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Preface

This report conveys the current state of my PhD research, which deals with the impact on
cosmic structure formation from massive neutrinos. To study this, a new numerical method for
simulating massive neutrinos has been developed and implemented into the concept code,
a cosmological simulation code I have previously developed. In essence, this new method
simulates neutrinos as a fluid on a grid, where the fluid consists of an adjustable number of
fluid variables, generated by taking momentum moments of the Boltzmann hierarchy.

After a brief introduction to cosmological simulations in chapter 1, the reader will be
taken through key aspects of the field of cosmology in chapter 2, outlining the homogeneous
universe followed by the basics of perturbation theory, demonstrating the need for cosmological
simulations. Chapter 3 is concerned with theoretical fluid dynamics in a cosmological context,
as well as its numerical implementation in concept and the challenges I have faced during the
development.

Cosmological simulation codes need several inputs from linear theory, in particular for
generation of initial conditions. Through this work, class [1] has been fully integrated into
concept as a library module and is now used for every linear computation, ensuring self-
consistency. Chapter 4 describes how this connection between linear and non-linear theory
comes together.

In chapter 5, results of neutrino simulations done with concept are shown and compared
against the predictions of linear theory and another, numerically very different neutrino
implementation. Finally in chapter 6, exciting possibilities for the future are discussed.

Throughout this report we shall work in natural units, c = G = ~ = kB = 1. I like however
to be more explicit when it comes to equations directly used as part of some numerical recipe,
and so occasionally these factors will be included.
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1 Introduction

The field of cosmology attempts to make sense of the Universe as a whole. Modern cosmology
has its roots in the theory of general relativity, Einstein’s theory of gravity. Importantly, this
theory links space and time to the contents within them, and so with general relativity, a
definite stage is set for which the cosmic story can unfold. Exactly what story or even what
actors — the different species of fundamental particles — remain however largely unconstrained,
and so must be determined through observations.

1.1 Observations
Through observations of e.g. distant galaxies and the cosmic microwave background, we know
that our universe has been expanding since its dawn in the Big Bang 13.8 billion years ago. This
expansion is varying with time but pre-determined by the contents of the universe. We have
found that presently, “ordinary” (often referred to as baryonic) matter comprises just ∼ 5% of
the total energy budget, whereas the rest is composed chiefly of the mysterious (cold) dark
matter (∼ 25%) and dark energy (∼ 70%). These dark components dominate our Universe on
the largest of scales, yet our understanding of either is next to nothing. Dark matter appears
as invisible matter, speeding up the gravitational clockwork throughout the Universe. Dark
energy on the other hand has never been observed to cluster. Its effect is seen only on the
Universe as a whole, where it causes the universal expansion to accelerate.

Besides matter and dark energy, the Universe also contains less dominant species, such
as photons and neutrinos. Through observations of the cosmic microwave background, we
understand the photon component intimately. The neutrino component is much less understood,
partly because calculations are harder, but to a large extent because of a lack of direct
observations. From flavour oscillations, we know that the neutrino∗ have a non-zero mass, and
so it could contribute somewhat to cosmic clustering, at least at late times. On the other hand,
because neutrinos interact so weakly, they free-stream through the Universe, with the effect of
decreasing the general amount of structure. How much of a decrease depends dramatically on
the mass of the neutrino, with higher mass leading to a larger decrease in structure formation.
As such, by far the lowest bound on the neutrino mass,

∑
mν < 0.23 eV, comes from cosmology

[2].
With the upcoming large scale surveys Euclid and LSST, far more precise maps of the

cosmic structure will soon be at our disposal. To understand structure formation at this level,
the details of the neutrino component cannot be ignored. In fact, it just might be possible
to construct tight constrains on the neutrino mass from these observations, if only we have
the theoretical predictions with which to compare. Such predictions are the outcome of large
cosmological simulations; the focus point of my PhD work and of this report.

∗What is important for cosmology is the net sum of all neutrino masses, and so in this work we shall make
little notice of the fact that neutrinos are known to come in three distinct flavours, or correspondingly in three
distinct mass eigenstates.
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1. Introduction

1.2 Cosmological Simulations
Whenever referring to ‘cosmological simulations’ in this report, I mean full 3D simulations,
evolving the components of the universe through time. Because cold dark matter has zero
thermal velocity (hence the ‘cold’), each point in a lump of cold dark matter is described by a
single velocity. It is therefore very naturally to simulate cold dark matter as a collection of
N particles, each with a fixed mass, tracing out their individual trajectories. This is what is
known as the Lagrangian approach, and a simulation based on this is referred to as an N -body
simulation.

Whenever more information than just the velocity is needed at each point, the Lagrangian
approach begins to break down. Thus simulating baryons in this manner is not feasible, though
for many purposes (such as ours) the distinction between baryonic and dark matter becomes
unimportant at large scales, and so we shall threat baryonic and dark matter on exactly the
same footing.

As neutrinos have large thermal velocities, these cannot easily be traced with the Lagrangian
approach, and so for these we shall use the Eulerian approach, where the flow between spatially
fixed cells is considered. Including the effects of e.g. sound is easy in the Eulerian approach, as
each fluid cell simply affects its neighbours depending on the pressure, which is a new variable
which must be tracked through time for each cell. We shall refer to the Lagrangian and the
Eulerian approach as the particle and fluid approach, respectively.

Many cosmological simulation codes exist, utilizing a variety of clever techniques to be
able to simulate a large fraction of the observable Universe to a reasonable degree of detail
within a reasonable amount of time. The general set-up of of all of them is however the same:
The simulated universe consists of a cubic box, within which the particles and fluids live. The
boundaries of the box are made periodic in order to simulate an infinite space, making the
topology on which the components live a 3-torus. Long-range forces (i.e. gravity) must wind
infinitely around this 3-torus. Importantly, the box should be large enough so that effects of
periodicity does not show up within the simulated timespan. The box itself is subject to the
Hubble expansion, which is usually dealt with by solving the equations of motions in comoving
coordinates.

Any given cosmological simulation code have a number of user-defined parameters, with
which the physics and cosmology may be specified. Thus the same piece of software may be
used to simulate a large variety of different cosmologies, which can then be compared with
real-world observations and hence used to find the set of parameters that best describe the
real Universe. One might therefore consider these simulation codes as laboratories in which to
carry out experiments on universes.

1.2.1 The CONCEPT Code

The majority of my PhD work has gone into implementing neutrinos as a fluid into the concept
(COsmological N -body CodE in PyThon) [3] code, which I originally wrote for my Master’s
thesis. Its design was inspired by that of the publicly available gadget-2 [4] code, and so it
was capable of tracking a set of N particles through time, under their own influence of gravity
and in an expanding background. The only physical properties of these particles were their
mass, positions and momenta, and so effectively the code could only be used to evolve cold
dark matter. The numerical sophistication required for computing the gravitational interaction
between a large number of particles efficiently, is however immense. Gravity was (and still
is) implemented using three different techniques, known as the PP, PM and P3M methods.
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1.2. Cosmological Simulations

Though the part of the code dealing with interactions has been reworked, these remain the
only implementations of gravity. Only the PM method has been made compatible with the
fluid implementation, and so only this will be described in any detail in this report. See section
3.5.5 for details.

As the goal of my PhD work is to implement neutrinos as a fluid into cosmological simulation
codes, using concept — which was an N -body (particle) code — was not an obvious choice.
The ramses code [5] was initially considered, due to it having both particles and fluids. A very
nice feature of ramses is that the mesh on which a fluid lives is adaptively refined in regions
where higher resolutions become necessary. To be able to simulate the largely non-clustering
neutrino component, however, this feature was not essential. Instead of having to learn a new
code base, we decided that it would be simpler to implement fluid dynamics into concept,
making it a hybrid code, though without the added complexity of adaptive mesh refinement.

Though concept is written in Python, the code gets transpiled to C code using Cython
together with a lot of tricks of my own, making the runtime speed of the code very close to that
of handwritten C code. Today the code consist∗ of 14× 103 lines of Python code, implementing
the simulation, together with 5× 103 lines of auxiliary code used to compile and run the code
in a high-level fashion. This is almost an increase in code size by a factor of 3 compared to the
state of the code right after my Master’s.

∗Not counting comments or blank lines.
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2 Cosmology

In this chapter we set up the basic equations of a homogeneous, expanding universe. We then
perturb this universe using cosmological perturbation theory, often referred to simply as linear
theory. We will find that linear theory breaks down for late times, giving rise to the need for
non-linear theory and hence cosmological simulations.

2.1 The Hubble Expansion
Famously, space is homogeneous and isotropic on large scaled. The same is not however true
for time. We are thus interested in the dynamical evolution of e.g. the energy density. As the
exact same time evolution takes place throughout the Universe (due to the homogeneity), we
can assign the uniform expansion of space itself as the cause of this evolution. We are thus
forced to write the squared line element of our spacetime ds2 as

ds2 = −dt2 + a2(t) dΣ2 , (2.1)

where t is time, dΣ2 is the squared line element of space and a(t), the aptly named scale factor,
is some function which scales space as time flow. The homogeneity of space means that dΣ2

can only take on the forms

dΣ2 = dx2

1− κx2 + x2 dΩ2 , (2.2)

where x is a Cartesian coordinate while Ω is a solid angle. The constant κ is the Gaussian
curvature of space. With (2.2), (2.1) is known as the Friedmann-Lemaître-Robertson-Walker
metric. Observationally [2], our Universe is very close if not perfectly flat, κ = 0, and so our
spacetime looks like

ds2 = −dt2 + a2(t)(dx2 + x2 dΩ2) . (2.3)

Our spacetime now have one undefined parameter, the scale factor. Because the Einstein
equations couples derivatives of the spacetime metric to the physical stuff within the spacetime,
a(t) must be calculable once we settle on exactly what to put in our Universe. The Einstein
equations are

Rµν = 1
2gµνR = 8πTµν , (2.4)

where the Ricci tensor Rµν and scalar R ≡ R µ
µ is constructed through derivatives of the metric

through the Cristoffel symbols,

Rµν = Γαµν,α − Γαµα,ν + Γαµν Γ
β
αβ − Γ

α
µβ Γ

β
να ,

which themselves are given by

Γµνρ = 1
2g

αµ
(
gαν,ρ + gαρ,ν − gνρ,α

)
,

where the metric tensor gµν is read off of the squared line element (2.3) from ds2 ≡ gµν dxµ dxν .
The entire left-hand side of the Einstein equations (2.4), dealing only with the curvature of
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2. Cosmology

spacetime, is now specified, with the only unknown being a(t) hiding inside the metric. The
remaining ingredient is Tµν , the stress-energy tensor, describing the contents of the Universe.

For now, we might model the contents of the Universe as a single, perfect∗ fluid, for which
the stress-energy tensor is

Tµν = (ρc + P̄ )uµuν + P̄ gµν , (2.5)

where ρc is the density, P̄ is the pressure and uµ is the 4-velocity of the fluid. The subscript ‘c’
is for ‘critical’, because the homogeneous density of the only fluid in a flat universe must have a
very particular value; that which exactly balances the geometry of the Universe between being
open and closed, whatever value this may be.

The isotropy of the Universe implies that uµ = (1, 0, 0, 0), i.e. that the fluid is stationary.
This can of course only hold true in one particular frame of reference; the rest frame of the
fluid. The notion of being stationary becomes a little trickier when we remember that all of
space is allowed to expand, and so the frame of interest must also expand with the universal
expansion of space. That is, the fluid is viewed in the x coordinate system, which is called the
comoving frame. The time parameter t measured in this frame is called the cosmic time.

With our perfect, comoving fluid, the Einstein equations are ready to be solved. With
uµ = (1, 0, 0, 0) and remembering that gµν and thus its inverse gµν is diagonal, it is clear
from (2.5) that all off-diagonal terms in Tµν vanish, and that all three space-space elements
are equal. There are thus two non-vanishing Einstein equations for the homogeneous Universe.
These are solved in e.g. [6], with the results

ȧ2

a2 = 8π
3 ρc , (2.6)

ä

a
= −4π

3 (ρc + 3P̄ ) , (2.7)

which are, respectively, the Friedmann equation (resulting from the time-time equation) and
the acceleration equation (resulting from the space-space equation). In these equations and the
rest of this work, a dot designates differentiation with respect to cosmic time, ˙≡ ∂/∂t.

If we differentiate the Friedmann equation (2.6) and insert the acceleration equation (2.7),
the homogeneous continuity equation is obtained:

ρ̇c = −3 ȧ
a

(ρc + P̄ ) . (2.8)

Now we separate the homogeneous fluid into multiple species, each with their own density
ρα and pressure Pα. We note that ρα and Pα are fields, ρα = ρα(t,x), Pα = Pα(t,x), with
spatial means of ρ̄α(t) and P̄α(t). Since density and pressure are additive quantities, we simply
have ρc =

∑
α ρ̄α and P̄ =

∑
α P̄α. Additionally, the homogeneous continuity equation (2.8)

decomposes into a set of uncoupled equations

ρ̇α = −3 ȧ
a

(ρ̄α + P̄α) . (2.9)

To algebraically close the Friedmann and homogeneous continuity equation(s), we need a
relation between density and pressure, known as an equation of state. To describe all species
on large scales, a simple linear† equation of state

Pα = wαρα , (2.10)
∗A perfect fluid is one which in its rest frame is completely characterized by its density and pressure.
†The equation of state is more complicated for e.g. particles with internal degrees of freedom.
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2.2. Different Species

will suffice. Here, the equation of state parameter wα is some number which may or may not
depend on time. Using the linear equation of state (2.10), which of course also holds for the
mean values P̄α and ρ̄α, the homogeneous continuity equation (2.9) can be integrated to yield

ρ̄α = a−3(1+wα)ρ̄α,0 , (2.11)

where the subscript ‘0’ indicates the present time; ρ̄α,0 ≡ ρ̄α(t = t0), where t0 is the cosmic
time at the present, i.e. the age of the universe. In writing (2.11), the scale factor has been
normalization so that a0 = a(t = t0) = 1. We have been able to postpone this choice of
normalization until now because (2.11) is the first absolute relation of a dynamic variable. With
this normalization, comoving x and physical coordinates r = ax coincide at the present. For a
given set of species with measured mean densities at the present, the Friedmann equation (2.6)
may now be solved for the evolution of a(t). As is customary, we may write the Friedmann
equation in terms of the Hubble parameter H ≡ ȧ/a and density parameters Ωα ≡ ρ̄α/ρc,

H2

H2
0

=
∑
α

a−3(1+wα)Ωα,0 , (2.12)

where the trend of using subscript ‘0’ for present values is continued and the sum is over all
species. If we know what species the Universe contains ({wα }), the observational input to the
Friedmann equation (2.12) is the present mean densities and the present Hubble parameter
H0 (called the Hubble “constant”). Note that once we have H0, the present critical density is
known from (2.6).

2.2 Different Species
We now introduce the basic species of our universe. The term “matter” is used to refer to all
pressureless fluids, which then encompasses both baryonic and dark matter. From (2.10) this
means that matter is defined by the equation of state wm = 0, which through (2.11) leads to
the scaling behaviour ρm ∝ a−3, which is the well-known fact that the density of everyday stuff
is inversely proportional to the volume.

In the other end of the spectrum we have ultra-relativistic species, the densities of which
are dominated by their momentum. Because momenta experience redshifting when space is
expanded, an additional factor a−1 must be multiplied on the volume factor a−3 when writing
down the density scaling relation for radiation; ρr ∝ a−4. Equation (2.11) then gives wr = 1/3.
The prime examples of radiation species are photons and massless neutrinos.

The defining property of the dark energy component of the Universe is its constantness, and
so ρΛ ∝ 1⇒ wΛ = −1. Plugging into the acceleration equation (2.7), we see that dark energy
is the only species which contribute positively to the acceleration of the universal expansion.

The different scaling behaviours of radiation, matter and dark energy implies that the
dominant species (the one with the largest density) is not the same throughout time. The
Universe then passes through different epochs with different expansion speeds. Since the density
of radiation falls off with a the fastest, radiation dominates at early times. Since the density of
dark energy does not fall off with a at all, dark energy dominate at late times. Solving the
single-component Friedmann equation (2.6) for the different species, one find

a ∝


t

1/2 (radiation domination),
t

2/3 (matter domination),
eH0t (dark energy domination).

(2.13)
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2. Cosmology

The value of the t and a right between two epochs, at radiation/matter equivalence or matter/-
dark energy equivalence, depend on absolute values of the present densities. A plot of a(t) for
the ΛCDM cosmology is shown to the right on figure 2.1.

Now let us turn to the massive neutrinos, our main species of interest. That neutrinos
have a non-zero mass is known through the experimental existence of neutrino oscillations,
where a neutrino in a particular weak flavor state “oscillate” into another. This process is
only possible if the mass eigenstates are non-degenerate, so that a difference in mass exists.
It is however possible that the lowest mass eigenstate is completely massless. For the sake of
argument we may imagine that only a single neutrino exists and that it has a mass of ∼ 1 eV.
This mass is large enough that the neutrino will be unrelativistic at late times. We thus have a
species that starts out as radiation, w = 1/3, but as time goes will turn into matter, w = 0. For
neutrinos then, the equation of state is time dependent, wν = wν(t). To compute wν(t) we need
ρ̄ν(t) and P̄ν(t). Both of these can be obtained from the underlying phase space distribution
fν(t, r,p), where p is momentum. At early times when the neutrinos were in equilibrium, they
were distributed according to a Fermi-Dirac distribution, just as all other fermions. Since
neutrinos interact only very weakly, a good approximation is that their distribution function
keeps a Fermi-Dirac shape, with a diminishing temperature, all the way to the present day.
The neutrinos are then distributed as

fν(t,p) = 1
e|p|/Tν(t) + 1

, (2.14)

where Tν is the temperature of the neutrino fluid. In (2.14), |p| is used as a (very) good
approximation for the energy

√
m2
ν + p2 at the time of decoupling. The mean density and

10-5 10-2 101

t [Gyr]

0

0.05

0.1

0.15

0.2
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w
(t

)
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Figure 2.1 – Left: Evolution of the equation of state w(t) for neutrino species with mν = 0 and
mν = 1 eV. Right: Evolution of the scale factor a(t) in ΛCDM cosmologies with three neutrino
species, each with mass mν . The black dots mark the time of radiation/matter and matter/dark
energy equivalence.
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2.3. Linear Perturbation Theory

pressure can be computed by integrating over the distribution, weighted by energy and
momentum as follows:

ρ̄ν = 2
∫ d3p

(2π)3 fν(p)E(p) , (2.15)

P̄ν = 2
∫ d3p

(2π)3 fν(p) p2

3E(p) , (2.16)

where the factor of two is due to the spin degree of freedom of the neutrino. To compute
wν = P̄ν/ρ̄ν we now just need to know Tν(t). At early times when the neutrinos were in
equilibrium with the other fermions and photons, all of these had to have the same temperature.
Once a given species has decoupled, its temperature scale as T ∝ a−1. We thus expect the
neutrino temperature Tν to follow the photon temperature Tγ closely. At some point after
the neutrino decouples, e+e− pair production stops, dumping energy from the remaining
annihilations into the photon component, heating it up. Thus the neutrinos are somewhat
cooler than the photons. The exact relation [7] is

Tν =
(

4
11

)1/3

Tγ .

With the observational result Tγ,0 = 2.725K and Tν ∝ a−1, we now have all we need to compute
wν(t) for a given value of the neutrino mass mν . The resultant w(t) and a(t) for the ΛCDM
cosmology with three massless neutrinos, as well as with three massive neutrinos, is shown in
figure 2.1. We see that even in the case of three neutrinos with the large mass of 1 eV, their
effect on the expansion is minuscule. The true importance of massive neutrinos lies in their
effect on structure formation, as we shall see.

2.3 Linear Perturbation Theory
In this section we take the completely homogeneous Universe and perturb it slightly. We do
this in real space and comoving coordinates. For brevity, we consider only the dark matter
component, but leave out the ‘m’ subscript. As dark matter has neither pressure nor shear, this
simplifies the calculation immensely. In chapter 3 a non-linear treatment of a general species
will be performed.

With the physical velocity at a point r given by ṙ, the equations of motion for the matter
fluid are the continuity and Euler equation, describing conservation of mass and momentum,
respectively: 

∂ρ

∂t

∣∣∣∣
r

= −∇r · (ρṙ) ,

∂ ṙ

∂t

∣∣∣∣
r

= −ṙ · ∇rṙ −∇rφ ,
(2.17)

where all derivatives are given a subscript ‘r’, indicating that they are to be taken with
respect to the physical coordinate system. The reason that the temporal derivatives need this
coordinate specification is because the coordinate transformation is time-dependent through the
scale factor, r = a(t)x. The right-hand-side of the continuity equation represent transport of
energy, whereas the first term in the right-hand-side of the Euler equation represent transport
of momentum. The last term represent the influence of gravity with the potential φ.
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2. Cosmology

Our first goal is to transform the above equations of motion to the comoving coordinate
system. From the definition of comoving coordinates, r = ax, it is clear that

∇r = a−1∇x , (2.18)

but how ∂/∂t|r transforms is less clear. To find out, consider a function f(t, r) with differential

df = ∇rf(t, r) · dr + ∂f(t, r)
∂t

∣∣∣∣
r

dt

= ∇xf(t, r) · dx+
[
ȧ

a
x · ∇xf(t, r) + ∂f(t, r)

∂t

∣∣∣∣
r

]
dt , (2.19)

where dr = x da + adx = ȧx dt + adx has been used. By allowing f to take in comoving
arguments, f(t, r) = f(t, ax) ≡ f(t,x), its differential in purely comoving coordinates is

df = ∇xf(t,x) · dx+ ∂f(t,x)
∂t

∣∣∣∣
x

dt . (2.20)

Comparing (2.19) and (2.20), we can read off the relation

∂

∂t

∣∣∣∣
r

= ∂

∂t

∣∣∣∣
x

− ȧ

a
x∇x . (2.21)

The defining feature of φ is that it satisfies the Poisson equation

∇2
rφ(r) = 4πρ(r) .

In comoving coordinates, the potential φ(t, r) has to be replaced not just by φ(t, ax), but
by the so-called peculiar potential, satisfying a Poisson equation for the density fluctuations,
∇2
xϕ(x) ∝ δ(x). Whether using density or density fluctuations ought not change the behaviour

of gravity, and so this change is allowed. It is required because a solution to the Poisson
equation only exists∗ for a field with mean value 0. The relation between φ and ϕ takes the
form ϕ(x) ∝ φ(ax) + aäx2/2. In the literature, the proportionality factor is usually chosen as
just 1, leading to

ϕ(x) ≡ φ(r) + 1
2aäx

2

⇒ ∇2
xϕ(x) = 4πa2(ρ(x)− ρ̄) , (2.22)

where the acceleration equation (2.7) has been used to replace ä. In a universe with multiple
inhomogeneous components, ρ(x) and ρ̄ in (2.22) must be the total mean density and density
contrast.

Transforming the continuity and Euler euqation (2.17) via (2.25), (2.18), (2.21) and (2.22),
one obtain 

∂ρ

∂t

∣∣∣∣
x

= −a−1∇x · (ρu)− 3 ȧ
a
ρ ,

∂u

∂t

∣∣∣∣
x

= −a−1u · ∇xu−
ȧ

a
u− a−1∇xϕ ,

(2.23)

where u is the peculiar velocity u ≡ aẋ.
∗Note that this means that this complication only arise for infinite systems.
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2.3. Linear Perturbation Theory

We write the perturbations in the fluid density as

ρ(t, r) = ρ̄(t)[1 + δ(t, r)] , (2.24)

where δ is called the density contrast.
We now write the perturbations in the fluid density as

ρ(t, r) = ρ̄(t)[1 + δ(t, r)] , (2.25)

where δ is called the density contrast. So far, no approximations about the fluctuations being
small have been used. If we however consider only small perturbations, δ � 1⇒ u · ∇xu ≈ 0,
the non-linear continuity and Euler equation in comoving coordinates (2.23) can be combined
into a single second-order differential equation for the density contrast,

δ̈ + 2 ȧ
a
δ̇ − 4πδρ̄ = 0 . (2.26)

With the growth of the scale factor in each domination epoch given in (2.13), we can solve
(2.26) for each epoch separately:

δ ∝∼


log a (radiation domination),
a (matter domination),
1 (dark energy domination).

(2.27)

It is clear from (2.27) that significant matter structure may only form in the matter domination
epoch. As seen from 2.1, the Universe has been matter dominated for the majority of its life,
and so a grows dramatically throughout this epoch. The δ ∝ a behaviour then tells us that
the density cannot be taken to be perturbative through matter domination. Perturbation
theory may then only be used to evolve the Universe through the radiation epoch and some
way into matter domination. From here, non-linear theory must take over, implying solving
the non-linear fluid equations (2.23) (or their equivalent) using numerical codes.
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3 Fluid Dynamics

In this chapter we will find the non-linear equations governing a general fluid with equation of
state w(t). As far as possible we will express these equations in so-called conservation form,
important for numerical stability.

3.1 Fluid Variables
The full non-linear stress-energy tensor can be written as [8]

T 0
0 = −ρ ,

T i0 = −ρ̄
(

1 + δ + w + δP
δρ
δ

)
ui ,

T ij = ρ̄

(
w + δP

δρ
δ

)
δ
i
j +Σi

j ,

(3.1)

where two new fluid variables δP/δρ and Σi
j appear. The first is the square of the sound

speed, effectively decoupling density and pressure into two separate variables. Since we
approximate the pressure of any fluid to be linearly related to its density (2.10) at any point,
P (t,x) = w(t)ρ(t,x), with w(t) = P̄ (t)/ρ̄(t) being spatially constant, the variable δP/δρ
reduces to just w. As the the equation for T ij in (3.1) defines the stress tensor Σi

j , we are free
to modify it, at the cost of our new stress tensor being different from the one in (3.3). The
equation for T ij , as it stands in (3.1), guarantees a traceless stress tensor. As what we have
been working with so far is a perfect (shear stress-less) fluid, we are interested in a stress tensor,
σij that vanishes for perfect fluids. If we lower an index on (2.5), we see that for a perfect fluid,

T ij = wρδij + (1 + w)ρuiuj (perfect fluid),

where the first term wρδij is really identical to the first term on the right-hand-side of the T ij
equation in (3.1), once we set δP/δρ = w. Our new stress tensor, containing all deviations
from a perfect fluid, can then be defined by

Σi
j = (1 + w)ρ(uiuj + σij ) .

Our stress-energy tensor then takes the form
T 0

0 = −ρ ,
T i0 = −(1 + w)ρui ,
T ij = wρδij + (1 + w)ρ(uiuj + σij ) .

(3.2)
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3. Fluid Dynamics

3.2 The Boltzmann Hierarchy
We saw in section 2.1 how the homogeneous continuity equation could be derived from the
Einstein equations. We could also have found this by requiring that the covariant derivative of
the stress-energy tensor vanishes:

0 = Tαµ;α ≡ ∂αTαµ + Γ ββα T
α
µ − Γ βαµ Tαβ . (3.3)

Similarly, using the non-linear stress-energy tensor (3.2), the non-linear continuity and Euler
equations can be derived. The equation of evolution for σij cannot be found in this way, however,
as (3.3) only has a single free index and so cannot possibly contain a term like σ̇ij . Instead
we can use the same approach as in (2.15) and (2.16), taking moments of the distribution
function. The general relativistic expression for the stress-energy tensor and higher-order
variables, written as momentum moments of the distribution function f , is [9, 10]

T 0
0 (t,x) =

√
−g

∫
dP1 dP2 dP3 f(t,x,p)P0 ,

T 0
i (t,x) =

√
−g

∫
dP1 dP2 dP3 f(t,x,p)Pi ,

T j
i (t,x) =

√
−g

∫
dP1 dP2 dP3 f(t,x,p)PiP

j

P 0 ,

Π jk
i (t,x) =

√
−g

∫
dP1 dP2 dP3 f(t,x,p)PiP

jP k

P 0P 0 ,

...

(3.4)

where Pµ is conjugate momentum to comoving xµ and g is the determinant of the (now
perturbed) metric. As demonstrated by the inclusion of the rank-3 tensor variable Π jk

i in (3.4),
we can extend this hierarchy indefinitely by including another P `/P 0 at each step, regardless of
the fact that the more well-known stress energy tensor is only of rank 2. We can then generate
an infinite hierarchy of fluid variables, each a symmetric tensor carrying one additional index
than the previous, all of which are needed in order to cover all of phase space and describe the
fluid exactly. With increasing mass, P `/P 0 drops, making higher order variables less important.
A valid approximation to the infinite hierarchy (3.4) is then a truncated version including only
the first n variables, where n is allowed to be chosen lower the higher the mass. Alternatively,
instead of simply truncating the hierarchy, one might wish for some algebraic approximation to
the n’th fluid variable, closing the hierarchy at this level. Lastly, one could close the hierarchy
by computing the n’th fluid variable using linear theory, which can be done essentially exactly.
As the fluid variables become less non-linear the higher the moment, this ought to be a very
precise and self-consistent way to close the hierarchy. This linear-theory closure is what has
been implemented in concept.

3.3 Relativistic Fluid Equations
To derive the evolution of the fluid variables defined by the Boltzmann hierarchy (3.4), we
are in need of the evolution of the underling distribution function f(t,x,p). The equation
governing the evolution of f is the Boltzmann equation, describing conservation of phase space
volume:

0 = df(t,x,p)
dt =

[
∂

∂t
+ dx

dt
∂

∂x
+ dp

dt
∂

∂p

]
f(t,x,p) , (3.5)
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3.4. Newtonian Fluid Equations

where no collision term is present for the weakly interacting neutrinos. We can now create
equations of motion for any fluid variable by multiplying (3.5) by the appropriate factors of P `
and P 0 and integrating over p. The fully relativistic continuity and Euler equation resulting
from this procedure, only subject to the approximations of the metric perturbations being
small, can be found in [8]:

δ′ = − (1 + w)(θ − 3φ′)− 3a
′

a

(
δP

δρ
− w

)
δ − θδ − ui∂iδ

+ 3
(

1 + δP
δρ

)
φ′δ − δP

δρ
θδ − ui∂i

(
δP

δρ
δ

)
− (∂iψ − 3∂iφ)

(
1 + δ + w + δP

δρ
δ

)
ui ,

ui′ = −
[
a′

a
(1− 3w)− ψ′ − 5φ′

]
ui −

[
δ′ + w′ + ∂τ

(
δP
δρ δ

)]
ui + δij(1 + δ)∂jψ

1 + δ + w + δP
δρ δ

− 1

ρ̄

(
1 + δ + w + δP

δρ δ

)[δik(∂j + ∂jψ − 3∂jφ) + δkjδi`∂`φ
]
T jk ,

(3.6)

where a prime denotes differentiation with respect to conformal time τ , ′ = ∂τ = a∂t, and all
spatial derivatives are with respect to comoving coordinates; ∂i = ∂/(∂xi)|x. We shall continue
using this notation from here on out. An equally monstrous formula for the time evolution of
σ j
i is known, involving fluxes of Π jk

i , but as I have not yet implemented this into my work, I
will not discuss it.

3.4 Newtonian Fluid Equations
Solving systems of partial differential equations numerically is no easy task, as the problem at
hand may suffer from different kinds of instabilities. Generally we can improve the stability
by expressing the partial differential equations in conservation form (if possible). In this way,
whatever numerical errors may occur, the physically conserved quantities are guaranteed to
stay conserved numerically, effectively constraining the numerical solution in our favour without
adding to the numerical complexity.

As an example, consider the continuity equation for matter (2.23),

∂ρm
∂t

∣∣∣∣
x

= −a−1∇x · (ρmum)− 3 ȧ
a
ρm . (3.7)

Here the change in density is caused by a mass flux ∇x · (ρmum), meaning that mass is flowing
around, but conserved. The last term −3(ȧ/a)ρm acts as a source (sink) term, lowering the
density throughout space. This is of course not because we are actually loosing mass, but rather
because we are gaining space. Remembering the scaling ρ̄m ∝ a−3, we expect the quantity
a3ρm to fulfil a continuity equation without this Hubble term. Indeed, from (3.7), we can
immediately obtain

∂a3ρm
∂t

∣∣∣∣
x

= −a2∇x · (ρmum) .
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3. Fluid Dynamics

Were we to just implement a matter fluid numerically, a3ρ would then be an appropriate
variable to track. Similarly, for a radiation fluid, the variable which continuity equation can
be stated in conservation form is a4ρ. With these two limits in place, we define the density
variable

% ≡ a3(1+w)ρ ,

which should lead to a continuity equation without source terms, for any fixed w. Now looking
at the Euler equation at (2.23), we see a similar Hubble term −(ȧ/a)u. Thus for matter, au is a
better variable to track numerically. In conservation form, fluid equations involving momentum
density ρu rather than the bare velocity u tends to involve fewer and simpler terms. Now
since ρ ∝ a−3 for matter, we thus choose our second fluid variable as (a3ρ)(au). For radiation,
ρ ∝ a−4 but peculiar velocities u have no explicit time dependence, again suggesting that the
second fluid variable should be chosen as

J ≡ a4ρu ,

which is what we do. A similar analysis for σij may have to be done once it is fully incorporated
as a dynamic fluid variable. For now, %, J and σij are the variables implemented in concept.

We wish to reduce the relativistic fluid equations (3.6) to their Newtonian form. In the
Newtonian limit, the metric perturbations both reduces to the peculiar potential ψ, φ → ϕ,
which have no explicit time dependence, ψ′, φ′ → 0. Furthermore, since ui, ψ, φ and σij are
small quantities, any term with two or more of these quantities can be neglected. Then we have
the approximation of a spatially constant sound speed, meaning δP/δρ → w. As concept
uses cosmic time, all conformal time differentials must also be converted accordingly. Last but
not least, δ and ui should be converted into % and J , and all terms should be written as flux
terms as far as possible. It took me quite some time to do these calculations, as I tried with
different combinations of fluid variables (including different stress tensors) only to find spurious
source terms popping up. The final result, including factors of c, is

∂t% = −a3w−2(1 + w)∂iJ i + 3ẇ ln a% ,

∂tJ
i = − c2a−3w w

1 + w
∂i%− a3w−2∂j

(
J jJ i

%

)
− a−3w∂j(%σij )

− ẇ

1 + w
J i − a−3w%∂iϕ ,

(3.8)

where no significance should be given to the placement of indices on the partial derivatives.
Interpreting the new terms, we see that both the continuity and Euler equation has picked
up a source term due to ẇ. Also, for w 6= 0, a pressure term ∝ ∂i% appears in the Euler
equation. The last equation we need is the Poisson equation written in terms of %. This is
straight forwardly obtained from (2.22);

∂i∂
iϕ = a−3w−14πG% . (3.9)

3.5 Numerical Implementation
In concept, the inhomogeneous components of a universe can be simulated as either particles or
fluids. Particle components consist of N particle positions and momenta. For fluid components
these are replaced with the list of fluid variables, which can have any∗ length. Each fluid

∗Though presently, no dynamic evolution is implemented for σij or higher order.
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3.5. Numerical Implementation

variable is thought of as a symmetric array of scalar fields. Each such scalar field consists at the
moment of three equally sized cubic grids, spanning the simulation box. The fluid scalar lives
on the primary grid, whereas the other two are used when solving the fluid equations (3.8).

3.5.1 The MacCormack Method

The numerical method adopted is the MacCormack method [11], a finite difference method,
second-order in both time and space. This method is computationally cheap, generalizes easily
to three dimensions and parallelizes straight forwardly. The method solves the fluid equations
(3.8) in two steps, called the predictor and corrector step, here illustrated for the continuity
equation:

%?(x) = %(x)−
3∑
i=1

1
|∆xi|

[
J i(x+ ∆xi)− J i(x)

] ∫ t+∆t

t
a3w−2(1 + w) dt ,

%(x)→
1
2
[
%(x) + %?(x)

]
−1

2

3∑
i=1

1
|∆xi|

[
J i?(x)− J i?(x−∆xi)

] ∫ t+∆t

t
a3w−2(1 + w) dt .

(3.10)

After the above computation has been performed, %(x) will have been evolved by an amount
∆t due to its flux term. The algorithm is simple to understand: In the predictor step, the
slopes in ∂iJ i(x) are approximated by the finite difference steps∗ ∆xi to the right, for each
dimension i. The results %?(x) are stored on a separate grid. Before the corrector step, the
corresponding J? is computed from % and σij , and so on. In the corrector step, we compute
the slope to the left, and update %(x) using the mean of the two slopes. The integral is needed
because a and w depend on time, and so simply multiplying by a3w−2(1 +w)∆t would produce
a small error. Of course J also depends on time, but we have to take it outside the integral to
produce a finite time step. One might argue that a more self-consistent treatment was to also
take a and w outside of the integral, evaluating them only at the time step instances. In the
gadget-2 [4] code, a similar choice (though only including a) of keeping the integral is made.

3.5.2 Source Terms

No source terms are implemented by the MacCormack method in concept, though it can be
done straight forwardly [12]. As source terms perturbs the conservations, we wish to apply them
as rare as possible. After all flux terms have been applied to all fluid variables through (3.10),
all source terms are applied, including gravity. As gravity is inherently expensive to compute
due to it being a long-range force, we do not want to compute this more than once per time
step, which is another reason not to apply source terms intermangled with the MacCormack
steps. As source terms like† the one in the continuity equation (3.10) does not involve fluid
variable derivatives, they can be added on effortlessly. For the computation of gravity, see
subsection 3.5.5.

∗As all fluid grids in concept are regular and cubic, |∆xi| is equal for all dimensions i.
†In concept, these are referred to as “internal” source terms, in contrast to e.g. gravity which is really an

external force.
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3. Fluid Dynamics

3.5.3 Time Stepping

In concept the time step size ∆t is spatially global and determined dynamically throughout the
simulation to be as high as possible without corrupting the physics. Global tracers such as the
dynamical time scale and the Hubble time are used, but also more detailed information about
the actual components are used. Since the MacCormack method (3.10) computes derivatives
as the difference between neighbouring∗ grid points only, this sets the maximum distance that
an influence can travel to be one grid spacing ∆x. The speed of the bulk flow of the fluid is set
by u (J), but for a fluid with pressure (w 6= 0), sounds waves can propagate on top of this
bulk flow. The maximum speed of information in the fluid is then the sum of the (local) bulk
velocity and the (global) sound speed. The physical sound speed is cs = c

√
w , but because

we are working in the comoving frame, this has to be scaled by a−1, taking the redshifting
of velocities into account. For the bulk velocity, we are not to use u = a3w−1J/% but rather
ẋ = a−1u, as we are interested in velocities with respect to the comoving x grid. Our time
step size must then be no larger than

∆t < ∆x√
3

(
ca−1√w + a3w−2 max

x

∣∣∣∣J(x)
%(x)

∣∣∣∣)−1
. (3.11)

This is what is known as the Courant condition, here generalized to comoving coordinates.
It is a necessary but generally not quite sufficient condition [14], so the actual time step size
is chosen to be a fraction of the right-hand side of (3.11). The

√
3 in (3.11) is needed when

in three dimensions, because flow running diagonally on the grid needs to “zigzag” its way
forward, in the sense that no information can travel between diagonal grid cells without passing
through neighbouring grid cells with shared faces.

As (3.10) is not left/right symmetric (i.e. the left slopes are always computed using results
obtained from the right slopes), it leads to clear anisotropic errors, especially in higher
dimensional simulations. To correct this, the 8 possible orders (3 dimensions with an ordered
pair of directions for each) are periodically cycled. Additionally, the time step size ∆t is allowed
to chance only after each complete cycle.

3.5.4 Vacuum Corrections

Since the density ρ is hiding inside both % and J , both the flux and the source term in the
continuity equation (3.8) vanishes in the case of vacuum. Thus % is bounded bounded from
below, as it should. Due to the discrete time stepping however, it may happen that the density
becomes slightly negative at certain points, which causes problems for the simulation and leads
to blow-up of J . This turns out to be a real problem even for the neutrino fluid, at least at
late times and with high spatial resolution.

To counteract this problem is not trivial, as we cannot simply lower the time step size as
even a slightly negative density has catastrophic consequences. The physically correct solution
is to consider % and %? for each fluid element during the MacCormack steps and limit the flux if
it leads to a negative density. This is not so easily done however, as this limited flux has to be
remembered between MacCormack steps and applied to both the left and right differentiation
at a given cell interface. How such a positivity-preserving flux limiter can be implemented for
single-step schemes is demonstrated in [15], where two new grids per interface (thus 6 new grids

∗The order of the MacCormack scheme can be made higher [13] in a fashion similar to Runge-Kutta methods,
increasing both its accuracy and the allowed size of ∆t. I have played with such higher orders, but found that
the increase in computation time was too much.
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Figure 3.1 – 1D test simulations showing the vacuum corrections in action. The same initial
conditions (top) are evolved as a matter fluid and as particles. The final states of the two simulations
are shown at the bottom.

in 3D) are needed for storing the flux limiters. Exactly how this method can be applied to our
two-step MacCormack method is unclear, as we have to accept the predictor step before we
can compute the corrector step. Any detected negative densities resulting from the corrector
step would have to alter the predictor step, which is not possible as this has already taken
place. One could of course fix this be keeping all fluxes in memory instead of applying them
immediately, resulting in the need for even for grids.

I decided that using positivity-preserving flux limiters was too complicated and memory-
inefficient, and decided to simply smooth out regions with dangerously low densities. After the
first MacCormack step, the % and %? grids are compared and the number of time steps needed
to bring each fluid element down to vacuum is computed, using linear extrapolation. If for
some fluid element vacuum will be reached within a given number of time steps (currently this
is sat to 30), the 3× 3× 3 block around this element will be smoothed in manner that respects
conservation of both energy and momentum. All 27 fluid elements will give/receive some of its
density to every other, the amount being inversely proportional to their squared distance and
the estimated time before the vacuum state will be reached. The same smoothing is performed
if after the second MacCormack step, any density is negative. That is, here we only consider
low densities to be problematic if they are already negative. The smoothing cannot be applied
immediately, as this would alter the remainder of the vacuum checking procedure where other
elements of % and %? are compared. Instead, these “vacuum corrections” are saved to a new
grid and only applied afterwards, increasing the total number of grids per fluid scalar to 3.
Since both % and J are proportional to ρ, the values in J are smoothed alongside those of %,
though the check for negative values always takes place on % only.
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3. Fluid Dynamics

I have found that my smoothing scheme just described leads to well-controlled behaviour.
The results are different from the physical correct solution only at steep boundaries between
vacuum (or very low density regions) and high-density regions. A test of the smoothing is
shown in figure 3.1, where the same initial conditions are evolved as particles and as a fluid.
The initial conditions are a simple 1D sine curve with a period that matches the box size. As
time evolves, the overdensity grows due to gravity, emptying out the region of low density. To
enforce a future discontinuity in %, the initial velocity field diverges rather strongly from the
center of the underdensity. For the particle and fluid simulation to be comparable, the fluid
must be pressureless, w = 0. From the pressure term in the Euler equation (3.8), ∝ ∂i%, we see
that pressure has a counteracting effect on the build-up of steep density gradients, and so this
test shows the most extreme case. Figure 3.1 demonstrates that the fluid implementation is
able to survive large regions of rapidly growing voids, though discontinuous interfaces between
low and high density regions become smooth. As we do not expect such discontinuities in the
cosmic neutrino fluid, this simple smoothing scheme is deemed adequate.

The vacuum correction test of figure 3.1 is included as part of the concept source code,
together with a variety of others, including a full 3D cosmological comparison test between a
particle and a pressureless fluid simulation. For the particle implementation to have validity,
this is tested against full 3D cosmological simulations using the gadget-2 code.

3.5.5 Gravity

The only external force acting on the neutrino fluid is gravity. Gravity for particles was
originally implemented in concept using the so-called PP, PM and P3M methods, detailed
description of which can be found in [6]. The PM (particle-mesh) method interpolates the
particles onto a mesh and then solves the Poisson equation on this mesh, after which the
gravitational forces are interpolated back to the particle coordinates. As the fluids already
livs on a mesh, it was obvious to extend the PM method to work for fluids also. At the same
time, neither the PP nor the P3M method makes much sense for fluids, so concept only
supports∗ the PM† method for fluid components, and only this will be described further. We
shall discuss the PM method for the case of a simulation involving both particles (matter) and
a fluid (neutrinos).

The overall strategy of the PM method is this. Construct a grid (or mesh) of the total density
ρtot(x) of all components via interpolation, be it particles or fluids. Now Fourier transform this
mesh; ρtot(x)→ ρ̃tot(k). Convert the grid values to that of the Fourier transformed potential,
ρ̃tot(k)→ ϕ̃(k) using the Poisson equation (2.22), though now in Fourier space:

ϕ̃(k) = −4πGa2

k2 ρ̃tot(k) . (3.12)

Note that this is not defined for k = 0, exactly corresponding to the mean density which was
subtracted in (2.22). Removing the mean density then corresponds to setting ϕ̃(k) = 0. Now do
an inverse Fourier transform to obtain the potential in real space, ϕ̃(k)→ ϕ(x). Differentiate
the ϕ grid using finite difference to obtain approximations for ∂iϕ at each grid point and
interpolate this force back to the particle/fluid element positions and apply it. The fast Fourier
transformed used impose periodic boundary conditions, which is exactly what we want. We

∗Though it is possible for gravity to be computed using different methods for different components in a
multi-component simulation.

†The name ‘particle mesh’ is not really appropriate any more, as only the ‘mesh’ part is used for fluids.
With no other commonly used name known to me, I shall continue referring to it as the PM method.
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3.5. Numerical Implementation

thus obtain periodicity of gravity for free, a feature which requires quite some effort using
non-Fourier methods.

The last step involving differentiation requires a separate grid and so doubles the memory
consumption of the method. Alternatively, the differentiation could be done in Fourier space by
multiplying by ik, at the cost of tripling the number of needed Fourier transforms and therefore
the computation time. As the bottleneck∗ of the time stepping is usually the computation of
gravity, I have settled with real-space differentiation.

We shall now take a closer look at the interpolations and the complications that arises when
having both particles and fluids in the same simulation. Though the same mesh in memory is
used to store ρtot(x), ρ̃tot(x), ϕ̃(x) and ϕ(x) values, we shall refer to this grid consistently as
the ϕ grid. The CIC (cloud-in-cell) method is used for the density interpolations, which may
be described as distributing each of the particles (or fluid elements) throughout the ϕ grid,
with weights at each grid point given by the geometric overlap between the particles and the
grid point, where both the particles and the grid points are imagined to have cubic shapes with
side lengths equal to the grid spacing of the ϕ mesh, H. Denoting the weight at mesh point
xm of a particle at xp as W (xm − xp), we have

W (x, y, z) = H−3Π
(
x

H
,
y

H
,
z

H

)
∗Π
(
x

H
,
y

H
,
z

H

)

=


(

1− |x|
H

)(
1− |y|

H

)(
1− |z|

H

)
if all |x|, |y|, |z| < H,

0 otherwise ,
(3.13)

where Π is the cubic top-hat function

Π(x, y, z) =

1 if all |x|, |y|, |z| < 1
2 ,

0 otherwise

and ∗ denotes convolution. Note that the weights (3.13) are only non-zero for the 8 grid points
closest to the particle. If the fluid grids happen to be of the same size as the ϕ grid, all grid
points coincide and the CIC interpolation reduces to direct copying.

All source terms, including gravity, are applied to the system half a time step out-of-
sync with the rest of time evolution, meaning flux terms for fluids and position updates for
particles. This is a relic of the symplectic leapfrog integration originally designed for the the
particle evolution, where updates of positions and momenta are interwoven in this out-of-sync
fashion, making the time integration for particles much more stable†. Looking back at the
Poisson equation for a single-fluid universe, (3.9), we see that the right-hand-side includes a
factor a−3w−1, which is both time-varying and component-dependent. To generalize this to
multi-component situations, such as a single fluid and a particle component, what is initially
interpolated to the ϕ grid is not just the ρ = a−3(1+w)% for each component, but rather

a2ρm(x) = W (x)
H3 ∗ a2ρtot(x) ,

∗The fftw library is used for parallel, in-place fast Fourier transformations of real-valued 3D data, with
computation times scaling as O(N logN), N being the number of grid points.

†Note that because the MacCormack scheme itself splits up a single time step into two half steps, applying
the gravitational forces out-of-sync by half a time step means that the gravitational forces applied are those
matching the time right after the predictor and before the corrector step. In this way, though gravity is only
applied half as often as flux terms, it is applied fairly with respect to the predictor and corrector step.
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3. Fluid Dynamics

a2ρtot(x) =
∑
α


mα

N∑
i=1
δ(x− xα,i)∆t−1

∫ t+∆t

t
a−1 dt (particles),

%α(x)∆t−1
∫ t+∆t

t
a−3wα−1 dt (fluids),

(3.14)

where ρm is the mesh-interpolated density, α runs over all components, mα is the mass of the
particles of component α and xα,i is the position of the i’th particle of component α. Looking
at (3.14), the discreteness of the particle description is obvious, while the discreteness of the
fluid description is less transparent. It is to be understood that numerically, all fields are really
only defined at the grid points — or equivalently, zero everywhere except at the grid points —
and so a more rigorous notation would distinguish between physical fields and numerical grids,
e.g. %α,X(x) ≡ %α(x)X(x/H), where %α,X(x) is the numerical grid of density values of species
α and X is the Dirac comb; X(x/H) = H3∑

n∈Z3 δ(x−Hn)
In the Poisson equation (3.12), the actual density ρtot is needed. Though what lives on the

grid is really the interpolated values ρm ∝ W ∗ ρtot. Simply ignoring this difference leads to
errors on scales comparable to the grid spacing H. We correct for this by “undoing” the CIC
convolution while in Fourier space, where the convolution with W (x) turns into multiplication
of W̃ (k). The Poisson equation (3.12) then turns into

ϕ̃(k) = −4πGa2

k2
H3

W̃ (k)
ρ̃m(k) , (3.15)

where the Fourier transform of the CIC weighting function (3.13) is

W̃ (kx, ky, kz) = H3
[
sinc

(
Hkx

2

)
sinc

(
Hky

2

)
sinc

(
Hkz

2

)]2
.

Equation (3.15) results in a properly deconvolved potential, though our interest is really the
resulting forces at the locations of the particles/fluid elements. Since another CIC interpolation
is used to interpolate the forces from the grid points of the ϕ grid and onto the particle/fluid
elements, two CIC deconvolution are actually needed, and so the potential actually calculated
in concept is ϕ̃(k)H3/W̃ (k).

The CIC deconvolution is not perfect and does not take into account the exact positions of
every particle/fluid element. For fluids with a grid size matching that of the ϕ grid, no CIC-
interpolation is needed at all, and so we are actually worse off performing the two deconvolutions.
In my simulations I tend to use the same grid size for fluids and ϕ, and I have indeed found that
the small-scale results are erroneously influenced by these CIC-deconvolutions. In simulations
with both a particle and a fluid component, however, we either have to deconvolve ρ̃m ∝ ρ̃tot
or we do not; no component-specific control is available. This limitation could be surpassed by
introducing a separate ϕ grid, solving the Poisson equation separately for particle and fluid
components, allowed by the linearity of the Poisson equation.
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4 Bridging 3D Real and 1D Fourier Space

The raw∗ output of a concept run, or any other similar cosmological simulation codes, is
what is called a snapshot. This is simply a memory dump of the current state of the simulated
universe, i.e. a list of values of all fluid variables, particle positions and momenta, together with
a few informations about the overall cosmology. Such snapshots can generally not be directly
compared to observations or even to other simulations. First, the overall statistics must be
extracted, which is embodied in the power spectra Pα(k), measuring the amount of structure
at a given Fourier mode k.

The power spectra are thus 1D (Fourier space) representations of 3D (real space) distributions
of the different species. This reduction in dimensionality means that information is lost, and
so we cannot recreate the unique 3D distribution from which a given power spectrum was
originally computed. We can however construct an infinite set of 3D distributions which all
map to the same power spectrum. This reverse process of realising a power spectrum as a 3D
distribution is the key to initial condition generation, since physically accurate power spectra
at early times can be computed using linear perturbation theory. Popular numerical codes for
such linear theory include camb [16] and class [1], the latter of which has been fully integrated
as a library module into concept.

4.1 Power Spectra
The power spectrum for species α may be defined simply as

Pα(k) ∝ 〈|δα(k)|2〉 , (4.1)

where angle brackets denote ensemble averaging, reducing the many instances of δα(k) with
|k| = k to a single† number. In concept, the normalization of all power spectra is chosen to
be the (comoving) box volume. With this choice of normalization, individual power spectra are
computed simply as

Pα(k) = V

〈∣∣∣∣∣∣∣∣∣∣∣F

N−1W (x) ∗

N∑
i=1
δ(x− xα,i) (particles)

[∫
%α(x) d3x

]−1
W (x) ∗ %α(x) (fluids)



∣∣∣∣∣∣∣∣∣∣∣

2〉
, (4.2)

where F is the Fourier transform and V is the box volume. The ϕ grid is reused for all power
spectra computations, and so the interpolation via convolution with W (x) is just as described
in subsection 3.5.5. Just as we did there, we really ought to deconvolve for the CIC interpolation

∗Concept is able to output power spectra, full 3D renders or even 2D projected renders directly in the
terminal. The image on the front page is an example of such a 3D render, of a simulation with both matter and
neutrinos.

†Actually, concept also computes the standard deviation of this mean, which is useful for further processing
of the raw power spectrum.

23



4. Bridging 3D Real and 1D Fourier Space

by dividing by W̃ (k) after the Fourier transformation. Currently, deconvolution is done for
particles but not for fluids, though fluids with grid sizes different from that of ϕ ought to be
deconvolved as well.

In addition to individual power spectra, concept can compute the total power spectrum
Ptot for all species combined. Due to the non-linear |•|2 operation in (4.1) and (4.2), power
spectra do not simply add, and so this total power spectrum must be computed independently.
The recipe is similar to (4.2) with a sum over all species inside the Fourier transform, but
now each species has to be normalized in a compatible way. This is done by normalize each
component based on their total mass, essentially by replacing in (4.2) N−1 with mα and the
reciprocal integral with a−3wα(Hα/H)3, where Hα is the grid spacing of fluid component α.
We are faced with the same dilemma of whether or not to deconvolve for the CIC interpolation
when computing Ptot in a simulation with both a particle component and a fluid component
with a grid size matching that of ϕ, just as in subsection 3.5.5

4.2 Realisations
In concept, a given fluid is instantiated with a given number of fluid variables, e.g. % and J ,
which are realised using the methods described below. If the Boltzmann hierarchy is simply
truncated, this is the end of the story as far as realisations are concerned. If however the
Boltzmann hierarchy is closed using σij from linear theory, a realisation of σij (t) is performed
at each time step.

The present power spectrum is largely a result of gravity doing its work for billions of years.
Though to get gravity going in the first place, some initial inhomogeneities must be present.
These initial or primordial density fluctuations are often ascribed to quantum fluctuations
expanded to macroscopic scales by inflation. The primordial power spectrum Ps is often
assumed to be in the form of a power law

Ps(k) = As

(
k

kpivot

)ns−1
.

The departure from the primordial power spectrum as time goes on is captured by what is
known as a transfer function T ,

PT (t, k) = 2π2T 2(t, k)k−3Ps(k) , (4.3)

where the exact definition of T in (4.3) is that used by class. The power spectra discussed so
far has all been with respect to the density, but power spectra might equally well be constructed
from any other scalar quantity, such as the velocity divergence. Thus T is not just unique
per species but also per quantity in question. Concept is able to extract various transfer
functions using class, compute the matching power spectrum using (4.3) and then realise it
as a 3D fluid or particle distribution. Exactly how this is done is described below.

4.2.1 Density, Velocity and Shear

Concept is able to realise dark matter, baryons∗ and neutrinos as fluids with density, velocity
and shear. For dimensionless T , we see that (4.3) is normalized by volume, in line with the

∗It is also possible to realise a single ‘matter’ component using both transfer functions for dark and baryonic
matter.
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4.2. Realisations

normalization in concept. We can then simply plug (4.3) into (4.1), “invert” the ensemble
averaging 〈•〉 and do an inverse Fourier transform to obtain

δα(t,x) = F−1

[
Tδα(t, k)

√
2π2As k

−3/2
(

k

kpivot

)ns−1
2
R(k)

]
, (4.4)

where Tδα is the specific transfer function for the density contrast of species α and R(k) is a
field of random, complex numbers, producing the 3D realisation. Specifically, we choose R(k)
to be a Gaussian∗ random field, in which case it is characterized by its mean and variance,
which not to alter the power spectrum must be chosen as 0 and 1, respectively. For a given
realisation of R(k) on a grid, we are then able to transform the transfer function Tδα into
a the 3D real-space realisation of the corresponding density contrast δα, and from here to
%α = a3(1+wα)ρ̄α(δα + 1).

The story is very similar for the velocity. A minor complication arises because the velocity
variable solved by class is the velocity divergence θ = ∇x · u, with transfer function Tθα(k).
As we are interested in the full velocity, we invert the divergence operator while in Fourier
space, resulting in

uiα(t,x) = F−1

[(
−i k

i

k2

)
Tθα(t, k)

√
2π2As k

−3/2
(

k

kpivot

)ns−1
2
R(k)

]
, (4.5)

from which we can get J = a−3w+1%u.
Crucially, the realisation of the Gaussian random field R(k) must be the same when using

both (4.4) and (4.7) in the same simulation (even for different species), corresponding to each
point in space having one (complex) degree of freedom. This actually reduces to a single real
degree of freedom, once we recognize the symmetry which must be imposed on R(k). Since
all of our real-space fields are real (as opposed to complex), their Fourier transforms all obey
the symmetry δα(k) = δα(−k)∗ (∗ denoting complex conjugation), using δα as an example.
This symmetry requirement trickles down to R(k), leaving one real degree of freedom per grid
point, which might be physically ascribed to primordial fluctuations in the inflaton field. This
symmetry must be imposed explicitly in the code, which become non-trivial in our case of a
distributed grid.

Class solves for the anisotropic stress scalar, with transfer function Tσα(t, k), resulting in
[17]

(
σij
)
α
(t,x) = F−1

[
−3

2

(
kikj
k2 −

1
3δ

i
j

)
Tσα(t, k)

√
2π2As k

−3/2
(

k

kpivot

)ns−1
2
R(k)

]
.

As σij is symmetric, it consists of 6 independent elements. As each realisation consists of a fast
Fourier transform, the needed realisation of σij at each time step becomes the bottleneck for
such simulations. It is therefore important that each element is realised only once. Additionally,
having 6 additional fluid grids more than doubles the memory footprint. The strategy used
by concept is therefore to realise only a single element at a time, updating J i according to
the stress flux ∝ ∂jσij in the Euler equation (3.8), and similarly updating J j according to
∝ ∂iσji, remembering that σij = σji. Then we need the next element of σij , which simply

∗With this choice, the power spectrum (two-point correlation function) contains all information about the
3D distribution.
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4. Bridging 3D Real and 1D Fourier Space

reused the memory allocated for the first element. Since all flux terms resulting in the time
derivative of the highest-moment fluid variable is guaranteed to only contain this variable to
linear order (otherwise too many free indices will appear), it will always be possible to use up
only a single grid of memory for the highest-order fluid variable, when using the strategy of
continues realisation.

4.2.2 The Zel’dovich Approximation

For particle components, a slightly different approach is used for realisation, known as the
Zel’dovich approximation. Here, all particles are placed on regular cubic grid points, and
then displaced by an amount ψα(t,x), given in the comoving frame. If the particles are
imagined to have originated from the grid points and travel linearly, their velocities must
be a−1uα = ẋα = ψ̇α. Substituting aψ̇α for uα in the continuity equation (e.g. (2.23)) and
neglecting terms ∝ ψ̇ · ∇xδα, we get ∇x · ψ̇ = −δ̇α, which can be integrated to

∇x ·ψα(t,x) = −δα(t,x) . (4.6)

Inverting the divergence operator of (4.6) in Fourier space just like we did for the velocity
divergence in (4.7), the realised displacement field becomes

ψiα(t,x) = F−1

[(
i k
i

k2

)
Tδα(t, k)

√
2π2As k

−3/2
(

k

kpivot

)ns−1
2
R(k)

]
. (4.7)

With the realised displacement grid, the regular particle positions are updated by an amount
ψα(t,x). The velocities uα = aψ̇α are computed using the approximation ψ̇α = (Ḋ/D)ψα,
where D and Ḋ are the linear growth function and its time derivative, both computed by
class.

4.2.3 Gauge Transformations

Class is able to compute transfer functions in either the synchronous gauge or the conformal
Newtonian gauge, but what we need is the N -body gauge. By default, concept asks class
for all transfer functions in the synchronous gauge and then transforms them to N -body gauge.
To first order, these transformations are [17]

TN -body
δα

= T sync
δα

+ 3ȧ(1 + wα)k−2T sync
θtot

,

TN -body
θα

= T sync
θα

+ a

2 ḣ− 3ak−2∂t
(
ȧT sync

θtot

)
,

where h is the synchronous metric perturbation and T sync
θtot

is the transfer function for the
divergence of the total velocity field, both of which are directly accessible from class. The
stress-tensor σij need not be transformed, as here all of the three gauges are identical to first
order.
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5 Current State and Preliminary Results

It is only very recently that the state of [3] has progressed to the point of actually being able
to run full-fledged neutrino simulations. If trying to run a neutrino-only simulation, spurious
chock waves are exited at very small scales, which then propagate to larger scales. After much
tinkering I have concluded that these “neutrino oscillations” arise from the pressure term in
the Euler equation, and I believe that they are described by the Godunov theorem [18], stating
that second-order partial differential equation solvers tend to generate such oscillations near
discontinuities. Unlike the matter transfer functions, the neutrino transfer functions contain
structure at all scales due to acoustic oscillations. This means that regardless of the resolution,
the neutrino fluid starts out as being jagged, leading to badly defined, large slopes.

In an effort to remove these spurious oscillations, I have experimented with so-called ‘total
variation diminishing’ extensions to the MacCormack scheme, specifically the method of [19]. In
such methods, flux limiters (similar in essence to those of [15]) are applied in order to diminish
discontinuities, effectively smoothing out the fluid. I have had some success with this, though
traces of the oscillations remain.

To my surprise, when running the actual simulations using both a neutrino fluid and matter
particles, the spurious oscillations never evolve. Thus somehow the effects of gravity stabilises
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Figure 5.1 – Neutrino power spectra at a = 1, resulting from linear theory and concept
simulations with and without the inclusion of shear. A ΛCDM cosmology including three neutrinos
with a total mass of either 0.3 eV or 0.15 eV, is used. The simulation box is 4096Mpc/h, h = 0.7.
For the concept simulations, a linear grid size of 600 is used for both the fluid grids and the
potential grid, and the simulation is started at a = 0.02.
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5. Current State and Preliminary Results

the neutrino fluid, apparently rendering the spurious oscillations harmless in practice. In
figure Figure 5.1, neutrino power spectra resulting from cosmological concept simulations
are compared against linear theory predictions. Both concept simulations with and without
shear are shown, meaning simulations where the Boltzmann hierarchy has been closed using
linear shear and where it is closed simply by truncating it after the second fluid variable. We
see that the simulations without the shear lead to too much power compared with linear theory,
but including linear shear reduces the power almost all of the remaining way.

As the scales shown in figure 5.1 are very large, we expect linear theory to yield correct
predictions. At the smaller scales, the agreement between the linear and non-linear power
spectra ends. This is at least partly due to the CIC deconvolution of the potential, which
as described in subsection 3.5.5 really should not be carried out for the neutrino component.
Comparing with figure 3 (right) of [20], where neutrinos are implemented using a hybrid
fluid/particle scheme, we see that an increase in power is indeed expected for the non-linear
power spectra at k & 0.1Mpc−1, though a neutrino mass of

∑
mν = 1.2 eV is used in [20].

Notice also how the point at which the simulation starts to deviate from linear theory happens
at a larger scale for the heaviest neutrino, strongly suggesting that what we see is indeed
non-linear effects.

As directly observing the cosmic neutrino structure is beyond our reach, plots like 5.1
cannot be compared with observations. For this task, a more useful plot is shown in figure 5.2,
demonstrating the effect of the neutrino component on the total power spectrum. We see a
very clear diminishing effect on the total power from the neutrino component, increasing with
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Figure 5.2 – Relative total power spectra at a = 1, for concept simulations and simulations
of B&H [20]. The specifications are the same as those in figure 5.1. Here, Ptot is the power in a
matter-only simulation and ∆Ptot = Ptot, dyn − Ptot, where Ptot, dyn is the power in a simulation
with both a dynamic matter and neutrino component.
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neutrino mass. Moreover, the results from concept agrees very well with those of Brandbyge
and Hannestad [20] for all but the smallest scales.

Though I have not yet carried out proper comparisons with other non-linear codes in the
highly non-linear regime (soon to come!), I permit myself to declare the very close agreement
seen in figure 5.1 and 5.2 for a proof of concept.
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6 Outlook

With the self-consistent, fast and relatively simple neutrino implementation of concept, many
possibilities arise. First, detailed comparisons with other codes in the non-linear regime need
to be carried out, testing the accuracy and stability of the method.

Convergence tests of the closure of the Boltzmann hierarchy will also need to be tested, i.e.
running simulations with full non-linear shear and closing the Boltzmann hierarchy using the
linearised rank-3 variable, but also simulations where only the density is fully non-linear. We
could continue implementing still higher order variables indefinitely, but I suspect that once
non-linear shear is taken into account, no further precision may be gained, as other inaccuracies
(e.g. from gravity) should begin to dominate.

The current simple (but accurate) method of realising every independent element of the
highest order variable — i.e. 6 for shear — at each time step is computationally expensive, and
will be even more so if going to higher order variables. One might then wish to spend some time
replacing these realisations with faster alternatives, e.g. realising only the anisotropic stress
scalar and from it compute all elements of the stress tensor by applying differential operators
to this scalar in real space.

The problem of having a single potential grid for both particle and fluid components should
be solved, so that the small-scale structure of fluids is not scrambled by the CIC deconvolutions.
This should easily be taken care of by introducing separate potentials for particle and fluid
components, though at the expense of doubling the computational cost of gravity.

The spurious “neutrino oscillations” appearing in neutrino-only simulations could be studied
further and perhaps eradicated completely. However, since this problem does not seem to arise
in actual cosmological simulations at all, this does not have a high priority.

A paper about the techniques described in this report — together with results from
simulations yet to be run — is under construction and will be published this summer. Once
precise comparisons with other non-linear codes has been carried out, we can start looking at
more subtle things than just the power spectrum, e.g. the effects on individual dark matter
halos from the neutrinos.

If we are able to demonstrate the usefulness of the technique describes in the report through
concept, the hope is that it will be implemented in ramses and used to produce some of the
enormous simulations required for the Euclid mission.

Though the fluid implementation is done with neutrinos in mind, it really is a much more
general framework. As such, one could use it to study completely different things, such as
various kinds of dynamical dark energies.
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