find that they agree well.

The platform for the implementation of neutrinos has been the
concept code [33], which is made publicly available∗. We have fully
integrated the code with class such that all linear theory calculations
needed by the solver are provided by class without additional input
needed from the user.
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10.A N-body Realisations of the Boltzmann
Hierarchy Variables

We will need to realise several Fourier space transfer functions in real
space. The power spectrum of a quantity Y is related to the corresponding
transfer function Y (k) from class by

PY (τ, k) = 2π2Y 2(τ, k)k−3Pζ(k), (10.44)

= 2π2AsY
2(τ, k)k−3

(
k

kpivot

)ns−1

. (10.45)

LetR denote a realisation of a Gaussian random field with zero mean such
that ζ(k) = ζ(k)R(k), where ζ is the comoving curvature perturbation.
The quantity Y (τ,x) in real space is then given as

Y (τ,x) = F−1
x

[√
PY (τ, k)R(k)

]
(10.46)

= F−1
x

Y (τ, k)
√

2π2As k
− 3

2

(
k

kpivot

)ns−1
2

R(k)

. (10.47)

∗https://github.com/jmd-dk/concept

https://github.com/jmd-dk/concept
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10.A.1 The Zel’dovich Approximation
The transfer function of the Lagrangian displacement field ψ for a given
species is not directly available in class. However, since v = ψ̇ the
continuity equation for a non-relativistic species in N -body gauge [34]
reads

δ̇(τ,x) = −∇ · v(τ,x) = −∇ · ψ̇(τ,x) . (10.48)

Using the boundary condition δ(0,x) = 0, ψ(0,x) = 0, this equation
can be integrated to give

∇ ·ψ(τ,x) = −δ(τ,x) . (10.49)

The divergence operator can be easily inverted in Fourier space if we
introduce a scalar potential Υ such that ψ(τ,x) = ∇Υ (τ,x). The
equation can then be written as

∇2Υ (τ,x) = −δ(τ,x) . (10.50)

In Fourier space we have ikjΥ (τ,k) = ψj(τ,k), which leads to

−k2Υ (τ,k) = −δ(τ,k) (10.51)

⇒ Υ (τ,k) = δ(τ,k)
k2 (10.52)

⇒ ψj(τ, k) = ikj
k2 δ(τ, k) , (10.53)

where the last equality follows since an equation for quantities in Fourier
space also holds for the corresponding transfer functions. Explicitly, this
gives

ψj(τ,x) = F−1
x

( ikj
k2 δ(τ, k)

)√
2π2As k

− 3
2

(
k

kpivot

)ns−1
2

R(k)

 .
(10.54)

10.A.2 Density and Velocity Fields
The density field can be directly realised from the transfer function
δ(τ, k):

δ(τ,x) = F−1
x

δ(τ, k)
√

2π2As k
− 3

2

(
k

kpivot

)ns−1
2

R(k)

 . (10.55)
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Because class solves for the divergence θ of the velocity field, we must
invert the divergence operator in Fourier space like we do for the dis-
placement field. We find

vj(τ,x) = F−1
x

(− ikj
k2 θ(τ, k)

)√
2π2As k

− 3
2

(
k

kpivot

)ns−1
2

R(k)

 ,
(10.56)

by the identification ψj 7→ vj , δ 7→ −θ in equation (10.49). Note that
(10.56) describes the velocity field of a fluid as well as the velocity field
that should be used to set particle velocities when generating particle
initial conditions using the Zel’dovich approximation.

10.A.3 Anisotropic Stress
class solves for a quantity σ(τ, k) called the scalar anisotropic stress.
Following [21] we define Σi

j as the trace-free contribution to the energy-
momentum tensor∗,

T ij (τ,x) = ( sP + δP )δ ji +Σi
j (τ,x) . (10.57)

As Σi
j (τ,x) is a symmetric, trace-free rank 2 tensor, it has 5 degrees of

freedom: 2 tensor, 2 vector and one scalar degree of freedom. We can
define the scalar potential γ implicitly by

Σi
j (τ,x) =

(
∇i∇j −

1
3δ

i
j∇2

)
γ(τ,x) , (10.58)

which in Fourier space becomes

Σi
j (τ,k) = −k2

(
k̂ik̂j −

1
3δ

i
j

)
γ(τ,k) . (10.59)

We can now compare this to the definition of σ (equation 22 in [21]):

sρ(1 + w)σ(τ,k) = −
(
k̂jk̂i −

1
3δ

j
i

)
Σi

j (τ,k) (10.60)

= k2
(
k̂jk̂ik̂

ik̂j + 1
9δ

j
iδ
i
j −

2
3 k̂

jk̂iδ
i
j

)
γ(τ,k) (10.61)

= 2
3k

2γ(τ,k) . (10.62)

∗The uiuj part present in (10.6) has been left out as we now work in linear theory.
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The final expression then becomes

Σi
j (τ,x) = F−1

x

−3
2 sρ(1 + w)

(
k̂ik̂j −

1
3δ

i
j

)
σ(τ, k)

√
2π2As k

− 3
2

(
k

kpivot

)ns−1
2

R(k)

.
(10.63)

By comparing equation (10.57) to the linearised version of equation (10.6),
we find Σi

j (τ,x) = sρ(1 + w)σij (τ,x) leading to

σij (τ,x) = F−1
x

−3
2

(
k̂ik̂j −

1
3δ

i
j

)
σ(τ, k)

√
2π2As k

− 3
2

(
k

kpivot

)ns−1
2

R(k)

.
(10.64)

10.A.4 Non-linear Realisations
Since the linear pressure perturbation δP is a scalar, it can be realised
in a manner similar to that of δ, (10.55):

δP (τ,x) = F−1
x

δP (τ, k)
√

2π2As k
− 3

2

(
k

kpivot

)ns−1
2

R(k)

 (10.65)

= F−1
x

[
δP (τ, k)
δ(τ, k) δ(τ,k)

]
, (10.66)

where δ(τ,k) = Fx
[
δ(τ,x)

]
is simply the content of the bracket in

(10.55). With this interpretation of δ(τ,k), the resulting δP (τ,x) from
(10.65) is purely linear. If we now upgrade δ(τ,k) to be the non-linear
density contrast present in the simulation at any time τ , (10.65) yields
our estimate of the non-linear δP at any time τ . Comparing (10.65) with
(10.66), we can write

R(τ,k) = 1√
2π2As

k
3
2

(
k

kpivot

) 1−ns
2 δ(τ,k)
δ(τ, k) , (10.67)

with R(τ,k) being the time evolved random phases, coinciding with
R(k) at the initialisation time. The time evolution of the estimated
non-linear δP from (10.66) are then due to two effects: the time evolution
of the linear transfer function of δP itself, as well as the non-linear time
evolution of the underlying random field R. Simply ignoring this last
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effect and using the same R(k) throughout time leads to a mismatch
between the actual and supposed phases, resulting in large errors.

Multiplying both δ(τ, k) and δ(τ,k) in (10.66) by sρ, we can write the
approximation generated by interpreting δ(τ,k) as the non-linear density
contrast as

δPnl(τ,k) ' δPl(τ, k)
δρl(τ, k) δρnl(k) , (10.68)

where ‘l’ and ‘nl’ stands for ‘linear’ and ‘non-linear’, respectively. Thus
the approximation corresponds to the assumption that δP/δρ (and hence
the sound speed) is independent of the amplitude of the perturbations.

As we also want to realise σij(τ,x) throughout the simulation times-
pan, we similarly need an estimate of the non-linear σij (τ,x). Com-
paring (10.64) to (10.65), we see that the only difference is the factor
−3/2

(
k̂ik̂j − δij/3

)
, and so

σij,nl(τ,k) ' −3
2

(
k̂ik̂j −

1
3δ

i
j

)
σl(τ, k)
δρl(τ, k)δρnl(τ,k) , (10.69)

σij,nl(τ,x) = F−1
x

[
σij,nl(τ,k)

]
. (10.70)

Similarly, this approximation corresponds to the assumption that σ/δρ
is independent of the amplitude of the perturbations. Since σij has the
same velocity order as δP , the two approximations should be equally
valid.

Interpreting (10.67) as being solely the evolved phases disregards
the fact that on top of the shifting phases we also have the non-linear
growth of δ(|k|). Thus, equations (10.68) and (10.69) do not only supply
δPnl and σij,nl with the correctly evolved phases, but inevitably also
injects non-linearity. This can be avoided by replacing the linear transfer
function δρ(τ, k) with its non-linear counterpart, namely the square root
of the non-linear power spectrum:

δPnl(τ,k) '
√
PδPl

(τ, k)
Pδρnl

(τ, k) δρnl(τ,k) , (10.71)

σij,nl(τ,k) ' −3
2

(
k̂ik̂j −

1
3δ

i
j

)√
Pσl

(τ, k)
Pρnl

(τ, k) δρnl(τ,k) , (10.72)

where the transfer function of the target variable also has been replaced
by the (linear) power spectrum,

PYl
(τ, k) = 2π2Ask

−3
(

k

kpivot

)ns−1
Y 2(τ, k) , (10.73)
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in order to cancel out the factors otherwise introduced by exchanging
a transfer functions for a (square root of a) power spectrum. Equa-
tions (10.71) and (10.72) can then be used in place of (10.68) and
(10.69). This leaves us with two separate realisation schemes with no
obvious best choice.

Since what we really realize is ς ij ∝ Σi
j = (ρ+ P )σij , we further have

the choice of whether to use sρ(1 + w) as in (10.63) (inside or outside
of the Fourier transform) or the non-linear ρ+ P (outside the Fourier
transform), as in

Σi
j,nl(τ,k) '

(
ρnl(τ,k)+Pnl(τ,k)

)
F−1
x

[
−3

2

(
k̂ik̂j −

1
3δ

i
j

)
σl(τ, k)
δρl(τ, k)δρnl(τ,k)

]
,

(10.74)
again with the further possibility of replacing transfer functions with
power spectra. Once again, these choices come down to whether we wish
to further inject non-linearity into Σi

j . We generally achieved better
results with this added non-linearity, and all plots in this paper have been
produced using (10.68) and (10.74) as non-linear realisation schemes.
Further studying of these different realization schemes — which are all
equivalent in linear theory but differ in non-linear theory — would be
very interesting.

10.B Comparison between CLASS and CAMB

Neither class nor camb produce accurate neutrino transfer functions at
their default precision settings. The reason is simply that these precision
settings are tuned for the total matter power spectrum which is usually
dominated by the cold matter. The precision of the neutrino evolution is
mainly controlled by the number of momentum bins, Nq and the cut-off
in the Boltzmann hierarchy `max,ν .

The momentum sampling q in class is automatic as discussed in
detail in [26]. An optimal choice of quadrature method is found by
requiring that the distribution function multiplied by a test-function
can be computed at sufficient accuracy. This has the virtue of being
independent of the actual distribution function. However, in order to
obtain high-precision neutrino transfer functions from class, we had
to use the manual quadrature strategy which was introduced in class
v2.6.2. We use quadrature strategy = 3 which means that class
uses a trapezoidal rule on a uniform grid from 0 to qmax with Nq + 1
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Figure 10.10 – The density transfer function δν(k) multiplied by −k3/2

for
∑
mν = 1.2 eV at redshift z = 49 (left) and z = 0 (right). For

camb, the first digit corresponds to accuracy_boost and the second to
laccuracy_boost. For class, the legend denotes the value of both Nq
and `max,ν , except for ‘def’ which denotes the default settings.

points. The first point at q = 0 is not actually evolved since all integrands
would anyway vanish.

For the high-precision class runs we turn off the fluid approximation
by setting the parameter ncdm_fluid_approximation = 3, and this
requires us to increase the `max cutoff in the Boltzmann hierarchy con-
siderably since the lowest multipoles now have more time to get polluted
by the unphysical reflection of power at `max.

The agreement between class and camb for the neutrino transfer
functions has never been checked in any detail, so we have conducted a
preliminary convergence test for the case

∑
mν = 1.2 eV. As we have

shown in figure 10.10, the two codes can be brought into agreement at
the 1%-level.

We matched the cosmological model in the two codes and used the
precision settings given in table 10.4. For the camb-runs, the first
and second digit in the legend of figure 10.10 refers to the value of
accuracy_boost and l_accuracy_boost, respectively. For the class-
runs the two precision parameters, Number of momentum bins and



Comparison between class and camb 205

Table 10.4 – Precision settings used in the camb and class comparison
runs.

camb class
high_accuracy_default = T ncdm_fluid_approximation = 3

transfer_high_precision = T Quadrature strategy = 3

massive_nu_approx = 0 Maximum q = 15

accuracy_boost = 1-4 Number of momentum bins = 15
(30, 60, 120)

l_accuracy_boost = 1-7 l_max_ncdm = 15 (30, 60, 120)

l_max_ncdm were set to the same value and varied together, and the
legend refers to the value of both.

We used a 47 camb run (not included in the figure) as the common
reference for computing the relative error of both codes. We see that
the 11 setting of camb generates a 20% error. We emphasise that this
is not a problem for standard cosmological analyses, but it could be an
issue when used as initial condition for neutrino simulations. For the
class runs we see that the error seems to increase for large k when the
precision is increased beyond `max,ν = Nq = 30, which we take as an
indication that the 47 camb-run is not yet numerically converged. An
agreement at the 1%-level that we have established is however enough
for the present implementation.
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Conclusions

My PhD work can broadly be partitioned into two major parts. The first
part is my work on the inclusion of linear species (in particular massive
neutrinos) into conventional N -body codes, providing the otherwise
missing interactions and general relativistic effects on large scales. As
demonstrated in the paper of chapter 9, we have successfully carried out
implementations into both concept and pkdgrav, yielding results that
agree extraordinary well with one another and with the linear theory
predictions on large scales. The N -body gauge framework together with
the realisation of linear species is then a doable and accurate method for
incorporating the effects of both linear species and general relativistic
effects into conventional N -body codes without any real modifications
to the Newtonian framework of such nodes.

The other major part of my PhD work was concerned with the inclu-
sion of non-linear species (apart from matter itself) into N -body codes.
This can be seen as an extension to the above where the assumption
of linearity is removed. As this only happens appreciably in the case
of massive neutrinos, we tend to think of this as being specific to that
species, but really the method developed can be applied to any species.

Unlike in the linear case, the non-linear treatment contains within it
several seemingly arbitrary choices, prime among which are where to cut
the Boltzmann hierarchy into a non-linear and a linear part (choosing
`nl) and which of the many non-linear realisation schemes of section 7.4
to pick for the realisations of the ` = `nl + 1 variables. One can view the
linear scheme as the limiting case of having `nl = −1, meaning that the
evolution of the given species is entirely linear. Once the energy density
of a species is realised on a grid, applying a gravitational kick to the
particles due to this grid is exactly the same as for the non-linear case.

In the paper of chapter 10 we demonstrated that `nl = 1 and the
non-linear realisation scheme of (7.38) and (7.39) leads to results com-
parable to that of the ‘hybrid’ code. Whereas this code becomes very
computationally demanding for small (realistic) neutrino masses, the
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performance of the method developed during my PhD and implemented
in concept is largely invariant to the neutrino mass.

For large neutrino masses (
∑
mν = 1.2 eV) where concept and the

hybrid code can be compared, an unfortunate defect in the non-linear
neutrino evolution occurs in concept, as seen in figure 10.9. This
defect does not go away but rather intensifies as the grid resolution is
increased. Though we might speculate on the nature of this defect, the
honest answer is that we do not understand why it occurs. Since no bad
behaviour is seen for realistic neutrino masses, I am tempted to ignore
this problem.

Though the non-linear light neutrino power spectra of e.g. figure 6.1
and 10.9 look convincing, we have still to directly compare them to
neutrino spectra of other codes. The depth of the trough in the relative
matter power spectrum at a = 1 as seen on figure 10.6, does agree with
the non-linear prediction ∼ −10Ων/Ωm of [3].

Outlook

As mentioned in the introduction of this thesis, I will remain in the
cosmology group of Steen Hannestad for the next six months as a postdoc.
Though it has not been a major issue during my PhD, it would be very
good to implement ‘short-range’ particle forces into concept, so that
the gravitational interaction between particles is resolved well below the
grid scale of the PM method, making for more precise power spectra at
high k. Implementing an optimal P3M method into concept during
these six month is thus of high priority.

The implementation of the linear massive neutrinos and other linear
species into concept is very much complete. The only extension to this
method presented in this thesis which is not implemented is that of the
linear option of (7.34), corresponding to evolving the “random” field R
through time based on the evolution of matter, without also imprinting
the growth of matter into R. This should result in better small-scale
behaviour of late-time linear realisations, as structure of the linear field
now follows the non-linearly evolved matter structure, rather than using
the same primordial structure throughout time. As the linear species do
not contribute much at small scales, this addition should not be critically
important, but it would be nice to implement and see what difference
this arguably improved procedure makes.

Though the paper of chapter 9 demonstrates that the implementation
of linear species in pkdgrav is fully functional, there is still some work
required in order for it to play nicely with the advanced multi-level time
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stepping employed by pkdgrav. This work is primarily carried out by
Joachim Stadel, Douglas Potter and Mischa Knabenhans at the Institute
for Computational Science, University of Zürich. As I originally wrote
this linear implementation into pkdgrav and also am responsible for
the concept class utility providing the transfer functions needed for
both the linear species and the initial conditions of the matter particles,
our collaboration continues. Though I do not plan to further develop
the linear implementation in pkdgrav, the guys in Zürich will need
me to perform comparison tests between pkdgrav and concept. The
plan is to run pkdgrav in this ‘class’ mode — including linear kicks
from photons, a full neutrino mass hierarchy and metric perturbations —
for the Euclid flagship 2 simulation, but this hinges on getting the final
issues ironed out in time.

Tending to the non-linear treatment of massive neutrinos, I would
very much like to implement a larger set of the possibilities explored in
section 7.4 into concept and perform systematic tests to see how they
compare. As they are all equivalent at the linear level, predicting how
they differ among each other at the non-linear level is extremely difficult
without such direct implementations.

One obvious member from the above mentioned set of tests is to
compare the resulting matter power spectra from simulations using
linearly realised and non-linear neutrinos. In particular this should be
done for realistic, small neutrino masses — e.g.

∑
mν = 0.06 eV as will

be used for the Euclid flagship simulation — in order to quantify how
important the non-linear treatment of neutrinos actually is for such low
masses.

Throughout this thesis and indeed during the whole of my PhD, I
have kept the linear method for including photons, massive neutrinos and
the metric into N -body simulations somewhat separate from the inclusion
of non-linear massive neutrinos, at least conceptually. Ultimately though,
these should come together so that simulations can be run with linear
photons and metric perturbations but with non-linear neutrinos∗. In
its present stage concept is fully capable of running such simulations,
mixing the linear and non-linear methods. This really comes down to the
fact that the linear method is contained within the non-linear method as
its limit. From the point of view of the concept implementation, there
is no real distinction and only a single method exists. To carry out such
simulations fully self-consistently, the non-linear neutrinos should now

∗For a non-degenerate neutrino mass hierarchy, perhaps only one or two of the
mass states needs to be treated non-linear.
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also receive kicks from the remaining linear species. This is trivial with
regards to the photons and amongst the individual neutrino mass states,
but it is unclear whether the same ‘metric species’ that provides matter
with general relativistic corrections may also be used to supply general
relativistic corrections to the neutrinos or other species in general.
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