
Department of Physics and Astronomy
Aarhus University

Master’s Thesis

Computing Dark Universes
Cosmological N -body Simulations of Dark Matter

Author:
Jeppe Mosgaard Dakin

Supervisor:
Steen Hannestad

June 2015

Contents

Summary 3

Introduction 5

1 Cosmology 9
1.1 The Expanding Universe . 9

1.1.1 The Metric . 9
1.1.2 Basic Equations of Cosmology 11

1.2 Newtonian Cosmology . 16
1.2.1 The Newtonian Limit of General Relativity 16
1.2.2 Expanding Space . 18

1.3 Newtonian Perturbation Theory 19
1.3.1 Comoving Fluid Equations 19
1.3.2 Matter Fluctuations . 23
1.3.3 The N -body Approach 24

2 Newtonian Gravitation 27
2.1 The Particle-Particle Method 28

2.1.1 Newton’s law of Universal Gravitation 28
2.1.2 Ewald Summation . 30
2.1.3 Numerical Implementation 36
2.1.4 Softening . 39
2.1.5 Recap of the Method . 42

2.2 The Particle-Mesh Method . 45
2.2.1 Overview . 46
2.2.2 Mesh Operations . 49
2.2.3 The Force Computation 56
2.2.4 Numerical Implementation 60

2.3 Hybrid Methods . 63
2.3.1 The Particle-Particle-Particle-Mesh Method 64
2.3.2 Parallelization . 67
2.3.3 Modern Methods . 72

1

Contents

3 Collisionless Dynamics 75
3.1 Equations of Motion in Comoving Coordinates 75

3.1.1 The Single-Particle Hamiltonian 75
3.1.2 The Comoving Force . 78

3.2 Time Integration . 80
3.2.1 The Drift and Kick Operators 80
3.2.2 The Symplectic Leapfrog Integrator 83
3.2.3 Time Step Size . 87

4 Review and Final Remarks 91

References 92

2

Summary

The wish to understand the Universe in which we find ourselves has been with
us for thousands of years, leading to many imaginative cosmologies — ideas
about what the Universe is and how it functions. It is however only within the
last century that modern, physical cosmology has emerged, answering some
of the big questions. This has been achieved partly by theorization, but to a
large degree by observations of the Universe at large scales. Time and time
again, scientists have been baffled by the real nature of the Universe. Two
of the most outstanding problems in physics today is “what is dark matter?”
and “what is dark energy?”. As we cannot sense or even instrumentally detect
either of these directly, they are beyond our experimental reach, at least for
now.

Given a specific cosmological hypothesis, like the exact form of the equation
of state for dark energy, say, it is not at all obvious how this hypothesis affects
the history of the Universe and results in observable effects. With the advent of
powerful modern computers, a new way of testing out such physical hypotheses
has emerged. Quite detailed simulations of the evolution of the Universe is now
doable, and so we now have a tool for converting hypotheses into simulated
observables, which can then be compared to real world observations. One such
observable is the large scale structure of the Universe. In so-called N -body
simulations, the numerical universe consists of N particles which start out being
distributed almost homogeneously. The particles are then evolved through
time until we arrive at the present age, at which point the particle distribution
(the amount of structure at different scales) can be compared directly with
observations. Such cosmological N -body simulations are the main subject of
this work.

As part of this work, the full-fledged N -body code concept has been
developed, capable of tracking the evolution of dark matter particles in any
cosmology. The methods typically used in N -body codes are discussed, with
special attention paid to the methods which actually made it into concept.
In particular, the problem of computing the gravitational forces efficiently
along with the problem of accurate time integration, are addressed.

This Master’s thesis could be viewed as a self-contained introduction to
the field of cosmological N -body simulations. It is my hope that some future
version of concept may one day be used in research.

3

Introduction

Cosmology, in the broadest sense of the term, refers to our understanding
of the Cosmos (or Universe); the entirety of all things. In modern times we
have arrived at a scientific understanding of the Universe, which constitutes
physical cosmology. The birth of physical cosmology came with the advent of
general relativity a full century ago as of the time of writing. General relativity
provides a scene for the cosmic story to unfold, but it does not dictate which
story or even which actors should take part in it. Observations tell us that
the Universe is homogeneous and isotropic on the very largest of scales, that
it is expanding — even accelerating — and that it always has been, since its
dawn in the Big Bang 13.8 billion years ago. Observations also tell us that
the aforementioned actors — the stuff of the Universe — are stranger than
anything previously imagined. In contemporary cosmology, the standard model
for the Universe is that of Λcdm, where the Universe consists of ∼ 70% dark
energy (Λ∗), ∼ 25% cold dark matter (cdm) and just ∼ 5% “ordinary” matter.
Here, ordinary matter refers to atoms and everything else within the standard
model of particle physic, the nature of which we understand intimately. In the
context of cosmology, this matter component is often — somewhat imprecise —
dubbed baryonic matter. The two dark components dominate the Universe,
yet we have little to no clue as to the true nature of either. Dark matter
appears in observations as invisible matter, intervening gravitationally in the
otherwise lonely dance of the luminous baryonic matter, making up the galaxies.
Conversely, clustering of dark energy has never been detected. Its effect is seen
only on the evolution of the Universe as a whole, where it is responsible for the
acceleration of the expansion. For scales sufficiently large, the only important
features of the Universe are the universal expansion of space itself as well as
the gravitational attraction between matter within it.

Much of what we know today about our Universe come from observations
of the cosmic microwave background, together with distant supernovae ob-
servations and detailed mappings of the visible large-scale structure. To test
cosmological hypotheses, we need a common middle ground between these and
the real world. We are thus in need not only of accurate observations, but also
accurate predictions of the very same observables as those measured. This

∗As in Einstein’s cosmological constant.

5

Contents

thesis is concerned with one such tool for generating the closest thing of what
might be considered a “universe in the lab”, namely cosmological N -body simu-
lations. These simulations emulate the evolution of a given universe, including
the stuff within it, rather directly. Given a set of initial conditions consisting of
N particles, the future∗ particle configuration can then be reached by evolving
the system according to a given set of physical laws. The field of cosmology
(itself borrowing from many branches of physics) is mature enough for these
laws to be quite† uniquely established. Creating general purpose N -body codes,
where the only freedom in the simulations are given by‡ the values of a set of
parameters, is then both meaningful and doable. A given hypothesis about
the Universe (the precise amounts of dark matter and energy, say) can then
be tested by running the corresponding simulation and comparing the results
to the observed large-scale structure of the Universe.

This thesis revolves around the§ concept (COsmological N -body CodE
in PyThon) code, developed by the author as part of this work. Although
the physics is well established, the best way of implementing it into N -body
codes is not universally agreed upon. The concept code is heavily inspired
by the publicly available gadget-2 [1] code. Throughout the thesis, different
N -body methods are first established generally, after which a more specific
implementation is considered. This specific implementation always coincide
with that used in the concept code. At the time of writing, this code is
fully functional but lacks the superb numerical efficiency (due to the use of
simpler algorithms) of well-established modern codes, as well as “additional”
physics (e.g. baryons). When appropriate, these more advanced methods
used by modern codes are outlined. This thesis might then be thought of
as a self-contained beginners guide to N -body codes, introducing everything
needed to construct a working N -body code, capable of discerning different
cosmologies.

The technical software perspective, involving how to actually write or even
just run N -body codes, is left out of the main body of this thesis. A user
guide for the concept code has however been written and is included with
the source code. It is the authors strong¶ opinion that the concept code
is superior to more established codes when it comes to ease of usability and
further development. The code is well-structured and documented, but most
importantly written in the modern Cython programming language, as opposed
to one of the classical “scientific” languages (e.g. C, Fortran). Cython code is
essentially Python code — famous for its expressiveness and dynamic abilities,
resulting in fast development — compiled down to lower level C code, which

∗Or the past for that matter.
†Alternatives to even the most established physics (e.g. modified gravity) do exist but

are considered exotic.
‡And of course by different initial conditions.
§The source code is made publicly available at https://github.com/jmd-dk/concept/.
¶And, naturally, quite biased.

6

https://github.com/jmd-dk/concept/

Contents

in turn is famous for its speed. A measure of the expressiveness of the Python
language is the ratio of number of lines of code in the Python source code of
concept and the equivalent C source code, generated by Cython. As of the
time of writing, the concept code consists of 5× 103 lines of Python code,
which are then translated∗ into 150× 103 lines of equivalent C code.

Before diving into any work revolving around N -body codes, a brief review
of some jargon is advised. The particles of the simulation lives within a cubic,
periodic box which constitutes the simulated universe. A file containing the
total state of the system (the positions and velocities of all N particles) at
any given time is referred to as a snapshot. The initial snapshot constituting
the initial conditions is then called the initial condition file. Besides the
initial conditions, a particular simulation is defined by the values of a set of
parameters, controlling the cosmology, physics and numerical schemes and
accuracies of the simulation. A file containing the collective set of parameter
values is called a parameter file. The user-defined input to each simulation is
then an initial condition file and a parameter file. A particular instance of a
simulation is referred to as a run.

The thesis is structured as follows. In chapter 1, the basic equations of
cosmology, governing a homogeneous and isotropic universe, are established.
These general relativistic equations are then distilled down to the Newtonian
approximation in comoving coordinates. Fluctuations in the otherwise homoge-
neous matter distribution are then introduced using linear perturbation theory,
from which we learn quantitatively about the behavior of structure formation
in the Universe. It is made clear that to solve for the evolution of the matter
fluctuations beyond just the early Universe, N -body techniques are needed.
With the N -body approach motivated, the basic constituents of any N -body
code, the gravity solver and the time evolution, are developed in chapters 2 and
3, respectively. Without much consideration, chapter 2 sets out to construct
the most naïve gravity solver imaginable. As flaws and inabilities become
apparent, they are corrected for in a very much exploratory manner. After the
completion of this first gravity solver, more elaborate and efficient gravitational
solvers are developed. Along the way, the different gravity solvers implemented
in the concept code are compared to one another, and to the gravitational
solver of gadget-2. Chapter 3 deals with formal as well as practical time
evolution of N -body systems, which requires greater consideration than what
one might think. Finally, the work is reviewed and concluded in chapter 4.

∗This is the result of the Cython translation. If done by hand, the Python to C line
count ratio would still be impressive, though not quite as much. Both line counts exclude
comments.

7

1 Cosmology

In this chapter we review modern cosmology, deriving the basic equations
governing the homogeneous and isotropic universe. These are then distilled
down to Newtonian mechanics in comoving coordinates. We then perturb this
universe with density fluctuations and attempt to solve for the evolution of the
density field, resulting in structure formation. We will discover that analytical
methods are unable to trace this structure formation except at early times,
where linearization is possible. This failure of analytical methods then pave
the way for numerical N -body simulations.

A geometrized system of units is used throughout this chapter, with New-
ton’s constant and the speed of light both set equal to unity, G = 1 = c. In
future chapters we shall give up this convention.

1.1 The Expanding Universe
In this section we shall derive the basic equations governing the evolution of
the flat universe.

1.1.1 The Metric

The study of the Universe as a whole begins not with its contents, but rather
with its geometry. The detailed geometry of spacetime is complicated, reflecting
the distribution of all things embedded within it, as described by the Einstein
field equations. On very large scales though, observations tell us that the
contents of the Universe appears very isotropic. Disregarding the odd change
of us being located at a very special location in the Universe, this observation
implies universal large-scale homogeneity. On large scales then, all spatial
locations are exactly equivalent. In particular, the local curvature is constant
throughout space. The only∗ manifolds with this property are hyperbolic,
Euclidean and elliptical manifolds. The line elements dΣ of these manifolds
may all be written in polar coordinates as

dΣ2 = dx2

1− kx2 + x2 dΩ2 ,

∗Tori are disallowed as these break isotropy.

9

1. Cosmology

where x is the Cartesian coordinate, labeling the points on the manifold and
so x2 is the radial distance squared. As usual, the solid angular element is
dΩ2 = dθ2 + sin2 θ dφ2, where θ and φ are the polar and azimuthal angle,
respectively. The constant k is the universal curvature of the manifold. The
three possible types of manifolds are then distinguished by the sign of k;
negative (hyperbolic), zero (Euclidean) or positive (elliptical). Introducing
time t as a coordinate perpendicular to x, the spacetime line element ds2

becomes∗
ds2 = −dt2 + a2(t) dΣ2 , (1.1)

where the spatial part of the line element has been multiplied by a time
dependent function a(t) called the scale factor, included for generality. The
isotropy requirement can only be fulfilled in one particular frame of reference,
where all velocities (if any) appear radial. Homogeneity now implies that
such observed radial velocities must be the same regardless of vantage point.
These radial velocities can then only be ascribed to space itself expanding or
contracting homogeneously, which is made possible by the scale factor a. The
distance |x| does then not correspond to a physical distance, as the expansion of
space need to be factored in. The coordinates x is called comoving coordinates,
while ax are the physical coordinates. The particular frame containing only
these radial velocities is called the comoving frame. As velocities superimposed
on top of the universal expansion are disallowed by isotropy, the content of
the Universe is stationary in the comoving frame.

The metric (1.1) is the Friedmann–Lemaître–Robertson–Walker (flrw)
metric, the most general spatially homogeneous and isotropic spacetime metric.
The question of the sign of k is an experimental one. The best current estimates
of cosmological parameters such as k come from combining observations of
the anisotropies in the cosmic microwave background with baryon acoustic
oscillations and the Hubble constant. As found in e.g. [2], our Universe seems
exceptionally flat, corresponding to k−1 being much larger than the cosmic
horizon. As our goal is to study our particular Universe, we allow ourselves to
limit our study to flat models only:

ds2 = −dt2 + a2(t)
(
dx2 + x2 dΩ2) . (1.2)

The metric tensor gµν for this line element, corresponding to† ds2 = gµν dxµ dxν
with xµ = (t, |x|, θ, φ), is then

gµν = diag
(
−1, a2, a2x2, a2x2 sin2 θ

)
. (1.3)

∗Here the metric signature is chosen to be spacelike; (−+ ++). We shall stick with this
convention throughout this chapter.

†As is customary in general relativity, repeated indices implies summation when they
appear in both the co- and contravariant form. Also, Greek letter indices run over all four
spacetime coordinates, while Latin letter indices run over spatial coordinates only.

10

1.1. The Expanding Universe

Apart from the as of yet unspecified scale factor a(t), the geometry of our
Universe is now established. The remaining unspecified piece of information is
the nature of the homogeneous and isotropic contents within the Universe, on
which a(t) is allowed to depend.

1.1.2 Basic Equations of Cosmology

The connection between the metric of the Universe — and therefore a(t) —
and the stuff within it is given by the Einstein field equations,

Rµν −
1
2gµνR = 8πTµν . (1.4)

where Tµν is the stress-energy tensor while Rµν and R are the Ricci curvature
tensor and scalar, respectively. A cosmological constant is deliberately left
out from the left-hand side, as we shall think of this as a component — dark
energy — to the stress-energy tensor Tµν on the right-hand side. The Ricci
tensor, written in terms of the Christoffel symbols, is given by

Rµν = Γαµν,α − Γαµα,ν + ΓαµνΓβαβ − ΓαµβΓβνα , (1.5)

where indices following a comma imply differentiation. The Christoffel symbols
themselves are given as derivatives of the metric tensor,

Γµνρ = 1
2g

αµ
(
gαν,ρ + gαρ,ν − gνρ,α

)
, (1.6)

where gµν is the inverse of gµν , which for the diagonal flrw metric (1.2) can be
calculated element-wise; gµµ = 1/gµµ. Through (1.5) and (1.6) the Ricci tensor
can now be calculated. These are straight forward but tedious calculations,
and so here we simply state the (non-zero) results:

Γ0
11 = aȧ , Γ0

22 = aȧx2 , Γ0
33 = aȧx2 sin2 θ ,

Γi0i = ȧ

a
,

Γ1
22 = −|x| , Γ1

33 = −|x| sin2 θ ,

Γ2
12 = Γ3

13 = |x|−1 ,

Γ2
33 = − sin θ cos θ , Γ3

23 = cot θ ,

⇒

R00 = −3 ä
a
,

R11 =
(
aä+ 2ȧ2) ,

R22 =
(
aä+ 2ȧ2)x2 ,

R33 =
(
aä+ 2ȧ2)x2 sin2 θ .

11

1. Cosmology

It should be remembered that the Christoffel symbol is symmetric in the lower
indices, as is evident from (1.6) together with the symmetric metric. The
metric (1.3) then produces a total of 16 Christoffel symbols. Raising an index
on the Ricci tensor, Rµν = gαµRνα, we get the cleaner form

R0
0 = 3 ä

a
,

Rij =
(
ä

a
+ 2 ȧ

2

a2

)
δ
i
j ,

(1.7)

where δij is the Kronecker delta tensor. From (1.7), the Ricci scalar, the trace
of the Ricci tensor, is then

R ≡ Rαα

= 3 ä
a

+ 3
(
ä

a
+ 2 ȧ

2

a2

)
= 6
(
ä

a
+ ȧ2

a2

)
, (1.8)

which completes the left-hand-side of the Einstein field equations (1.4).
We now define the stress-energy tensor Tµν appearing on the right-hand-

side of the Einstein field equations (1.4). This tensor describes the density
and flux of energy and momentum in spacetime. As described in the previous
subsection, the contents of the Universe is stationary in comoving coordinates,
and so no momentum or shear stress is present; T 0i = 0, T ij ∝ δij . We are left
with the energy density T 00 and the pressure T ii components. Requiring that
the ii-components be the isotropic pressure P̄ /a2 in Cartesian coordinates, we
have for our choice of spherical coordinates

Tµν = diag
(
ρc,

P̄

a2 ,
P̄

a2x2 ,
P̄

a2x2 sin2 θ

)
, (1.9)

where T 00 = ρc amounts to nothing more than a relabeling of the energy
density. The bars indicate spatial averaging, which of course does not make
a difference in the case of exact homogeneity. As we intend to perturb the
Universe later, the bars are necessary to distinguish fields from their mean
values. The subscript on the density indicates that this is not to be understood
as a field either, but as the critical density, exactly the value of the homogeneous
density which leads to a flat universe. We shall refer to the content of the
Universe, fully described by Tµν , as a fluid.

As it stands, (1.9) is not manifestly covariant and so it is not clear that
Tµν is indeed a tensor. We can however compose the result (1.9) out of the
metric tensor and the tensor uµuν , where uµ is the four-velocity of the fluid:

Tµν = (ρc + P̄)uµuν + P̄ gµν , (1.10)

12

1.1. The Expanding Universe

where uµ = (1, 0, 0, 0) for the fluid, stationary in the comoving frame. With
a proper tensor expression (1.10) for Tµν , we can lower an index to find the
simplified expression

Tµν = (ρc + P̄)uµuν + P̄ gµν

= (ρc + P̄)uµuν + P̄δµν

= diag(−ρc, P̄ , P̄ , P̄) , (1.11)

where the minus sign is due to u0 = gα0u
α = g00u

0 = −1× 1.
With both sides of the Einstein field equations at hand, let us put them

together to find the equations relating the expansion of the Universe to its
contents. Raising an index in the field equations (1.4) and inserting (1.7), (1.8)
and (1.11), the 00-component becomes

ȧ2

a2 = 8π
3 ρc , (1.12)

which is the first Friedmann equation, relating the expansion of the Universe
to the mean density. In a similar manner, the ii-components of the Einstein
field equations all produce

2 ä
a

+ ȧ2

a
= −8πP̄

⇒ ä

a
= −4π

3 (ρc + 3P̄) , (1.13)

where (1.12) have been used to eliminate ȧ. Equation (1.13) is then the second
Friedmann equation. Differentiation (1.12) with respect to time and inserting
(1.13), we now get

ρ̇c = 3
4π
ȧ

a

(
ä

a
− ȧ2

a2

)
= −3 ȧ

a
(ρc + P̄) , (1.14)

which is really the continuity equation, expressing conservation of energy. The
same result may be found by requiring that the covariant derivative of the
stress-energy tensor vanishes, Tµν;ν = 0.

It is fortunate that both the density ρ and the pressure P are additive
entities when dealing with multi-component universes, containing several,
different fluids. All fluids with interest to us have an equation of state of the
form

P = wρ , (1.15)
with some constant w inherent to each type of fluid. For such a multi-component
universe, we then have

ρc =
∑
s

ρ̄s P̄ =
∑
s

P̄s (1.16)

13

1. Cosmology

=
∑
s

wsρ̄s ,

where the sums are over all fluids present within the Universe. The left equality
of (1.16), with the critical density defined in (1.12), amounts to the criterion
of flatness. Inserting (1.16) in the continuity equation (1.14), we see that it
must hold separately for each fluid. With the equation of state (1.15), the
continuity equation may be integrated to

ρ̄ = ρ̄0
a3(1+w) , (1.17)

where ρ̄ = ρ̄(a) is the mean density of some fluid, its present value being
ρ̄0 = ρ̄(a = 1). Using (1.16) and (1.17), the first Friedmann equation (1.12)
can now be written

H

H0
=
√∑

s

Ωs

=
√∑

s

Ωs,0

a3(1+ws)
, (1.18)

where H = ȧ/a is the Hubble parameter and Ω ≡ ρ̄/ρc the dimensionless
density parameter, where again, subscripts s and 0 refer to the fluid type and
the present, respectively.

Let us introduce the specific fluid types of our Universe. Nonrelativistic
matter is used as a collective name for all pressureless fluids, (cold) dark and
baryonic matter being the primary examples. From the equation of state
(1.15), pressureless means w = 0, and so the matter density parameter is
Ωm ∝ a−3. In the Friedmann equation (1.18), no distinction is made between
dark and baryonic matter, and so these have identical effects on the Universe
as a whole. In the other end of the spectrum, we have radiation, corresponding
to relativistic matter, of which photons and neutrinos are prime examples.
Radiation has vanishing rest mass, and so all of its energy density is constituted
by its momentum density. As the momentum is distributed isotropically, the
pressure to energy density ratio is w = 1/3; Ωr ∝ a−4. The most important
component of our present Universe is dark energy, the nature of which is largely
unknown. The simplest candidate to dark energy is a cosmological constant,
corresponding to a constant energy density with an associated negative pressure.
To achieve constant energy density ΩΛ ∝ 1, we must have w = −1. From the
second Friedmann equation (1.13), we see that dark energy is the only of these
three components which have a positive contribution to the acceleration ä of
the expansion.

14

1.1. The Expanding Universe1.1. The Expanding Universe

10−5 10−4 10−3 10−2 10−1 100 101

t [Gyr]

10−4

10−3

10−2

10−1

100

101

a
(t

)

1
amΛ

13.8

arm

radiation
matter
dark energy

Figure 1.1 – The evolution of the scale factor a(t) in our three-component
Universe (1.19), from the early Universe to the present a(t0) = 1⇒ t0 = 13.8Gyr
and beyond. The different equations of state for the components lead to density
domination at different epochs. The color of the line reflects the relative densities.

The best determined values [2] of the present cosmological parameters∗ are
ΩΛ,0 = 0.691± 0.006 ,
Ωm,0 = 0.309± 0.006 ,
Ωr,0 ≈ 8.4× 10−5 ,

H0 = (67.7± 0.5) km s−1Mpc−1 .

(1.19)

Our Universe with these three components then has the following Friedmann
equation:

H

H0
=
√
ΩΛ,0 + Ωm,0

a3 + Ωr,0
a4 . (1.20)

It is clear that at early times, radiation was the dominating component. At
intermediate times, the Universe then becomes matter dominated, after which
it becomes dominated by dark energy. At the present epoch (1.19), dark
energy is well under way to total domination. At each domination epoch,
two components are all we need to accurately model the Universe. As we are
concerned with the present Universe, we thus wish to neglect radiation. To
find out when this is possible, we calculate the value of a at which radiation
and matter are equally important:

Ωr = Ωm

∗The radiation density is not included in [2]. The one listed is from [3].

15

Figure 1.1 – The evolution of the scale factor a(t) in our three-component
Universe (1.19), from the early Universe to the present a(t0) = 1⇒ t0 = 13.8Gyr
and beyond. The different equations of state for the components lead to density
domination at different epochs. The color of the line reflects the relative densities.

The best determined values [2] of the present cosmological parameters∗ are
ΩΛ,0 = 0.691± 0.006 ,
Ωm,0 = 0.309± 0.006 ,
Ωr,0 ≈ 8.4× 10−5 ,

H0 = (67.7± 0.5) km s−1Mpc−1 .

(1.19)

Our Universe with these three components then has the following Friedmann
equation:

H

H0
=
√
ΩΛ,0 + Ωm,0

a3 + Ωr,0
a4 . (1.20)

It is clear that at early times, radiation was the dominating component. At
intermediate times, the Universe then becomes matter dominated, after which
it becomes dominated by dark energy. At the present epoch (1.19), dark
energy is well under way to total domination. At each domination epoch,
two components are all we need to accurately model the Universe. As we are
concerned with the present Universe, we thus wish to neglect radiation. To
find out when this is possible, we calculate the value of a at which radiation
and matter are equally important:

Ωr = Ωm

∗The radiation density is not included in [2]. The one listed is from [3].

15

1. Cosmology

⇒ arm = Ωr,0
Ωm,0

= 2.7× 10−4 ,

where the observational data (1.19) have been used. At times a somewhat
larger than arm, radiation can safely be ignored. Similarly, matter/dark energy
equivalence occur at amΛ,

Ωm = ΩΛ

⇒ amΛ =
(
Ωm,0
ΩΛ,0

)1/3

= 0.76 .

Figure 1.1 shows the evolution of the scale factor as given by the Friedmann
equation (1.20) with the values of the cosmological parameters corresponding
to (1.19). The separate domination epochs are clearly visible as the color of the
line, but more importantly as the expansion rate. For complete domination,
these rates can easily be calculated using the single-component Friedmann
equation, ȧ = H0a

− 1
2 (1+3w). For domination by each of the three fluid types,

we get

ȧ =

H0a

−1 (radiation)
H0a

−1/2 (matter)
H0a (dark energy)

(1.21)

⇒ a =

(2H0t)1/2 (radiation)(

3
2H0t

)2/3

(matter)

CeH0t (dark energy),

(1.22)

with C being some integration constant. These growth rates match what we
see in Figure 1.1.

1.2 Newtonian Cosmology
We wish to find the Newtonian limit of the cosmology presented above, reducing
the complexity of further analysis greatly. For an almost homogeneous universe,
the gravitational field is very weak, which justifies this approximation, at least
on sub-horizon scales.

1.2.1 The Newtonian Limit of General Relativity

The Newtonian limit of general relativity is defined by small velocities together
with weak and slowly changing gravitational fields. In the limit of no velocities

16

1.2. Newtonian Cosmology

at all, corresponding to a matter dominated universe (P̄ = 0), only the rest
mass contribute to the stress-energy tensor, and so from (1.11),

T00 = ρ , Tµi = 0 , (1.23)

where ρ is the almost homogeneous matter density field. This reduces the 10
independent equations of (1.4) to just a single one, as is the case in Newtonian
gravity. In the end we wish to approximate gravitation as being Newtonian,
but maintain the overall effect of general relativity, namely the background
expansion. Locally∗, the flrw metric is just the Minkowski metric of special
relativity, which in Cartesian coordinates are just:

ηµν = diag(−1, 1, 1, 1) .

Our approach is then to adopt the Minkowski metric as the “Newtonian metric”,
and then later add in the expansion through a change to comoving variables.
Using a completely flat Minkowski metric ηµν amounts to no gravity at all. To
allow for a weak gravitational field, we therefore use a perturbed Minkowski
metric for the Newtonian universe;

gµν = ηµν + hµν , |hµν | � 1 ,

where the dynamics of spacetime, corresponding to gravitation, is encoded
purely in the perturbation hµν .

We wish to exploit the very simple stress-energy tensor (1.23) of the
Newtonian universe. Instead of having the trace R of the Ricci tensor appearing
in the Einstein field equations (1.4), we can “trace-reverse” these equations to
produce a form where the trace T = −ρ of the stress-energy tensor appears
instead of R. To do this, take the trace of (1.4), leaving the scalar equation
−R = 8πT , where gµνgµν = δµµ = 4 is used. Now add this times −gµν/2 to
(1.4) to obtain

Rµν = 8π
(
Tµν −

1
2gµνT

)
.

Since the 00 component of the stress-energy tensor is the only one which does
not vanish, this reduces to

R00 ≈ 4πρ , (1.24)

where only leading orders has been kept; g00 ≈ η00.
From (1.5), the 00 component of the Ricci tensor is given by

R00 = Γα00,α − Γαα0,0 + ΓααβΓβ00 − Γα0βΓβα0 ,

≈ Γα00,α ,

∗Local is here used in the temporal sense, removing explicit time dependence of the
metric.

17

1. Cosmology

where all temporal derivatives are neglected. The two products of Christoffel
symbols then vanish due to direct temporal differentiation (1.6) of the metric.
Also from (1.6), the one remaining term is given by

Γα00,α = 1
2∂α

[
gβα
(
gβ0,0 + gβ0,0 − g00,β

)]
,

≈ −1
2∂α

[
ηβαh00,β

]
= −1

2h
,α

00 ,α

= 1
2∇

2h00 , (1.25)

where temporal derivatives again are neglected, along with second order terms
in hµν . If we now choose h00 = 2φ where φ is the Newtonian gravitational
potential and substitute R00 in (1.24) for (1.25), we get

∇2φ = 4πρ , (1.26)

which is of course Poisson’s equation for Newtonian gravity. The manual
association of h00 to 2φ cannot be avoided, as a conversion between the metric
and the Newtonian gravitational field does not emerge naturally from general
relativity, where such a field is not defined. To check whether this association
also gives consistent equations of motion, we consider the geodesic equation.
Because we are working in the Newtonian limit, we are free to use coordinate
time t as the affine parameter:

d2xµ

dt2 = −Γµαβ
dxα

dt
dxβ

dt
≈ −Γµ00

≈

0 µ = 0 ,

− dφ
dxµ µ ∈ {1, 2, 3} ,

(1.27)

where low velocities dxµ/ dt ≈ (1, 0, 0, 0) is used. The temporal equation is just
the trivial statement d2t/ dt2 = 0. More interestingly, the spatial equations
state that the acceleration is the negative gradient of the potential. We have
therefore successfully regained Newtonian gravitation from the equations of
general relativity.

1.2.2 Expanding Space

The above analysis used the (perturbed) Minkowski metric to describe the
geometry of a universe. To model the real Universe, the universal expansion
must be taken into account, at least at large scales. We can use Newtonian
gravitation as derived above, and then add in the expansion by hand. To do

18

1.3. Newtonian Perturbation Theory

this we simply change from proper xi = r to comoving x coordinates. As seen
from the flrw metric, these coordinate systems are related simply by

r = ax . (1.28)

In comoving coordinates the Hubble flow is factored out, meaning that the
separation between points comoving with the Hubble flow remains fixed despite
of the expansion. To see this, differentiate (1.28) with respect to cosmic time
t:

ṙ = ȧx + aẋ

≡ Hr + u ,

where the peculiar velocity u ≡ aẋ has been introduced. Thus the proper
velocity has contributions both from the Hubble flow and the peculiar velocity.
The peculiar velocity u is hence the velocity of a fluid element when viewed in
the comoving frame.

The Newtonian equation of motion (1.27) may now be written in the
conventional way,

d2r

dt2 = −∇rφ ,

where the subscript on the del operator is used to signify that the differentiation
is with respect to proper coordinates. This additional labeling is necessary
when dealing with multiple coordinate systems. From (1.28), it follows that
∇x = a∇r. With this additional level of care, let us rewrite the Poisson
equation (1.26) as

∇2
rφ = 4πρ . (1.29)

1.3 Newtonian Perturbation Theory
With gravity established as a Newtonian force, we can perturb the otherwise
perfectly homogeneous density field ρ. The evolution of this field is then
governed by Newtonian gravity, as well as of the expanding background, the
only general relativistic effect kept from the previous analysis. As neither
radiation nor dark energy∗ participate in clustering, we shall from now on
think of ρ as the matter density field, specifically.

1.3.1 Comoving Fluid Equations

As matter is modelled as a fluid, continuum Newtonian mechanics should be
used to evolve ρ in time. Besides the Poisson equation, we are thus in need of

∗This is not a settled question, though very little clustering is allowed by observations.

19

1. Cosmology

the two Euler equations, representing the conservation of mass and momentum,
respectively:

∂ρ

∂t

∣∣∣∣
r

+∇r · (ρṙ) = 0 ,

∂ ṙ

∂t

∣∣∣∣
r

+ ṙ · ∇rṙ = −∇rφ ,

(1.30)

where the only force on the fluid is the gravitational force −∇rφ, as the fluid is
without pressure (and therefore a pressure gradient). The temporal derivatives
are also given the subscript r, to remind us that it is the proper coordinates
which are kept fixed under the differentiation. As the scalefactor a in r = ax
is time dependent, ∂t cannot constrain r and x simultaneously, and so the
specification ∂t|r is needed.

To factor in the expansion of the Universe, the Poisson equation (1.29) as
well as the Euler equations (1.30) need to be written in comoving coordinates.
We can take care of this transformation for the Poisson equation right away.
To do this, define∗ the peculiar potential

ϕ(x) ≡ aφ(ax) + 1
2a

2äx2 , (1.31)

the job of which is simply to produce a nice looking Poisson equation in the
comoving frame. Now using the proper Poisson equation (1.29), we have

∇2
xϕ(x) = a∇2

xφ(ax) + 1
2a

2ä∇2
xx2

= a3∇2
rφ(r) + 3a2ä

= a3
(

4πρ(x) + 3 ä
a

)
= 4πa3(ρ(x)− ρ̄)
= 4π

(
%(x)− %̄

)
, (1.32)

where the the second Friedmann equation (1.13) has been used to replace ä.
In the last equality, % = a3ρ is the comoving density. The resultant Poisson
equation (1.32) is that of the (comoving) density fluctuations, not the density
itself. This can only amount to a shift in the potential, and so has no physical
effects. It turns out that it is actually necessary to consider the fluctuations
only, as the ordinary Poisson equation has no solution† in an infinite universe.

∗In the literature, the peculiar potential is most often defined to be φ(ax) + aäx2,
corresponding to ϕ/a. This difference in convention is of no importance.

†We shall tackle the mathematics of this degeneracy of the Newtonian potential in chapter
2. The physical intuition behind it is that normally in classical mechanics, the potential is
always implicitly assumed to vanish at infinity, corresponding to having a finite system. In
general relativity, the problem never arises due to the speed of gravity being finite.

20

1.3. Newtonian Perturbation Theory

Before converting the Euler equations (1.30) to comoving coordinates, we
need to take a closer look at the temporal derivatives used in these equations.
Consider a function f(r, t), its differential being

df = ∇rf(r, t) · dr + ∂f(r, t)
∂t

∣∣∣∣
r

dt

= ∇xf(r, t) · dx +
[
ȧ

a
x · ∇xf(r, t) + ∂f(r, t)

∂t

∣∣∣∣
r

]
dt , (1.33)

where ∇x = a∇r and dr = x da+ a dx = ȧx dt+ adx as been used. Allowing
the function to alternatively take in comoving coordinates as arguments,
f(r, t) = f(ax, t) ≡ f(x, t), its differential in comoving coordinates become

df = ∇xf(x, t) · dx + ∂f(x, t)
∂t

∣∣∣∣
x

dt . (1.34)

By setting he right-hand-sides of (1.33) and (1.34) equal to each other, dividing
by dt and removing the function, we obtain the operator equation

∂

∂t

∣∣∣∣
r

= ∂

∂t

∣∣∣∣
x

− ȧ

a
x · ∇x , (1.35)

giving us the relation between temporal derivatives in proper and comoving
coordinates. With (1.35), we can now write the first Euler equation of (1.30)
in comoving coordinates:

0 =
[
∂ρ

∂t

∣∣∣∣
x

− ȧ

a
x · ∇xρ

]
+ 1
a

(
ρ∇x · ṙ + ṙ · ∇xρ

)

= ∂ρ

∂t

∣∣∣∣
x

−

0︷ ︸︸ ︷
ȧ

a
x · ∇xρ+ ȧ

a
x∇xρ + ȧ

a
ρ

3︷ ︸︸ ︷
∇x · x + 1

a

∇x·(ρu)︷ ︸︸ ︷(
ρ∇x · u + u · ∇xρ

)
= ∂ρ

∂t

∣∣∣∣
x

+ 3 ȧ
a
ρ+ 1

a
∇x · (ρu) , (1.36)

the first two terms of which we recognize as precisely the continuity equation
(1.14) for a homogeneous, pressureless fluid in an expanding universe, while the
third is just the usual velocity divergence term, now in comoving coordinates.

The second Euler equation in (1.30) in comoving coordinates, again using
(1.35), becomes

0 =
(
∂

∂t

∣∣∣∣
x

− ȧ

a
x · ∇x

)
(u + ȧx) + 1

a
(u + ȧx) · ∇x(u + ȧx)

+ 1
a2

(
∇xϕ−

1
2a

2ä∇xx2
)

21

1. Cosmology

= ∂

∂t

∣∣∣∣
x

(u + ȧx)−

0︷ ︸︸ ︷
ȧ

a
x · ∇x(u + ȧx) + ȧ

a
x · ∇x(u + ȧx)

+ 1
a

(u · ∇xu + ȧu · ∇xx︸ ︷︷ ︸
u

) + 1
a2∇xϕ− äx

= u̇ + äx + ȧ

0︷ ︸︸ ︷
∂x

∂t

∣∣∣∣
x

+ 1
a

u · ∇xu + ȧ

a
u + 1

a2∇xϕ− äx

= u̇ + 1
a

u · ∇xu + ȧ

a
u + 1

a2∇xϕ , (1.37)

witch completes out set of equations governing the evolution of ρ in comoving
coordinates. As we are interested to small perturbations of ρ around ρ̄, let us
define the density contrast δ as

δ = ρ− ρ̄
ρ̄

.

In terms of δ, the Poisson equation (1.32) is

∇2
xϕ = 4πa3δρ̄ , (1.38)

while the first Euler equation (1.36) is

0 = ∂ρ̄(δ + 1)
∂t

∣∣∣∣
x

+ 3 ȧ
a
ρ̄(δ + 1) + 1

a
ρ̄∇x · ([δ + 1]u)

= ˙̄ρδ + ρ̄δ̇ + ˙̄ρ+ 1
a
ρ̄∇x([δ + 1]u)

= ρ̄δ̇ + 1
a
ρ̄∇x([δ + 1]u) , (1.39)

where ρ̄ = ρ̄0/a
3 ⇒ ˙̄ρ = −3(ȧ/a)ρ̄ has been used. The density, and therefore δ,

does not appear in the momentum conservation equation (the second Euler
equation (1.30)). Equations (1.38), (1.39) and (1.37) then constitutes the full
set of equations governing the evolution of the density perturbations δ. These
coupled differential equations are generally not easily solved. Let us state
the perturbation criteria as δ � 1, u · ∇xu ≈ 0, in which case the equations
reduces to the more manageable set

∇2
xϕ = 4πa3δρ̄

δ̇ + 1
a
∇x · u = 0

u̇ + ȧ

a
u + 1

a2∇xϕ = 0 .

We can get rid of the velocity field u by combining the temporal derivative
of the first Euler equation with the spatial (a−1∇x·) derivative of the second

22

1.3. Newtonian Perturbation Theory

Euler equation

0 = ∂

∂t

(
δ̇ + 1

a
∇xu

)
− 1
a
∇x

(
u̇ + ȧ

a
u + 1

a2∇xϕ

)
=
(
δ̈ − ȧ

a2∇xu + 1
a
∇xu

)
− 1
a

(
∇xu̇ + ȧ

a
∇xu + 1

a2∇
2
xφ

)
= δ̈ + 2 ȧ

a
δ̇ − 4πδρ̄ , (1.40)

where the Poisson equation has been used to replace the Laplacian of the
potential with the density fluctuations. Equation (1.40) is the final result of
the linearization of the fluid equations. The only assumption used has been that
of almost homogeneity — almost homogeneity of ρ so that it is perturbative,
and almost (or complete) homogeneity of everything else, allowing the use of
Newtonian mechanics embedded in an expanding background, as laid out in
section 1.1. Equation (1.40) is therefore valid for the matter component within
any cosmology that complies with this assumption.

1.3.2 Matter Fluctuations

We can solve (1.40) analytically for each domination epoch, resulting in the
qualitative behavior of the growth of the perturbations. Let us first consider the
case of matter domination. From (1.21) and (1.22), we have ȧ/a = H0a

−3/2 =
2/(3t), while since ρ̄ = ρc, we have ρ̄ = 1/(6πt2) from (1.12). The linear density
perturbation equation (1.40) then becomes

0 = δ̈ + 4
3t δ̇ −

2
3t2 δ ,

which have solutions

δ = C1t
2/3 + C2t

−1

= C3a+ C4a
−3/2 .

The decaying mode of the density contrast will eventually vanish, leaving only
the growing mode. The primary result of the linear perturbation theory is
then

δ ∝ a (matter domination).

The density perturbations within a matter dominated universe then grows
linearly with the scale factor, leading to clustering of matter.

Now we consider the radiation dominated era, preceding matter domination.
Here we have ȧ/a = H0a

−2 = 1/(2t) from (1.21) and (1.22), and so (1.40)
becomes

0 = δ̈ + δ̇t−1 − 4πρ̄δ , (1.41)

23

1. Cosmology

where the density perturbations cannot easily be written in terms of t, as it
requires solving the first Friedmann equation with ρc = ρ̄r + ρ̄, where the
radiation density is much larger than the matter density, ρ̄r � ρ̄. Were we
to insert the solution δ for the matter dominated Universe into (1.41), we
would get 0 = Ct−4/3− 4πρ̄t2/3, where at early times corresponding to radiation
domination, the term containing ρ̄ can be ignored. Because the expansion rate
is larger for radiation domination than for matter domination, we expect less
clustering at this early era. The approximation of neglecting the ρ̄ term of
(1.41) is then even more sound for the actual radiation dominated case. We
are left with 0 = δ̈ + δ̇t−1, which have solutions

δ = C1 log(H0t) + C2

= C3 log(a) + C2
(radiation domination).

Because the matter density perturbations grow only logarithmically in the
radiation dominated phase, no significant structure is formed before matter
begins to dominate. Linear perturbation theory is then fully capable of evolving
the matter density field through the radiation era.

Remaining is the qualitative growth rate of the matter density in the era
dominated by dark energy. From (1.21), we have ȧ/a = H0. Comparing the
square∗ of the front factor of the middle term in (1.40) to the front factor of
the last term, we have H2

0 ∼ ρc � ρ̄, which means that we once again are
allowed to neglect the last term. We then have 0 = δ̈ + 2H0δ̇, which have as
the solution

δ = C1e−2H0t + C2

= C1a
−2 + C2

(dark energy domination).

We then see that matter density fluctuations stop growing when the Universe
enters the dark energy dominated phase. Clustering of matter then only
occurs between the radiation and the dark energy dominated epochs, while
the Universe is matter dominated.

The above analysis was made using Newtonian perturbation theory, and so
the results only apply for perturbations on scales much below the horizon. A
fully general relativistic analysis would add to the story, though the overall
result will still be that sub-horizon matter perturbations grow as δ ∝ a in the
matter dominated phase, while no growth occurs during the radiation and the
dark energy epochs.

1.3.3 The N -body Approach

The linear perturbation theory have given us qualitative hints about the
evolution of structure in the Universe. We even found linear perturbation

∗A direct comparison — without squaring — cannot be done due to the dimensionality
of the terms.

24

1.3. Newtonian Perturbation Theory

theory to be fully adequate for the radiation dominated epoch. Given some
primordial∗ density fluctuations, numerical codes can then be used to solve
the (relativistic) linear differential equations governing the matter fluctuations.
An example of such a code is camb [4]. These computations are often done in
Fourier space, and so the outputs are δ(k), the Fourier transform of δ = δ(x).
One often quantifies these in terms of the power spectrum P (k), which is the
Fourier transform of the two-point correlation function δ(x1)δ(x2), where the
extended bar indicates spatial averaging:

P (k) =
∣∣∣∣∫ δ(x1)δ(x2)e−ikx dx

∣∣∣∣2 , (1.42)

where for large-scale isotropy P (k) = P (|k|). The value of |P (|k|)| then
indicates the amount of structure at the scale 1/|k|.

During matter domination and beyond, the perturbations grow as δ ∝ a,
making the density evolution highly non-linear during the matter domination
epoch. Perturbation theory is then of no use, and direct numerical simulation
of the system is the only† option. To approach these simulations, introduce
the phase-space distribution function f(x,u, t), where f(x,u, t) dx du is the
probability density for finding a fluid element within [x ± dx,u ± du]. The
matter density is then

ρ ∝
∫
f du .

By sampling the phase space distribution function at N points in (x,u) space,
the overall statistical behavior of the system is retained with an error propor-
tional to N−1/2. If we do this via the Lagrangian‡ approach, it corresponds
to tracking the phase space trajectories of N particles through time, which is
the basic idea of N -body simulations, the main subject of this work. At the
heart of it, an N -body simulation is then nothing more than a Monte Carlo
simulation of the density field.

The distribution function f must be constant along the trajectory [x(t),u(t)]
followed by a particle, according to the interpretation of f(x,u, t) dx du. The
evolution of the phase-space distribution function is then governed by

0 = df(x,u, t)
dt

∗The observed inhomogeneities in the cosmic microwave background are used to probe
these early fluctuations. It is believed that the “original” fluctuations are the results of
quantum effects during the inflation phase of the very early Universe.

†Formalisms like that of Press and Schechter [5] is another option, not involving direct
simulation. In the end however, these formalisms are only justified by their agreement with
the results of N -body approaches.

‡Here, Lagrangian refers to following the phase-space fluid elements through time, as
opposed to fixing x and u and see how f(x,u, t)|x,u changes through time, referred to as
the Eulerian approach.

25

1. Cosmology

= ∂f(x,u, t)
∂t

+ ṙ
∂f(x,u, t)

∂r
+ u̇

∂f(x,u, t)
∂u

, (1.43)

which is the (collisionless) Boltzmann equation. Replacing the acceleration
u̇ with the negative gradient of the gravitational potential, the Boltzmann
equation coupled to the Poisson equation now amounts exactly to the Hamil-
tonian formulation of Newtonian dynamics. By simulating a large number N
of particles, each evolved through time according to the Newtonian equations
of motion∗, we can successfully construct (a granular version of) the density
field. Appropriate initial conditions, amounting to N particle positions and
velocities, are needed for the N -body simulation. These are generated by
perturbing a uniform grid of particles in such a manner that the statistics of
the sampled density field equal that of the power spectrum, computed using
linear perturbation theory. It is thus important to start the simulation at
an early time, so that matter fluctuations are accurately described by linear
perturbation theory.

With the N -body approach motivated, the rest of this work focus on the
numerical techniques involved in such simulations. We shall focus only on the
two most important aspects, namely gravitation and time evolution. This is
indeed all there is to say for the system described by the collisionless Boltzmann
equation (1.43), and it is also the only physics implemented in the concept
code. Having no collisions is fine for dark matter, which is supposed to be
collisionless. Baryonic matter however, act as a fluid with viscosity and a finite
sound speed, which in the N -body approach leads to collisions. Although the
Friedmann equations do not distinguish between dark and baryonic matter,
structure formation does. This is e.g. why the luminous, baryonic part of
a spiral galaxy arranges itself into such a complex structure, while the dark
matter halo of the galaxy remains spherical, or at least ellipsoidal.

∗We shall study the Hamiltonian equations of motion in comoving coordinates in full
detail in chapter 3.

26

2 Newtonian Gravitation

In this chapter we develop the formalism for both describing and computing
Newtonian gravitation, in the context of cosmological N -body simulations.
The very heart of any cosmological N -body code is its gravitational solver.
This is true in the sense that this part constitutes a very large part of the actual
code body, but also in the sense that this is where most of the computing time
will be spend. This is indeed the way it ought to be, as gravity dominates
structure formation at cosmological scales. It is therefore worthwhile going
to great lengths developing efficient and accurate methods for computing the
gravitational force.

In this chapter we shall study three separate such methods in detail. They
are — in order of complexity and usefulness — the particle-particle (pp),
the particle-mesh (pm) and the particle-particle-particle-mesh (p3m) method,
respectively. A separate section is dedicated to each method. In the first
section, the pp method is developed in an exploratory fashion. The simplest
possible gravitational solver is constructed and then build upon, as we discover
its flaws and limitations. With a bird’s-eye view of what is required by a
gravitational solver, we then take a step back and construct the pm method,
which is far more applicable than the pp method due to its computational
efficiency. While the pp method is virtually exact, this is not true for the pm
method. Finally then, we combine what we have learned from the two previous
methods and constructs the hybrid p3m method, which is both accurate and
reasonably efficient.

The use of Newtonian gravitation in cosmology differs from its typical use
in classical mechanics in two respects. First, the flat Universe — our system
of study — contains infinitely many particles, which causes some trouble.
Second, and less importantly for now, we wish to describe our particle system
in comoving coordinates. As the expansion of the Universe is homogeneous
and isotropic (the scale factor depends solely on time), the transformation
between the classical force in Euclidean space, and the force given in comoving
coordinates in the now expanding, flat space, must be a simple multiplication
by the scale factor to some power. We can therefore ignore this last difficulty
and pretend that our particles live in static Euclidean space, for now.

27

2. Newtonian Gravitation

2.1 The Particle-Particle Method
In this section we develop the pp method, the simplest fully fledged gravitational
solver useful in cosmological N -body simulations. Along the way, many
concepts are introduced and analytical results obtained.

The simplest formalism for Newtonian gravitation is the (modern form of
the) equation originally put forward by Newton himself, known as Newton’s
law of universal gravitation. In this formalism, matter consists of particles
which interacts pairwise. This is also the formalism used by the pp method,
hence the name “particle-particle”. We shall therefore begin our study of
Newtonian gravitation by deriving and numerically implementing Newton’s
law of universal gravitation.

2.1.1 Newton’s law of Universal Gravitation

We remind ourselves that we now work in Euclidean, static space. Let us
denote such spatial coordinates by r. In chapter 1 we derived the equivalent
Poisson equation for Newtonian gravitation, (1.26),

∇2φ(r) = 4πGρ(r) , (2.1)

where a factor G has been added on, as we no longer work in geometrized
units. Newton’s law of universal gravitation expresses gravitation in terms of
forces, which in the field formulation corresponds to the (negative) gradient
of the potential. We thus need to reduce the Laplacian of (2.1) to a gradient,
in order to convert it into Newton’s law of universal gravitation. We do this
by applying the inverse divergence operation to both sides. This will be an
integral operator with some vector kernel G∇; the Green’s function of the
divergence operator:

∇φ(r) = 4πG
∫

G∇(r, r′)ρ(r′) dr′ , (2.2)

where the integral is to be taken over the support of the mass density ρ, or
simply all of space. Taking the divergence on both sides of (2.2) should convert
it back to (2.1). We therefore have

∇ · G∇(r, r′) = δ(r′ − r) ,

where δ(r) is the delta function in three dimensions. The solution to the above
equation is

G∇(r, r′) = − 1
4π

r′ − r

|r′ − r|3
. (2.3)

Inserting (2.3) into (2.2), we get

∇φ(r) = −G
∫

r′ − r

|r′ − r|3
ρ(r′) dr′ . (2.4)

28

2.1. The Particle-Particle Method

Equation (2.4) still treats the mass distribution as continuous. We can discretize
the mass into point∗ particles by writing

ρ(r) =
N∑
j=1

mjδ(rj − r),

where the sum runs over all N particles j, with individual positions and masses
rj and mj , respectively. With this discretized mass distribution, (2.4) becomes

∇φ(r) = −G
N∑
j=1

mj
rj − r

|rj − r|3
. (2.5)

The left-hand-side of (2.5) is the negative gravitational/acceleration field at
the point r, due to all particles j. The acceleration of a specific particle i due
to all the others, is then

Fi = Gmi

N∑
j=1
j 6=i

mj
rj − ri
|rj − ri|3

, (2.6)

where the factor mi comes from Newton’s second law. We thus arrive at
Newton’s law of universal gravitation.

One could consider the removal of the j = i term from the sum in (2.6) as
a bit of a cheat, since we have to do it by hand. In the integral of (2.4), the
analogues singularity at r′ = r is left as is. The problem do occur here as well,
but since the integral is antisymmetric around the singularity, any spurious
self-forces — though divergent — cancel out, rendering the problem less severe
than including the j = i term in the sum. Remembering that the integral in
(2.4) is completely invariant under explicit removal of a small region around r
in the integration volume, the legitimacy of the exclusion of the j = i term
becomes transparent.

Equation (2.6) lends itself extremely easy to numerical implementation.
In fact, listing 2.1 shows a complete N -body time loop, utilizing (2.6) as
the gravitational solver. A naïve time integration scheme is also shown, for
completeness. Listing 2.1 is shown to convince the reader that N -body codes
can be very simple indeed. One may think that “real” N -body codes utilizes
much more sophisticated algorithms in order to model the real world more
accurately. They are more sophisticated, not because of a need for better
accuracy†, but rather to cut down on the computation time, often at the expense
of accuracy. As the code in listing 2.1 is written in one-to-one correspondence

∗The derivation is equally valid for finite, spherically symmetric particles, as per the shell
theorem.

†Here we think exclusively of Newtonian gravity. A closer similarity with the real world
can of course be achieved by including more components, e.g. hydrodynamics (baryons).

29

2. Newtonian Gravitation

Listing 2.1 – Naïve but complete time loop of N -body code implementing (2.6),
written in Python. Variable names should be self-explanatory.
...
Time loop
while not done:

Force computation (equation 2.6)
for i in range(N):

for j in range(N):
if j == i:

continue
F[i] += (G*m[i]*m[j]*(r[j] - r[i])

/norm(r[j] - r[i])**3)
Time integration
p += F*Δt
r += p/m*Δt...

with (2.6), it in fact evolves the system arbitrarily accurately (determined by
the size of Δt). To a large extent then, the challenge in building N -body codes
is not merely to implement the correct physics, but to implement it in a clever
way, so that results can be computed within sub-cosmological time scales.

2.1.2 Ewald Summation

We have seen that Newton’s law of universal gravitation (2.6) can be easily
implemented numerically, e.g. as in listing 2.1. In cosmology however, we seek
to describe an infinite∗ system, which immediately cause problems. If we allow
our system to contain infinitely many particles, N → ∞, it would require a
correspondingly infinite amount of logical operations (and therefore computing
time) to complete even a single time step. In the real world, which is governed
by general relativity, particles only influence each other when within each
others cosmological horizon. That is, each particle has only ever access to a
finite amount of information. One could try to mimic this behaviour in one
way or another, in order to get rid of the problem of infinite computing time.
This will however only amount to removing the infinity of the inner loop of
listing 2.1; every particle will only be influenced by finitely many particles, but
we still need to compute the forces on infinitely many particles.

The universal idea utilized in cosmological N -body codes to tackle this
problem, is to place N < ∞ particles within a cubic box with periodic
boundaries. The particles and their gravitational interactions then live on
a three-torus. This has the effect of removing the infinity of the outer loop
of listing 2.1; we need to compute the force on N < ∞ particles, but each

∗At least for the cases of flat universes.

30

2.1. The Particle-Particle Method

particle is still influenced by what is effectively infinitely many particles, as
the gravitational interaction is allowed to loop around any of the dimensions
of the three-torus an arbitrary amount of times. We are thus still left with
one remaining infinity in our computation. However, since this infinity is now
periodic, it contains a finite amount of information and can be dealt with in a
finite amount of time.

A complementary (but to the three-torus equivalent) interpretation of the
manifold on which the particles live, is as an infinite, three-dimensional flat
space, the content of which (the N particles) is repeated periodically in all
directions. It is clear that the periodicity enforces homogeneity on scales larger
than the box size. This is of course not a problem∗ in cosmology, as long as
the box is sufficiently large. Viewing the manifold in this infinite manner (r
can take on any value in R3), the mass density becomes

ρ(r) =
N∑
j=1

mj

∑
n∈Z3

δ(rj + nL− r) , (2.7)

where the sum over all integer triples n takes care of the periodic copies of the
box with linear size L. We shall refer to the original†, n = 0 particles simply
as particles (or sometimes proper or actual particles), and to their copies as
replicas. The particles and their replicas are then collectively referred to as
images.

To compute gravitational forces in this periodic system, we make use of the
Ewald summation technique [6], for reasons which will become clear shortly.
This technique is easiest to developed on the potential, rather on the force
directly. We therefore wish to solve the Poisson equation for the potential. This
is achieved in an analogous fashion to what we did in the previous subsection,
when calculating the gradient of the potential from the Poisson equation. The
corresponding Green’s function used as kernel for the integral operator, inverse
to the Laplacian, must now solve ∇2G∇2(r, r′) = δ(r′ − r). That is,

G∇2(r) = − 1
4π|r| , (2.8)

where G∇2(r′ − r) = G∇2(r, r′). The solution to the general Poisson equation
(2.1) is then

φ(r) = −G
∫

ρ(r′)
|r′ − r|

dr′ . (2.9)

∗Structure at scales larger than the box size should of course not be given any significance.
†The question of which box to refer to as “the original” is analogous to the question of

locating the center of the Universe; it does not matter which you choose, if any. For the
purpose of numerical computation though, it is useful to regard the n = 0 box as the box.

31

2. Newtonian Gravitation

Inserting (2.7) into (2.9), we get the potential of the periodic system:

φ(r) = −G
N∑
j=1

mj

∑
n∈Z3

1
|rj + nL− r|

(2.10)

= 4πG
N∑
j=1

mj

∑
n∈Z3

G∇2(rj + nL− r) . (2.11)

The periodic force per unit mass is the negative gradient of the potential, which
from (2.10) is given as

∇φ(r) = −G
N∑
j=1

mj

∑
n∈Z3

rj + nL− r

|rj + nL− r|3
. (2.12)

We now need to find a way to handle these infinite sums over images. One
way to approximate it would be to simply truncate it. This solution is indeed
possible, but it has two drawbacks. The first drawback is the fact that the
sum is only conditionally convergent, meaning that its value depends on the
order of summation. That is to say, as it stands in (2.10), the sum is not
uniquely defined. One thus first have to state the proper summation order,
and then apply the truncation in a manner consistent with this order. The
second drawback with the truncation proposal is that the sum (even when
ordered properly) converges very slowly, rendering the computation numerically
infeasible. To tackle both of these drawbacks, the Ewald summation technique
may be used.

The Ewald summation technique [6] is a method for computing accurate
approximations to infinite sums like that in (2.7). The idea is to split the
gravitational interaction in two; a short-range and a long-range component,
making two infinite triple-sums instead of one. The short-range sum is then
heavily suppressed at large distances, making it converge both absolutely and
fast, as opposed to conditionally and slow. The bad convergence behaviour
is then solely inherited by the long-range sum, which is suppressed only at
small scales. The periodicity of the particle configuration allow us to do the
summation in Fourier space, where the small scale suppression means that
Fourier components with large k values become negligible. At the same time,
the periodicity of the real space means that there exist a smallest non-zero k.
We can thus obtain absolute and fast convergence for the long-range sum by
performing it in Fourier space.

The force split is incorporated by writing the Green’s function as a sum
of a short-range term Gs and a long-range term Gl, as Gs + Gl = G∇2 . We can
then rewrite (2.11) using these two contributions. Exploiting the periodicity,
we can immediately write the long-range term as a Fourier series. We then

32

2.1. The Particle-Particle Method

have

φ(r) = 4πG
N∑
j=1

mj

[∑
n∈Z3

Gs(rj + nL− r) + 1
L3

∑
k∈{ 2π

L
h |h∈Z3}
G̃l(k)eik(rj−r)

]
, (2.13)

where G̃l is the Fourier transform of Gl. Our job is now to find suitable
expressions for Gs and G̃l.

Writing Gl(r) = G∇2(r)χ(r), Gs(r) = G∇2(r)
[
1− χ(r)

]
, wee see that χ(r)

should vanish at r = 0 and tend towards unity as |r| → ∞, to ensure that Gs
and Gl represent their designated regimes. A particular choice for χ would be
the error function, as first proposed by Ewald. Here we follow this choice:

Gs(r) = − 1
4π|r| erfc

(
|r|
2rs

)
, (2.14)

Gl(r) = − 1
4π|r| erf

(
|r|
2rs

)
, (2.15)

where the complementary error function erfc(x) ≡ 1 − erf(x) and rs is the
length scale of the force split∗. To calculate G̃l, we take the regularized† Fourier
transform of Gl:

G̃l(k) = lim
ε→0

∫
dr Gl(r)e−ε|r|e−ikr

= −1
2 lim
ε→0

∫ ∞
0

d|r| erf
(
|r|
2rs

)
e−ε|r||r|

∫ 1

−1
dcos θ e−i|k||r| cos θ

= − 1
|k|

lim
ε→0

∫ ∞
0

d|r| erf
(
|r|
2rs

)
e−ε|r| sin

(
|k||r|

)
= − 1
|k|

lim
ε→0

Im
∫ ∞

0
d|r| erf

(
|r|
2rs

)
e(i|k|−ε)|r|

= − 1
|k|

lim
ε→0

Im
[
erf
(
|r|
2rs

)
e(i|k|−ε)|r|

i|k| − ε

∣∣∣∣∣
|r|=∞

|r|=0︸ ︷︷ ︸
0

−
∫ ∞

0

d
d|r| erf

(
|r|
2rs

)︷ ︸︸ ︷
e−r2/(4r2

s)

rs
√
π

e(i|k|−ε)|r|

i|k| − ε d|r|
]

= − 1√
π |k|rs

lim
ε→0

Im
[

i|k|+ ε

k2 + ε2

∫ ∞
0

exp
(
− r2

4r2
s

)
e(i|k|−ε)|r| d|r|

]

= − 1√
π k2rs

Re
∫ ∞

0
exp
(
− r2

4r2
s

)
ei|k||r| d|r|

∗The factor 1/2 in the error function and the complementary error function in (2.14) and
(2.15) ensures that Gs(rs) ≈ Gl(rs) ≈ G(rs)/2.

†Were we to use a regular Fourier transformation, the radial integral would introduce an
additional, divergent term into G̃l.

33

2. Newtonian Gravitation

= − 1
2
√
π k2rs

∫ ∞
−∞

exp
(
− r2

4r2
s

)
ei|k||r| d|r|

= − 1
k2 e−k2r2

s , (2.16)

where integration by parts has been used. We recognize the last integral as
an (inverse) Fourier transformation of a Gaussian, which is again a Gaussian.
This Gaussian came from the derivative of the error function, which follows
directly from its definition;

erf(x) ≡ 2√
π

∫ x

0
e−t2 dt ,

⇒ d
dx erf(ax) = 2a√

π
e−a2x2

. (2.17)

Inserting (2.14) and (2.16) into (2.13), we arrive at the final expression for the
potential:

φ(r) = −G
N∑
j=1

mj

[∑
n∈Z3

erfc
(
|rj+nL−r|

2rs

)
|rj + nL− r|

+ 4π
L3

∑
k∈{ 2π

L
h |h∈Z3}

exp
(
−k2r2

s
)

k2 cos(k[rj − r])
]
,

(2.18)

where the odd, imaginary part of the complex exponential vanishes because k
takes on symmetrical values.

It should be noted that as it stands, the k = 0 term in (2.18) is badly
behaved due to the factor 1/k2. This term is however independent of r, and
so though being infinite, it amounts to a physically unimportant, spatially
uniform shift in the potential. It does raise a slight concern as regards to the
validity of (2.18) though, as we might have expected a nicely behaved potential
as the solution to the Poisson equation. The real reason for this behaviour
is in fact that no solution exists to the Poisson equation with triply-periodic
boundary conditions, unless the average density is zero. This can be understood
by considering the Poisson equation (2.9), where triply-periodic boundaries
amounts to integrating over all space. This integral is then guaranteed to
diverge if the mean value of ρ is different from 0. A commonly deployed trick
to avoid this difficulty is to focus on the peculiar potential, which is exactly the
potential you get from the Poisson equation, when you substitute the density
for the density contrast. It is however equivalent to postpone the problem
until the end — as we have done — and simply throwing away the k = 0 term.
To be precise, one should then refer to φ as the peculiar potential. Since we
now know that this is really the only sensible potential in our system, we will
continue to refer to it simply as the potential.

34

2.1. The Particle-Particle Method

The Ewald summation has produced the expression for the gravitational
potential (2.18). The gravitational force on particle i due to all particle images
j, is then the negative gradient of this potential, times the mass of particle i:

Fi = Gmi

∑
j=1
j 6=i

mj

{∑
n∈Z3

rj + nL− ri
|rj + nL− ri|3

[
erfc

(
|rj + nL− ri|

2rs

)

+ |rj + nL− ri|√
π rs

e−
|rj+nL−ri|

2

4r2s

]

+ 4π
L3

∑
k∈{ 2π

L
h |h∈Z3\0}

k

k2 exp
(
−k2r2

s
)

sin(k[rj − ri])
}
,

(2.19)
where the (negative) derivative of the complimentary error function is given in
(2.17). Here we have explicitly removed the k = 0 term, in accordance with
the above discussion. It is interesting to note that the differentiation does not
automatically rid us from this constant term.

Both the complementary error function and the Gaussians in (2.19) fall
off rapidly as their arguments are increased. We can thus safely approximate
the two infinite sums by partial sums, where n and k only takes on values
within some appropriate distances to their origin. These distances depend on
the convergence rate, which is controlled by rs. That is, the total expression
(2.19) is independent on the value of rs, but the individual infinite sums are
not. Lowering rs decreases the range of the short-range force, which increases
the rate of convergence of the short-range sum. Fewer values of n is then
needed to approximate the sum. The cost of this is that the now missing force
components must be supplied by the long-range sum, which must now resolve
smaller scales than before. The partial long-range sum thus need to include
larger k values than before. By choosing suitable values for max |n|, max |k|
and rs, (2.18) then allow us to control the accuracy and the convergence rate
of the computation.

It can be illuminating to visualize the periodic force. In Figure 2.1, the
periodic force is plotted together with the usual, non-periodic force. For
small separations, the two forces are approximately equal, though the periodic
force is slightly smaller. In fact, within the lower left quadrant of Figure 2.1,
corresponding to the first octant of the box, the periodic force is consistently
smaller than the non-periodic force. This makes sense, since the closest replicas
pull in the opposite direction of the proper particle. It is also very clear from
Figure 2.1 that the periodic force has reflective symmetries. This is simply
a direct consequence of the periodicity of the particle images. It is a useful
property, as we shall see when implementing the periodic force numerically.

35

2. Newtonian Gravitation

0 1
4L

1
2L

3
4L

L

x

0

1
4L

1
2L

3
4L

L

y

Figure 2.1 – Gravitational force fields in the z = 0 plane. A massive particle
is placed at the origin, while test particles are placed regularly throughout the
z = 0 plane of the box. The red arrows correspond to the non-periodic force on
these test particles due to the particle at the origin. The green arrows correspond
to the periodic force (2.19) on the test particles, due to the particle at the origin
and all of its replicas. The length of arrows is proportional to the magnitude of
the force. There is a slight shift in the relative locations of the red and the green
arrows. This is so that one arrow do not cover the other.

2.1.3 Numerical Implementation

In the last subsection we derived an expression for the periodic gravitational
force (2.19). Before we can upgrade the code in listing 2.1 with this expression,
there are a few remaining hurdles. First of all, (2.19) contains the free parameter
rs, the value of which needs to be specified. We remember that its value
determine the scale of the short-range/long-range force split, and therefore
the convergence rate of the infinite sums in (2.19). In 1976, [7] suggested the
values

rs = L

4 , |rj + nL− ri| < 2.6L , h2 < 8 , (2.20)

which gives very fast computations and good accuracy. Since then, computer
power has increased hugely, and so it becomes reasonable to opt for better
accuracy. In 1990, [8] therefore suggested

rs = L

4 , |rj + nL− ri| < 3.6L , h2 < 10 , (2.21)

36

2.1. The Particle-Particle Method

which is what is adopted in the concept code∗. Today’s computer power do
allow us to increase the accuracy still further, but (2.21) is already so precise
that it is not at all the weak point in the combined computation scheme.

Note that the truncations of the n and the h sums as stated in (2.20) or
(2.21), are determined by the length of n and h. This corresponds to “summing
spherically”, as opposed to e.g. “summing cubically”, which would be the
case if the size of each component of n and h were constrained. This choice
of spherical summation amounts to settle for a specific order in which to do
the infinite sum over images. With this choice, the sum becomes absolutely
convergent.

Even though (2.21) truncates the sums in (2.19) to contain a manageable
number of terms, it is still vastly more expensive to compute than the non-
periodic force. Since the force on particle i due to particle j and all of its
replicas (the right-hand-side of (2.19) without the first summation) varies
smoothly with rj − ri, it is possible to tabulate the periodic force prior to
running the actual simulation. When running the simulation, the periodic
force between a given pair of particles can then be found by a simple lookup
in this table. A finite box and the smoothness of the periodic force allows for
a finite table. Since Newton’s constant and the masses are placed outside of
the infinite sums in (2.19), we can leave them out when doing the tabulation,
greatly improving its generality. The same is however not true for the box size
L. However, since the entire curly bracket in (2.19) has units of inverse length
squared, it is possible to write it in units of L−2. If we tabulate the periodic
force in this way, the same table can be used for any box size. This amounts
to multiplying the curly brace of (2.19) with L2. We end up with

L2

Gmimj
Fcor(ςij) =

∑
n∈Z3

|ςij+n|<3.6

ςij + n

|ςij + n|3

[
erfc(2|ςij + n|) + 4√

π
|ςij + n|e−4|ςij+n|

]

+ 4π
∑

k∈{2πh |h∈Z3,h6=0, |h|<10}

k

k2 exp
(
−k2

16

)
sin(kςij)

− ςij
|ςij |3

,

(2.22)
where

ςij = rj − ri
L

and both ri and rj should be positions within the actual, n = 0 box. The
dimensionless force from the actual particle, ςij/|ςij |3, has been subtracted
from the right-hand-side of (2.22). This leaves only the periodic correction to
the force, rather than the total periodic force. The right-hand-side of (2.22) is

∗It is also what is used in the gadget-2 code.

37

2. Newtonian Gravitation

what is tabulated, while the correction force Fcor(ςij) is the force on particle i
due only to the replicas of particle j. It would be more efficient to tabulate
the total periodic force F (ςij) due to the replicas and the the actual particle,
but it turns out that having to manually add in the direct force is valuable, as
we shall see in the next subsection.

Before tabulating (2.22), it is worth looking for symmetries to save memory.
This is easier using physical intuition than just looking at (2.22). Each
component of ςij can range from −1 to 1. However, the magnitude of the
force can only depend on the distance between the two particles. We therefore
only have to tabulate the periodic force corrections for ςij with components
between 0 and 1, reducing the needed memory by a factor of eight. The correct
signs must then be added in programmatically. Another reduction in needed
memory comes from noticing that the distance between the nearest image of
particle j and particle i cannot have components greater than L/2. For an
image with the distance 3/5L in the x-direction, say, there exist a neighbouring
image with the distance 3/5L− L = −2/5L < L/2 in the x-direction. We can
thus save another factor of eight in memory by choosing to always do the
lookup of the force on the nearest image. We can write down these symmetries
as

F (ςij) = s ◦ F (s ◦ ςij) , s = (±1,±1,±1) , (2.23)
F (ςij) = F (ςij + n) , n ∈ Z3 , (2.24)

where ◦ is the elementwise product. The total periodic force is of course related
to the correction force by

F (ςij) = Fcor(ςij) + Gmimj

L2
ςij
|ςij |3

. (2.25)

All in all, when tabulating the periodic force corrections, we need only to let
the components of ςij run from 0 to 1/2. The question of how to distribute the
points in this octant remains. It is far simplest and computationally fastest to
do the tabulation for a cubic array of ςij . Also, as is demonstrated by [8], the
correction force varies smoothly for all separations. This is also evident from
the lower left quadrant of Figure 2.1, where the differences between the red and
green arrows correspond to correction forces. This renders an inhomogeneous
density of tabulation points unnecessary. In the gadget-2 code, a grid of 643

points is tabulated. This is also chosen as the standard for the concept code,
but it can easily be changed in the parameter file.

What is left to define is the precise way in which to do the lookups. The
simplest might be to lookup Fcor at the tabulated value of ςij which is closest
to the one actually desired. More accurate methods can be devised, where
several tabulation points are interpolated. Once again, concept follows
in the footsteps of gadget-2 and implements a so-called cloud-in-cell (cic)
interpolation scheme. We will study this and similar interpolation schemes in
subsection 2.2.2.

38

2.1. The Particle-Particle Method

2.1.4 Softening

In this section we have derived Newton’s law of universal gravitation with
triply-periodic boundary conditions (2.19) and described how to implement it
numerically, as (2.22). All along we have modelled the particles as infinitesimal
points, which have served to keep their interactions as simple as possible. This
simplicity comes at a cost, however. Modelling the single-particle densities
as delta functions means that the gravitational interaction between a pair
of particles is unbounded; it becomes arbitrarily strong at small separations,
which is undesirable. Since the time evolution of the system is discrete, it
is possible for two particles to suddenly be very close together, which then
causes unphysical large accelerations. This is a problem of all direct summation
codes∗.

Even if we imagine that we could use arbitrarily small time steps, the fact
that all the mass of a particle is concentrated at a single point is not desirable;
it increases two-body relaxation and leads to the formation of many binary
systems. Two-body relaxation simply refers to violent collisions between two
particles, as described above. If our simulation particles actually represented
physical, solitary particles (e.g. stars), this behaviour would indeed be desired.
But our particles are the result of a numerical discretization of the continuous
density throughout the Universe; a Monte Carlo ensemble of phase space.
We want our particles to exhibit the collective behaviour of a continues mass
distribution, not the behaviour of N single particles. Increasing N helps to
prevent this under-sampling of the mass distribution, by pushing it towards
lower scales. It would be nice however to gain additional resolution for free —
that is, without increasing N .

We thus wish to “soften” the interactions to prevent these unphysical close
encounters. The problem can be traced back to the choice of modelling the
single-particle densities as delta functions. These singularities then propagate
to the potential and to the force. We need to invent a new single-particle
density profile, for which our calculations still hold true. From the shell
theorem, we know that any finite, spherically symmetric mass distribution has
the same external gravitational field as that of a point mass. We thus have
a large freedom in choosing the exact form of the single-particle density. A
popular and simple choice is that of a Plummer sphere [9], originally invented
for representing the observed density profiles of star clusters:

ρP(|r|) ≡ 3m
4πε3

(
1 + |r|

2

ε2

)− 5
2
. (2.26)

Here, m is the mass of the particle, while ε is a parameter with units of length,
determining the size of the particle. We see from (2.26) that the density of a

∗That is, codes as those in listing 2.1. Utilizing the Ewald method to accomplish periodic
boundaries amounts simply to change the force expression; the structure of the code is
untouched.

39

2. Newtonian Gravitation

Plummer sphere falls off monotonically in the radial direction, and that the
central density equals the mean density of a sphere with mass m and radius ε.
The gravitational field produced by the Plummer density profile (2.26) is the
solution to the Poisson equation where (2.26) is used as the density:

φP(|r|) = − Gm√
r2 + ε2

. (2.27)

It is clear from (2.27) that the presence of ε removes the singularity at r = 0.
The gravitational force on a Plummer sphere i due to a point particle j,
separated by the distance r = rj − ri is then given by the gradient of (2.27):

FP,ij(r) = Gmimj
r(

r2 + ε2
)3/2

, (2.28)

where mi and mj are the particle masses. Of course, (2.28) also accurately
describes the force between two Plummer spheres, as long as they do not
overlap significantly. In concept and other N -body codes utilizing Plummer
softening, the gravitational force between particles is modelled precisely by
(2.28). Only one of the particles in each interaction can then really be ascribed
the Plummer shape; the other remains a point particle∗. As the original
goal was to soften the two-body interaction and not to model the particles as
Plummer spheres per se, this is not a problem.

The Plummer density (2.26), potential (2.27) and force (2.28) are plotted
together in Figure 2.2. We see that the density and the potential have a flat
plateau around the origin, which translates into a very small force. Instead
of increasing towards the origin, the force is strongest at |r| = ε/

√
2 . The

unsoftened force between two point particles Fij is also shown in Figure 2.2.
We see that the softened force is always less than the unsoftened force, but
they agree very well for |r| larger than a couple of ε.

In writing down the final expression for the periodic force (2.22), we
explicitly subtracted the force from the nearest image, resulting in the correction
force Fcor. We can now incorporate the Plummer softening into the total
periodic force, replacing (2.25) with

F (ςij) = Fcor(ςij) + Gmimj

L2
ςij(

ς2
ij + ε2

L2

)3/2

= Fcor(ςij)−Gmimj
rj − ri(

|rj + ri|2 + ε2
)3/2

. (2.29)

The softening is then only applied for the nearest image, which for sensible
(small) ε/L is guaranteed to be good enough. As is clear from Figure 2.2,

∗Which particle we refer to as the Plummer sphere and which we refer to as the point
particle is of course ambiguous, in accordance with Newton’s third law.

40

2.1. The Particle-Particle Method

10−1 100 101 102

|r|
ε

0

Gm

ε

3m
4πε3

ρP

−φP

|FP,ij |
|Fij |

2
√

3
9

Gmimj

ε2

1√
2

Figure 2.2 – The density ρP (2.26) and potential φP (2.27) of a Plummer sphere
together with the magnitudes of the Plummer force FP,ij (2.28) and the unsoftened
force between two point particles Fij . The potential has been negated to better
fit the figure. Since density, potential and force have different units, they cannot
share the same axis. They have therefore been given separate (linear) ordinate
axes, defined by the common 0 and the expression written next to their respective
maximum values. The relative scale between these three should therefore not be
given any significance. The two force magnitudes are however shown to the same
scale.

the gravitational force at scales below a couple of ε is heavily altered by the
softening. All structure at these scales are therefore to be disregarded, as
they are not the result of proper gravitation. Introducing softening into the
simulation thus necessarily introduces a smallest distance scale at which the
simulation should be trusted∗. We are therefore interested in a small ε, but it
should not be so small that all softening effects vanish. A sensible criterion
is that the fractional volume of the Universe occupied with particles should
remain the same, regardless of N and L. That is, Nε3/L3 should be constant.
As stated in [10] and [11], optimal values for this constant is

ε ≈ (2–4%) L

N 1/3
.

That is, ε is a few percent of the mean interparticle distance. A value of
ε = 0.03L/N 1/3 is chosen as the standard in the concept code, but it can
easily be changed in the parameter file.

∗Having finitely many particles and a finite time step size alone is enough for such a scale
to exist, and so it predates our introduction of softening. However, the softening parameter ε
allow us to quantify this smallest scale explicitly.

41

2. Newtonian Gravitation

start of force computation

Ewald
pretabu-
lated?

load Ewald
table

compute Ewald
table via (2.22)

save Ewald
table

for each particle
pair, do. . .

locate near-
est image

flip negative
components of

separation vector

Cic lookup in
Ewald table

add signs to
force components

multiply force
by Gmimj/L

2
add softened
force via (2.29)

yes

no

Figure 2.3 – Flowchart of the pp algorithm.

2.1.5 Recap of the Method

In this section we have build the components needed for the simplest grav-
itational algorithm used in cosmological N -body simulations. This is the
basic direct summation algorithm of listing 2.1, extended with periodic force
corrections via the Ewald method, together with Plummer softening. This is
commonly known as the particle-particle algorithm, or simply the pp algorithm.
This name is not completely unambiguous however, as similar algorithms utiliz-
ing e.g. a different softening technique still fall under this name. The different
components of the pp algorithm were introduced one after another, as we
discovered the need for them. This last subsection serves to put the results
together to form a coherent picture of the pp method.

Figure 2.3 is a flowchart of the pp algorithm, briefly summarising the major
steps, their order and interrelationship. These steps are described below in
greater detail.

• Prior to the loop over all particle pairs, the Ewald table is needed. If

42

2.1. The Particle-Particle Method

the Ewald corrections are already tabulated∗, they are loaded from disk,
saving time not to recompute them at the beginning of each run. If no
previously constructed Ewald table is found, it is recomputed and saved
to disk (though kept in memory) via (2.22).
The loop over all particle pairs begin. In the following we consider
the iteration involving particle i and j. Both Fij and Fji = −Fij are
computed in this single iteration.

• The image of particle j nearest to particle i is located. This image is
used rather than particle j itself (it is of course possible that the actual
particle is itself the nearest image) in the following. This amounts to
exploiting the symmetry (2.24).

• If the separation vector from particle i to the image of j has negative
components, the symmetry (2.23) is now used to flip these components.
The original signs of the components are saved for later. The separation
vector now lies within the tabulated region.

• The Ewald correction force between the particle pair is now looked up
in the table and cic interpolated to exactly match the separation. As
mentioned before, cic and interpolation in general will be discussed in
detail in subsection 2.2.2.

• The signs previously removed from the components of the separation
vector now has to be placed on the components of the force, as the
negation carries over linearly for each dimension.

• The factor Gmimj/L
2 is multiplied on the as of yet dimensionless force.

The Gmimj of course comes from Newton’s law of universal gravitation,
while L−2 is needed due to the way the Ewald corrections are stored.

• Finally, the softened force from the nearest image of particle j is computed
as in (2.29) and added to the periodic correction force. The total periodic
force Fij between particles i and j has now been computed.

This concludes our discussion of the pp method. We have left out any discussion
about parallelism, which we will describe collectively for all gravitational
methods near the end of this chapter.

If we add time evolution† to the pp method, we end up with a complete
N -body code. Given some initial conditions, we can then evolve the particle
system in time. Figure 2.4 contain two plots of the particles; one at an early
time, where the Universe is very homogeneous, and one at the present time.
The concept code, utilizing the pp method, has been used to evolve the

∗In the resolution desired for the particular run.
†Time evolution will be established in chapter 3.

43

2. Newtonian Gravitation

a = 0.02 a = 1

Figure 2.4 – Raw plots of particle configuration at different times, showing
structure formation in action. The configuration on the left with a = 0.02
corresponds to initial conditions for the simulation. The particles are very
homogeneously spread out and no structure are seen. The same particles except
∼ 14 billion years later are shown on the right. Here we see many different sized
structures. The simulation contains N = 643 particles and was run with the
concept code utilizing the pp method. The box size is L = 64Mpc/h, where
h = H0/(100 km s−1 Mpc−1). The cosmology of the simulation is ΩΛ = 0.7,
Ωm = 0.3, H0 = 70 km s−1 Mpc−1.

particles. The initial conditions themselves were produced using a modified
gadget-2 code (see [12]), able to take in transfer functions from the camb [4]
code and dump out a gadget-2 snapshot containing a corresponding particle
distribution.

The transformation depicted∗ in Figure 2.4 is the direct result of an N -body
code run. Additional analysis can decompose the raw particle configuration
into other, more manageable data. One such decomposition is the matter
power spectrum P (|k|), as given in (1.42). In the next section, we shall see
how to numerically compute the power spectrum from the particle distribution.
The power spectrum corresponding to the right plot of Figure 2.4 is shown in
Figure 2.5. The finite number of particles make for a jagged power spectrum.
The density of data points increases drastically with |k|, simply because a
given small separation (large k) fit into the box in many more ways than a
larger separation. As we would expect, we see structure become more and more
abundant as we lower the scale. At the very high |k| end though, P seems to
increase. This defect is not caused by the pp method, as the Plummer radius

∗Since Figure 2.4 do not show velocities, half of the information generated by the
simulation is missing.

44

2.2. The Particle-Mesh Method

10−1 100 101

|k| [Mpc−1]

P
(|k
|)

Figure 2.5 – Complete and unpolished power spectrum from the pp simulation
of Figure 2.4 at a = 1.

ε = 0.03L/N 1/3 has a corresponding |k| value of |k|P = 2π/ε = 146Mpc−1,
where the values of N and L are those given in Figure 2.4. Instead it is a
result of the way the power spectrum itself has been computed.

2.2 The Particle-Mesh Method
In the last section, our concern was with the creation of our first gravitational
solver; the pp method. The two key extensions to the naïve listing 2.1 was
periodicity and softening of the force. Computing gravitational forces as if all
of space were filled with periodic replicas of the particle configuration within
the box, we were able to emulate an infinite universe containing infinitely many
particles. By softening the interaction, we got rid of unphysical behaviour
having to do with two-body relaxation. The numerical results obtained via
the pp method are superb, more so than the results of the pm method — the
subject of the current section.

The shortcomings of the pp method becomes apparent when we consider a
box with N � 2 particles. Computing the gravitational force on all particles
for a single time step via the pp method requires O

(
N2) operations, since each

of the N particles have N − 1 ≈ N partners. This is an inevitable consequence
of the long-range nature of gravity together with the formalism of Newton’s
law of universal gravitation, where gravity is described as a particle-particle
interaction. What we need is a numerical method for computing gravitation,
which has a better scaling than the O

(
N2) scaling of the pp method. Such

a method may involve lots of additional overhead per particle, and so might
be slower than the pp method for low N . This is not a concern of ours, as we
are interested in the very large N regime. The scaling [13] of the pm method

45

2. Newtonian Gravitation

is only O(N logN), a tremendous improvement: For the largest simulations
currently feasible (N ∼ 1012, [14]), this is tens of billions of times faster than
the pp method∗!

The key to the speed of the pm algorithm is this. Instead of direct particle-
particle interactions, the particles interact with a global gravitational field.
We thus substitute Newton’s law of universal gravitation as our main equation
for gravity, for the Poisson equation. Numerically, N particles takes part
in the creation of the field, after which each particle receives a force by a
single particle-field interaction. We have then moved from a global to a local
description of gravitation. It seems reasonable that this description has a
better scaling than O(N2), but the exact form O(N lnN) is not obvious.
Numerically, the continuous gravitational field is represented by a discrete but
dense mesh of values. It is then this particle-mesh interaction that gives the
pm method its name. Since the information stored on the mesh is computed
from the particle distribution, it really carries no additional information than
the particles themselves. This means that the pm method requires more
computer memory than what is strictly needed to compute the gravitational
forces, while a method like pp requires almost no memory in addition to the
particles themselves. This feature of sacrificing memory (space) in order to gain
efficiency (lower the computation time) is a common pattern in computing.

2.2.1 Overview

In the last section, we solved the general Poisson equation (2.1). The solution
(2.9) can be written in terms of the Green’s function of the Laplacian (2.8);

φ(r) = 4πG
∫
G∇2(r′ − r)ρ(r′) dr′

= 4πGG∇2(r) ∗ ρ(r) , (2.30)

where the integral has been written as a convolution. As with the pp method,
several version of the pm method exists. The computationally fastest class of
versions computes the gravitational potential in Fourier space. Remembering
that the Fourier transform of a convolution is simply the product of individual
Fourier transforms, (2.30) can immediately be cast into Fourier space:

φ̃(k) = 4πGG̃∇2(k)ρ̃(k) . (2.31)

From (2.8), the Green’s function is simply G∇2(r) = −(4π|r|)−1. To calculate
G̃∇2(k), we use a regularized Fourier transform, as otherwise the radial integral

∗Indeed with this many particles, simulations using the pp method running on today’s
modern hardware have a runtime exceeding the timespan simulated! Generally in science,
this is not necessarily a problematic feature. In cosmology however, it is a spectacular
catastrophe, as neither the future nor the present can ever be reached by such simulations.

46

2.2. The Particle-Mesh Method

diverges:

G̃∇2(k) = lim
ε→0

∫
dr G∇2(r)e−ε|r|e−ikr

= −1
2 lim
ε→0

∫ ∞
0

d|r| e−ε|r||r|
∫ 1

−1
dcos θ e−i|k||r| cos θ

= − 1
|k|

lim
ε→0

∫ ∞
0

d|r| e−ε|r| sin
(
|k||r|

)
= − 1
|k|

lim
ε→0

Im
∫ ∞

0
d|r| e(i|k|−ε)|r|

= − 1
|k|

lim
ε→0

Im
(

1
ε− i|k|

)

= − 1
|k|

lim
ε→0

|k|
ε2 + k2

= − 1
k2 . (2.32)

This result does not apply for k = 0. As discussed in the previous section, we
simply define G̃∇2(0) ≡ 0, removing structure of infinite wavelength (the mean
density). To be precise, the potential from (2.31) is then really the peculiar
potential. Combining (2.32) and (2.31) we obtain the solution for the potential
in Fourier space:

φ̃(k) = −4πG
k2 ρ̃(k) . (2.33)

We see that the differential Poisson equation reduces to a simple algebraic
equation in Fourier space. This is such a nice feature that one might consider
performing the entire simulation in Fourier space. This is possible, however
impractical, as many computations (e.g. time evolution) is much more naturally
expressed in real space. As the numerical algorithm for computing Fourier
transforms — the fast Fourier transform, fft — is indeed extremely fast, it is
not a problem having to repeatedly convert back and forth between real and
Fourier space. As the total pm method, the (fastest) fft’s have a complexity
of O(N lnN)∀N .

In the pm method, equation (2.33) shall serve as the main equation for
gravity. It involves the fields φ̃(k) and ρ̃(k). As the simulation is generally
performed in real space, the fields φ(r) and ρ(r) plays an equally important
role. These four fields are represented numerically by regular, cubic meshes of
values, spanning the box. A high-level view of the pm method can be described
by the following steps.

1. Assign particle masses to the ρ mesh.

2. Transform ρ
fft−−→ ρ̃.

47

2. Newtonian Gravitation

3. Compute φ̃ from ρ̃ via (2.33).

4. Transform φ̃
fft−1
−−−−→ φ.

5. Compute forces from φ via finite differences.
6. Interpolate the forces on the mesh back to the particle positions.

In the first step, the density field is build from the particle distribution.
Physically we do not make any distinction between these two quantities; the
particles are precisely what make up the density field. The distinction arises
numerically from the fact that such a field can be implemented in two distinct
ways. One may discretize mass, resulting in a finite number of freely floating
particles with constant mas, which samples the field values. This is precisely
what is generally done in N -body simulations. Alternatively, one may choose
to discretize space into finitely many points, but allow the mass at each point
to vary continuously. These two descriptions are known as the Lagrangian and
the Eulerian description, respectively. The first step in the list above amounts
to such a change of representation, from Lagrangian to Eulerian.

Step two to four is the transformations ρ → ρ̃ → φ̃ → φ, solving the
Poisson equation. These four fields are all scalars, and are only ever used to
produce the next field in line. This means that we can implement a single
mesh, the values of which correspond to field values of each of the four fields, in
turn. We thus refer to the mesh of the pm method, even though several fields
are in play. A lot of our effort in the last section were spent implementing
periodicity and softening, both of which we get for free when using the pm
method. The fft operation implicitly assumes periodicity (as opposed to e.g.
vacuum boundary conditions), which means that ρ̃ is the Fourier transform of
the density field constructed by infinitely replicating the box in all directions.
The problem of two-body relaxation presented by the pp method never comes
up in the pm method, as here we do not have singular bodies. No softening is
therefore needed. A smallest distance scale occur naturally by the fact that
the meshes contain finitely many points; the smallest meaningful distance is
the separation between neighbouring mesh points. Structure in the particle
distribution below this scale are naturally to be disregarded. This scale is
typically much larger than the corresponding softening length ε from the pp
method, making it superior to the pm method with regards to resolution. The
pm method is not exact for scales larger than this smallest scale either, as the
geometry of the mesh introduces anisotropic errors at somewhat larger scales.

In the fifth and final step, forces are extracted from the potential, which
can then be applied to the N particles. The forces are given by the negative
gradient of the potential, which for the discrete mesh translates into finite
differencing. Just as the Laplacian turned into multiplication by −k2 in Fourier
space, the gradient turns into multiplication by ik. By multiplying φ̃ with ik
before transforming back to real space, the forces are obtained directly, without
ever computing φ. As no finite differencing is needed, this is a slightly more

48

2.2. The Particle-Mesh Method

accurate method. We choose to use the finite difference approach however, as
the multiplication by ik turns the field into a vector field, and so three separate
inverse ffts are needed instead of one.

In actuality, the numerical implementation of the pm algorithm is more
complex than the above outline perpetrates. Before delving fully into these
complexities, the next subsection develops formalism and techniques related
to numerical meshes, so heavily used in the pm method. The use of meshes
is also found elsewhere in N -body codes, e.g. the Ewald table used in the pp
method.

2.2.2 Mesh Operations

A mesh is often used to numerically represent a continues field. In this work,
whenever we use the word mesh (or sometimes grid), we refer to a regular,
cubic array of numbers. A smooth field can be accurately represented by a
coarse mesh, as long as appropriate interpolation is utilized when doing lookup.
It is the goal of this subsection to develop the operations performed on the
mesh, used in the pm method. This include the aforementioned interpolation
together with finite differencing.

We denote the linear size of a mesh by Nm. That is, a mesh contains
N3

m grid points. A specific point p is labelled by (xm, ym, zm) ∈ N3, where
0 ≤ xm, ym, zm ≤ Nm − 1. Often the field in question is a physical field in real
space. We should then imagine the mesh as embedded within the box, each
grid point having a specific, constant position in space. The mesh point p
then have physical coordinates (xp, yp, zp) ≡ rp = Hp, where H denote the
separation between neighbouring points. The smallest cubic volumes spanned
by the points are referred to as cells, each with volume H3.

Meshes that span the entire box — like those used in the pm method —
need to be toroidally constructed, to match the periodicity of the box. Smaller
meshes, like the Ewald table used in the pp method which only spans one octant
of the box, need not be periodic. To achieve periodicity, we add pseudopoints
with xm = Nm, ym = Nm or zm = Nm to the mesh, growing the mesh by
one layer of pseudopoints (3N2

m + 3Nm + 1 pseudopoints added) at the three
high-end faces. We then identify opposing mesh faces; rp = H(p mod Nm).
Though the inclusion of the pseudopoints did not alter the number of distinct
mesh points N3

m, it did change the physical size of the cells, as one additional
layer of these now has to fit inside the box. That is,

H = L

Nm
, (periodic)

H = L

Nm − 1 . (non-periodic)

This concludes the setup of the mesh geometry.

49

2. Newtonian Gravitation

Interpolation

With the geometry of mesh fully established, we can begin our study of
interpolation. Normally we think of interpolation as the process of assigning a
value to a field at r, based on known values at nearby grid points rp. However,
the concepts needed for this interpolation presents themselves more clearly
in the reverse process; distributing the value at r between neighbouring grid
points at rp. An example of this reverse interpolation is the construction of
the ρ mesh from the particle configuration. We shall stick with this example
throughout this subsection. The interpolation schemes developed are however
completely general.

To do the interpolation, we first establish “shapes” Si(r) for the particles,
which should be thought of as unit mass single particle density fields. Taking
all particles i to have the same shape S, but centered around their individual
origins ri, we can then write the individual shapes Si as

Si(r) = S(r − ri) , (2.34)

where the shape S(r) is some function, localized around the origin. A possible
choice for S could be the Plummer density (2.26) with m = 1. We then define
the mass fraction of particle i assigned to mesh point p to be the overlap of Si
and a cell volume, centered at rp. We denote this fraction by Wp,i, which we
may write as a continuous function for each mesh point p, evaluated at the
particle position:

Wp,i = Wp(r)|r=ri
. (2.35)

As no mesh points are special, the assignment functions Wp(r) may be written
as a translation of a global assignment function, in a way analogous to (2.34),

Wp(r) = W (r − rp) . (2.36)

We can then write the overlap between Si and a cell volume centered at rp as

Wp,i =
∫ z′p+H/2

z′p−H/2

∫ y′p+H/2

y′p−H/2

∫ x′p+H/2

x′p−H/2
Si
(
r′
)

dx′ dy′ dz′

=
∫ z′p+H/2

z′p−H/2

∫ y′p+H/2

y′p−H/2

∫ x′p+H/2

x′p−H/2
S
(
r′ − ri

)
dx′ dy′ dz′

=
∫

Π
(

r′ − rp

H

)
S(r′ − ri) dr′

⇒Wp(r) =
∫

Π
(

r′ − rp

H

)
S
(
r′ − r

)
dr′

⇒W (r) =
∫

Π
(

r′ − rp

H

)
S
(
r′ − r + rp

)
dr′ , (2.37)

50

2.2. The Particle-Mesh Method

where the definitions (2.34), (2.35) and (2.36) has been used and where Π is
the top-hat function, defined by

Π(r) ≡

1 if all |x|, |y|, |z| < 1
2 ,

0 otherwize.
The global assignment function W (r) cannot depend on the mesh point posi-
tions rp, as (2.37) would have us believe. To get rid of this false dependency,
we make use the evenness of the top-hat function and perform the translation
r′ → r′ − rp:

W (r) =
∫

Π
(

r′

H

)
S
(
r′ − r

)
dr′

= Π
(

r

H

)
∗ S(r) . (2.38)

Here, the last equality is true for even S only. From here on out, we keep this
(rather sensible) restriction on S. Given some S, the mass fraction of particle i
to assign the mesh point p can then be found by computing Wp,i = W (ri− rp)
via (2.38).

With the mass assignment formalized, we still need to choose some S.
If we require that W be smooth and that for interparticle separations large
compared to H, the errors arising from this discretization of space should
become negligible, it can be shown∗ [13] that S must be of the form

SA(r) = H−3A
A∗
a=1

Π
(r

H

)
, (2.39)

where the big ∗ stands for A repeated convolutions of the function to the
right. The empty convolution, A = 0, is defined to be the delta function†
δ(r). By adjusting the order parameter A, a compromise between quality
and computational cost can be achieved. This hierarchy of shapes goes on
indefinitely, but only the lowest three are commonly seen in numerical codes.
Ignoring the normalization factor H−3A, convolving a shape with a top-hat
increases its order by a single step (2.39). Convolving with yet another top-hat
transforms the shape into the assignment function (2.38). The shape of order
A + 1 is then proportional to the assignment function of order A, giving us
the relations

SA+1(r) = H−3WA(r)

∗The notation used here differ from that in [13], as it is my own.
†The empty convolution convolved with the function should equal the single-function

(A = 1) convolution. It then follows that the single-function convolution is just the function
back again, with no convolution performed.

51

2. Newtonian Gravitation

⇒WA+1(r) = H−3Π
(r

H

)
∗WA(r) . (2.40)

The zero-order version of S is simply a delta function without normalization,
so that Wp,i equals 1 for the mesh point p nearest to particle i, and 0 for
all others. The mass assignment scheme associated with this choice of A is
referred to as the ngp scheme, as the particles are simply snapped to their
nearest grid point:

Wngp(r) ≡W0(r)

= Π
(r

H

)
∗ δ(r)

= Π
(r

H

)
=

1 if all |x|, |y|, |z| < H

2 ,

0 otherwize .
(2.41)

The ngp scheme is not consistent with the requirement of a smooth W .
Regardless of this flaw, it remains a popular assignment scheme.

In the first-order (A = 1) scheme, referred to as the cloud in cell (cic)
scheme, the shape is a normalized top-hat. That is, a particle is represented
as homogeneous cube with the size of a cell. From (2.40) and (2.41), we have

Wcic(r) ≡W1(r)

= H−3Π
(r

H

)
∗Π
(r

H

)

=

∏

w∈{x,y,z}

(
1− |w|

H

)
if all |x|, |y|, |z| < H ,

0 otherwize,
(2.42)

where the last equality can easily be guessed once you recognize that WCIC(r)
must be a linear, even function of all coordinates individually, subject to the
conditions WCIC(0) = 1 and WCIC(x, y, z) = 0 if any of x, y, z ≥ H. The cic
scheme (in just two dimensions, for less clutter) is visualized in Figure 2.6. The
gadget-2 code implements the cic scheme as its only interpolation method.
The same is true for the concept code, although alternative schemes could
easily be implemented.

The last popular interpolation scheme is the case A = 2, known as the
triangular shaped cloud (tsc) method. From (2.40) and (2.42), we have

Wtsc(r) ≡W2(r)

= H−3Π
(r

H

)
∗Wcic(r)

52

2.2. The Particle-Mesh Method

0 1 2 Nm

xm

0

1

2

Nm

y m

r1

r2

Figure 2.6 – Visualization of the cic
mass assignment scheme on a two-
dimensional, periodic mesh with Nm = 3.
Two particles are located at r1 and r2,
respectively, the precise position of which
are represented by ? symbols. The par-
ticles are given a top-hat shape, corre-
sponding to homogeneous squares with
r1 and r2 as centers. The particles are
colored for clearer distinction. Their ar-
eas are composed into rectangular seg-
ments, corresponding to the mass frac-
tions assigned to the grid points, the
color of which also reflect this assignment.
Pseudopoints are unfilled. Part of the
shape of the particle centered at r2 sticks
through the toroidal boundary, and so its
mass is distributed among mesh points
lying far away from each other in p-space.

=

∏
w∈{x,y,z}

(
3
4 −

w2

H2

)
if all |x|, |y|, |z| ≤ H

2 ,

1
8

∏
w∈{x,y,z}

(
3
2 −
|w|
H

)2
if all H2 < |x|, |y|, |z| < 3

2H ,

0 otherwize.

(2.43)

The final form of (2.43) is not obvious. It is however easy to check that it
fulfills all the criteria; it is a continues, quadratic function in x, y and z, with
Wtsc(x, y, z) = 0 if any x, y, z ≥ 3H/2. Crucially, Wtsc(r) integrates to 1.
Note that the linear reach of the assignment function increases by H/2 for
every step up in order, corresponding to smearing the particles over a larger
volume, which makes for smoother interpolation. The number of mesh points
taking part in a given interpolation of order A, is (A+ 1)3.

For the numerical implementation of the pm method, we will need the
Fourier transforms of the assignment functions. These are simply convolutions
of top-hat functions, with Fourier transforms

Π̃(k) =
∫

Π(r)e−ikr dr

=
∏

w∈{x,y,z}

∫ 1/2

−1/2
e−ikww dw

=
∏

w∈{x,y,z}

∫ 1/2

−1/2
cos(kww) dw

53

2. Newtonian Gravitation

=
∏

w∈{x,y,z}

sinc
(
kw
2

)

⇒ F
[
Π
(r

H

)]
(k) = H3

∏
w∈{x,y,z}

sinc
(
Hkw

2

)
,

where F represents the Fourier transform and sinc is the unnormalized cardinal
sine function; sinc(x) = sin(x)/x. The last equality follows from the similarity
theorem for Fourier transforms. From (2.38) and (2.39), we now have

WA(r) = H−3A
A+1∗
a=1

Π
(r

H

)
⇒ W̃A(k) = H−3A

A+1∏
a=1

F
[
Π
(r

H

)]
(k)

= H3
∏

w∈{x,y,z}

sincA+1
(
Hkw

2

)
.

Written out in full, our three assignment functions in Fourier space is then

W̃ngp(k) = H3 sinc
(
Hkx

2

)
sinc

(
Hky

2

)
sinc

(
Hkz

2

)
,

W̃cic(k) = H3 sinc2
(
Hkx

2

)
sinc2

(
Hky

2

)
sinc2

(
Hkz

2

)
,

W̃tsc(k) = H3 sinc3
(
Hkx

2

)
sinc3

(
Hky

2

)
sinc3

(
Hkz

2

)
.

This concludes the development of mesh interpolation, which is used in the
pm method for mass assignment and force interpolation. We shall deal with
the exact numerical implementation of these interpolations later.

Finite Differencing

Viewing the mesh as a continuous field sampled at the mesh points, the notion
of differentiation remain meaningful. From the definition of differentiation, we
have

d
dx f(x) = lim

H→0

f(x+H)− f(x)
H

(2.44)

⇒ D̂ffm(xp) = fm(xp +H)− fm(xp)
H

, (2.45)

where f is some continuous function of x, while fm is a discrete function only
defined on the (one-dimensional) mesh points xp, with fm(xp) = f(xp). In the
last equation, H is the mesh point separation, and the normal differentiation

54

2.2. The Particle-Mesh Method

operator has been substitutes for the finite difference operator D̂f. Equation
(2.45) is the most direct translation from continuous differentiation to discrete
differencing. It does not correspond to the exact derivative of the continuous
function, but only approximates it; D̂ffm(xp) ≈ df(x)/dx|x=xp . The differ-
encing scheme in equation (2.45) is referred to as forward differencing (hence
the subscript on the difference operator), because it requires the evaluation of
fm at xp +H but not xp −H. The corresponding backwards difference is of
course equally valid, though not equal to the forward difference. It is straight
forward to construct a central (symmetrical) difference, which is what is most
often used in practice:

D̂2fm(xp) = fm(xp +H)− fm(xp −H)
2H , (2.46)

where the subscript on the difference operator now refers to its order of
accuracy. Equation (2.46) does not have the same form as the limit in (2.44),
but it still corresponds to a discrete differentiation, as the corresponding
central differentiation, the forward differentiation (2.44) and the backward
differentiation are all equal.

If the sampled field is smooth, values closer to the actual differentiated field
may be achieved by gathering information not just from the two neighbouring
points, but from a larger region. How to generalize the above procedure of
central differences to incorporate more than two points is not immediately
clear. We can construct higher order methods by hand by utilizing the
Taylor expansion of f . To construct the four-point method, where the points
xp ±H = xp±1 and xp ± 2H = xp±2 are used to approximate the derivative at
xp, we write down the fourth-order Taylor expansion of f around xp, evaluated
in these four points:

f(xp±1) ≈ f(xp)±H
df(x)

dx

∣∣∣∣
x=xp

+ H2

2
d2f(x)

dx2

∣∣∣∣
x=xp

± H3

6
d3f(x)

dx3

∣∣∣∣
x=xp

+ H4

24
d4f(x)

dx4

∣∣∣∣
x=xp

,

f(xp±2) ≈ f(xp)± 2H df(x)
dx

∣∣∣∣
x=xp

+ 2H2 d2f(x)
dx2

∣∣∣∣
x=xp

± 4H3

3
d3f(x)

dx3

∣∣∣∣
x=xp

+ 2H4

3
d4f(x)

dx4

∣∣∣∣
x=xp

.

We see that the even terms all have a positive sign, regardless of which point
— forward or backward — f is evaluated in. We can thus get rid of the even
terms by the following subtractions:

f(xp+1)− f(xp−1) ≈ 2H df(x)
dx

∣∣∣∣
x=xp

+ H3

3
d3f(x)

dx3

∣∣∣∣
x=xp

55

2. Newtonian Gravitation

f(xp+2)− f(xp−2) ≈ 4H df(x)
dx

∣∣∣∣
x=xp

+ 8H3

3
d3f(x)

dx3

∣∣∣∣
x=xp

.

We can now eliminate the terms with the third derivative of f by calculating
8[f(xp+1)− f(xp−1]− [f(xp+2)− f(xp−2)]. Isolating the first derivative of f
from this calculation, we end up with

df(x)
dx

∣∣∣∣
x=xp

≈ f(xp−2)− 8f(xp−1) + 8f(xp+1)− f(xp+2)
12H

= fm(xp−2)− 8fm(xp−1) + 8fm(xp+1)− fm(xp+2)
12H

≡ D̂4fm(xp) . (2.47)

In the concept code as well as the gadget-2 code, fourth-order differencing
(2.47) is used for approximating the derivative of the mesh-sampled potential
in the pm method. The mesh used in the codes are three-dimensional, and
so we need to construct a vector difference operator D̂. As we can simply
differentiate each dimension separately, we have

D̂fm(r) =
(
D̂xfm(r), D̂yfm(r), D̂zfm(r)

)
, (2.48)

where superscripts explicitly states the variable with which to do the differenc-
ing with respect to.

Constructing higher order central differencing methods in the same way
as used above is tedious. The following formula [15] can be used to produce
central difference methods to any order A directly:

D̂Afm(xp) = 1
H

A/2∑
j=−A/2
j 6=0

d
dξ

A/2∏
i=−A/2
i 6=j

ξ − i
j − i

∣∣∣∣∣
ξ=0

fm(xp+j) . (2.49)

Note that A must be even, corresponding to evaluating fm in the same number
of forward and backward points.

2.2.3 The Force Computation

With the mesh operations formalized, we can construct the algorithm for the
pm method, computing forces Fi based on particle masses mi and positions
ri. The standard representation of the particles is the Lagrangian description,
where each particle is located at a specific point. We can write this set of
masses and positions {mi, ri} as a proper density field, as

ρ(r) =
N∑
i=1

miδ(r − ri) .

56

2.2. The Particle-Mesh Method

Since each particle occupy an infinitesimal amount of space, the density goes
to infinity at r = ri. In the Eulerian description, space is discretized, which
means that the density value at each mesh point must be finite. In fact, the
density at the mesh points must be the mass enclosed within a mesh cell
centered at the point, divided by the cell volume. The enclosed mass depends
on the shape of the particle, as described in the last subsection. The fraction
of the mass of particle i enclosed in the cell volume is given by Wp,i. The mesh
defined densities ρm(rp) are then given by

ρm(rp) =
N∑
i=1

Wp,i
mi

H3

= H−3
N∑
i=1

W (ri − rp)mi

= H−3
∫
W (r − rp)

N∑
i=1

miδ(r − ri) dr

= W (rp) ∗ ρ(rp)
H3 , (2.50)

where the evenness of the assignment function W has been used to write the
convolution. In the numerical implementation, the mesh are assigned the
values ρm(rp), in a manner similar to the first equality in (2.50). It is then
from the ρm(rp) values that the Poisson equation should be solved.

Equation (2.50) is easily cast into Fourier space;

ρ̃m(k) = W̃ (k)ρ̃(k)
H3 . (2.51)

Some caution should be taken when constructing this Fourier transform, as
the mesh defined density ρm should be considered discrete. It is only defined
at the mesh points rp. The transform should then be done as a series, not as
an integral. To do an integral transform, we would need a continuously defined
density. We can construct such a density by allowing ρm to take any position
as argument∗, ρm(r), and multiply it by a Dirac comb X:

ρX(r) = ρm(r)X
(r

H

)
,

where the Dirac comb is defined by

X(ς) ≡
∑
n∈Z3

δ(ς − n)

⇒X
(r

H

)
= H3

∑
n∈Z3

δ(r −Hn)

∗Clearly, (2.50) is mathematically well defined for all r.

57

2. Newtonian Gravitation

= H3
∑

p

δ(r − rp)

⇒ H3ρm(rp) =
∫ zp+H/2

zp−H/2

∫ yp+H/2

yp−H/2

∫ xp+H/2

xp−H/2
ρX(r) dx dy dz ,

where the left-hand side of the last equality can be interpreted as the mass
assigned to mesh point p. The continuously defined ρX(r) is thus a sum of
delta functions, just like ρ(r). One may argue that it would be better to
use ρX(r) — which is really the original, Lagrangian ρ(r), interpolated to
the mesh points — rather than ρm(r), to do the mesh computations, solving
the Poisson equation. It turns out however, that their Fourier transforms are
identical:

ρ̃X(k) =
∫
ρX(r)e−ikr dr

= H3
∫ ∑

p

ρm(r)e−ikr
δ(r − rp) dr

= H3
∑

p

ρm(rp)e−ikrp

= ρ̃m(k) . (2.52)

Reassuringly, we do not have to worry about errors due to the transformation
from the Lagrangian to the Eulerian description, or vice versa.

We now Fourier transform the mesh defined densities via an fft:

ρ̃m(kp) = fft
(
ρm(rp)

)
. (2.53)

where kp are the discrete mesh points in Fourier space, kp = (2π/L)p. It
should be noted that ρ̃m(k) as constructed in (2.53) corresponds to the Fourier
transform of the periodic mesh defined density. Without ever worrying about
it, periodicity is achieved for free. The Fourier transformed density values
ρ̃m(kp) are those resulting from the interpolated density. We can use (2.51) to
achieve the density values resulting from the original, non-interpolated density:

ρ̃(kp) = H3

W̃ (kp)
fft

(
ρm(rp)

)
. (2.54)

Even though ρ̃(kp) is the Fourier transform of the non-interpolated density, it
is still only defined for values of k on the (Fourier transformed) mesh, k = kp.

The next step is to solve the Poisson equation in Fourier space, as in (2.33).
That is,

φ̃(kp) = −4πG
k2 ρ̃(kp) , (2.55)

58

2.2. The Particle-Mesh Method

where again, the potential values φ̃(kp) are only defined on the mesh. We can
transform these back to coordinate space by an inverse fft,

φ(rp) = fft−1(φ̃(kp)
)
.

With the potential values at the mesh points, finite differencing is used to
compute the forces at these points. Since the mesh point masses do not
correspond to the masses of the particles, we will find the force per unit mass;
the gravitational field g. The differencing is done via the difference operator
D̂ as described in the previous subsection:

g(rp) = −D̂φ(rp) . (2.56)

In the actual concept code, the fourth-order accuracy differencing operator
D̂4 is used.

To interpolate the accelerations from the mesh points and back to the
particle positions, the same interpolation scheme (the same order ofW) as that
used in the mass assignment, must be used. If not, momentum conservation
will be perturbed [13]. The accelerations become

g(ri) =
∑

p

Wp,ig(rp)

=
∑

p

W (ri − rp)g(rp)

=
∫
W (ri − r)

∑
p

g(r)δ(r − rp) dr

= H−3
∫
W (ri − r)gX(r) dr

= W (ri) ∗ gX(ri)
H3 , (2.57)

where
gX(r) = g(r)X

(r

H

)
. (2.58)

Needless to say, the forces are then finally given by

Fi = mig(ri) .

Were we to combine all the above steps — from the mass assignment to the
force interpolation — into a single expression, we would see that it is a single
string of multiplications, convolutions and Fourier transforms, together with
the difference operator. These multiplications and convolutions can safely
travel inside the Fourier transforms, where they change role with one another
(and become inversely transformed, relative to the given transformation). The

59

2. Newtonian Gravitation

assignment function W from (2.58) can thus be replaced with a W̃ in Fourier
space. Additionally, the Dirac comb also from (2.58) can merge together with
ρm to form ρX, which we know from (2.52) has equal Fourier transforms.

2.2.4 Numerical Implementation

All steps needed for the force calculation in the pm method were developed in
the last subsection. We now need to put it all together, to form the numerical
implementation. Here follows a list like the one we encountered in subsection
2.2.1, describing each step of the pm method. With our detailed knowledge
from the previous subsection, we can now write a fully detailed list of the
steps.

1. Assign particle masses to the mesh points, resulting in ρm(rp). The total
mass assigned to mesh point p is described by (2.50). It is however much
more feasible to assign the mass of each particle in turn to its nearby
mesh points. We can write this assignment as

{mi, ri} → ∆iρm(rp) = Wp,i
mi

H3 ,

where ∆iρm(rp) is the added density value to ρm(rp) from particle i:

ρm(rp) =
∑
i

∆iρm(rp) .

The mesh points p considered in the assignment is the (A+ 1)3 points
near∗ ri. For the cic interpolation, the eight mesh points sharing the
mass of particle i is then

pcic =
(⌊

xi
H

⌉
x

,

⌊
yi
H

⌉
y

,

⌊
zi
H

⌉
z

)
, (2.59)

where each occurrence of b•e can be chosen to be either a floor or a
ceiling function. The subscript on these are used only for distinction, so
that later one can refer back to a particular instance. The values of the
cic assignment function can now be neatly written as

Wpcic,i =
∏

w∈{x,y,z}

∣∣∣∣wiH −
⌊
wi
H

⌉
w

∣∣∣∣ , (2.60)

which is the numerically most effective way of computing the weights in
the cic interpolation.

∗These points are within a distance of (A + 1)H/2 to ri in at least one of the three
dimensions. The points are then situated in a cube, not a sphere. Thus generally, it is not
the nearest (A+ 1)3 points which take part in the assignment.

60

2.2. The Particle-Mesh Method

The values assigned to the pseudopoints pps of (2.59) — corresponding
to points where at least one of wm = dwi/He = Nm, w ∈ {x, y, z}— now
need to be added to the existing values of the respective real points:

ρm(r(pps mod Nm))→ ρm(r(pps mod Nm)) + ρm(rpps) ,

which takes care of the periodicity in the mass assignment. For now, the
pseudopoints has fulfilled their purpose and must be disregarded from
this point on, as these now contain redundant information.

2. Fourier transform ρm(rp) fft−−→ ρ̃m(kp), where kp = (2π/L)p. This
transform should be done in-place, replacing the density values on the
mesh with the values from the Fourier transform.

3. While in Fourier space we need to do several things, which all come
down to simple multiplications. To deconvolve for the mass assignment
(transforming ρm(kp) to ρ(kp)), we use (2.54). We know that another
interpolation (2.57) awaits, so we might as well do its deconvolution
while in Fourier space, as multiplication is easier to do than convolution.
We also need to solve the Poisson equation, transforming the mesh values
to potential values. Here we use (2.55). Doing all this at once, we have

φ̃′(kp) = −4πG
k2

p

H6

W̃ 2(kp)
ρ̃(kp) , (2.61)

where the prime denotes that this is not the actual Fourier transformed
potential, as it has been deconvolved with the assignment function one
additional time.
The last thing we need to do before leaving Fourier space is to manually set
φ̃′(0) = 0. This is not just because (2.61) blows up at kp = 0, but more
importantly because this act corresponds to subtracting the mean density,
as we have discussed before. This is crucial as the Poisson equation with
periodic boundaries is not solvable unless the density contrast is used. If
we do not explicitly subtract the mean density, an inverse fft of φ̃′(kp)
will result in an error under many fft implementations.

4. Fourier transform φ̃′(kp) fft−1
−−−−→ φ′(rp). As with the forward Fourier

transform, this transform should be done in-place. We now need to
manually reassign values to the pseudopoints, as these are needed for the
upcoming interpolation:

φ′(rpps)→ φ′(r(pps mod Nm)) .

That is, their values are simply copies of the values of their respective
real points.
The next step involved the finite difference operator D̂, defined generally
by (2.48) and (2.49). It is clear this operator can only approximate

61

2. Newtonian Gravitation

the derivative at points which have A/2 neighbour points, where A is
the order of accuracy of the finite difference operator. For D̂ to work,
we thus have to construct additional pseudopoints around the entire
mesh. These extra pseudopoints are referred to as ghost points. For D̂
to be applicable to all normal points and the original pseudopoints, we
need to wrap the mesh with A/2 layers of ghost points, covering all six
faces of the mesh. Ghost points pg then have one −A/2 ≤ wm < 0 or
Nm < wm ≤ Nm +A/2, w ∈ {x, y, z}. The values of these ghost points
pg should naturally be copies of the actual points as demanded by the
periodicity of the mesh:

φ′(rpg) = φ′(r(pg mod Nm)) .

With the 6(Nm + 1)2 ghost points added to the mesh, the original points
(including pseudopoints) can be finitely differenced.

5. Compute the gravitational field at the mesh points (excluding ghosts) as
in (2.56),

g′(rp) = −D̂φ′(rp) ,

where one possible choice for the finite difference operator D̂ would be
the fourth-order accurate (2.47). This operator uses the ghost points to
perform the differencing of the outermost points. When g′(rp) have been
found, the ghost points are no longer needed.
We cannot convert the mesh itself into the gravitational field g′ as it
is a vector field. We could create g′ as three meshes, equivalent to a
Nm×Nm×Nm× 3 mesh, but it would be expensive in memory. Instead
we create just a single additional mesh and compute and store one
component of g′ on it at a time. The sixth and last step should then
really we done three times over, once for each component of g′.

6. Interpolate the gravitational field at the mesh points (including pseu-
dopoints) back to particle positions, in a manner similar to the mass
assignment in step 1:{

g′(rp)
}
→ ∆pgi = Wp,ig

′(rp) ,

gi =
∑

p

∆pgi ,

where the interpolation removes the prime, resulting in the actual ac-
celeration at each particle position. For the choice of cic interpolation,
it is again only the eight neighbour points (2.59) which contribute to
the acceleration of a specific particle, and the weights can be efficiently
computed by (2.60). The forces are now trivially given by Fi = migi.

This concludes our development of the the pm method.

62

2.3. Hybrid Methods

We wish to compare the results of a pm simulation against those of a pp
simulation. To compare the raw particle configurations resulting from such
simulation directly is difficult∗. It is better to compute the power spectrum of
each configuration and then compare those. We have deliberately postponed
the description of how to go about computing these power spectra until now,
as the computation is mesh based. As defined in (1.42), the power spectrum is
essentially the absolute square of the Fourier transform of the density contrast.
To compute P (|k|) then, we simply construct† the mesh ρm(rp) as in step 1
above, Fourier transform it and deconvolve for the interpolation kernel W , by
dividing with W̃ (k):

P (kp) =
∣∣∣∣ H3

W̃ (kp)
fft

(
ρm(rp)

)∣∣∣∣2 .
The cell spacing H then limits the resolution of the power spectrum, regardless
of how finely resolved the particle configuration might be. This explains why
the pp power spectrum Figure 2.5 did not resolve scales comparable to the
Plummer radius ε.

With the power spectrum fully established, let us compare the pm method
to the pp method. The two methods should give similar results, though we
expect them to differ at small scales, where the pm method becomes inaccurate.
Figure 2.7 shows such a comparison, where we see that the pm method produces
too little structure at small scales, relative to the pp method. At large scales
though, they match almost perfectly. For the particular simulations used
for Figure 2.7, we see that switching to the pm method reduces the effective
resolution with about one order of magnitude. Although the pm method
provide a much needed speedup over the pp method, this costs is too large for
it to be much useful as is.

2.3 Hybrid Methods
By now we have constructed two very different gravitational solvers; the pp
method and the pm method. The first was a very direct numerical imple-
mentation of Newton’s law of universal gravitation, which describe gravity
as a pairwise force between particles. As this description lend itself directly
to numerical implementation, the resulting pp method is virtually exact. Its
complexity scaling O

(
N2) however, itself the result of the pairwise descrip-

tion of gravity, limited the usefulness of the pp method drastically, as only
simulations with small N are viable. The pm method resides in the other end

∗Although this is how the concept code checks that it gives results consistent with those
of gadget-2.

†This process might be considered inverse to the creation of the initial particle configura-
tion, which is done by perturbing a perfect grid of particles according to the power spectrum
of the early Universe.

63

2. Newtonian Gravitation

100 101

|k| [Mpc−1]

P
(|k
|)

pp
pm

Figure 2.7 – Power spectra of pp (red) and pm (green) simulations with identical
initial conditions. The specifics of the simulations are equal to those of Figure 2.4.
The pp power spectrum is identical to that Figure 2.5, but logarithmically binned
to smooth out the plot. The height of the filled area corresponds to the standard
deviation of the data within each bin. The very large |k| regime, where in
Figure 2.5 the power spectrum started to increase with |k|, has been removed.
Although the largest |k| has been left out, it is clear that the pm power spectrum
include the same upwards bend as we have seen for the pp power spectrum.
Both power spectra as well as the pm run itself was computed with a mesh with
Nm = 512.

of the spectrum, with the scaling O(N logN). Here, accuracy (and memory)
is sacrificed to gain efficiency, as gravity is mediated to the particles via an
intermediate gravitational field, itself constructed from the particle distribution.
This field is numerically represented as a mesh, which explicitly imposes a
resolution limit to gravity. Although the pm method is fast, the resolution
penalty as shown in Figure 2.7 severely limits its usefulness. It is possible
to combine the two methods into one, giving us the resolution power of the
pp method and a speed comparable to the pm method. Such methods are
collectively known as hybrid methods. In this work we discuss in detail only
the most direct hybrid, the p3m method, which is implemented in the concept
code. Other, more effective hybrids do exist, the idea of which we will only
briefly describe.

2.3.1 The Particle-Particle-Particle-Mesh Method

The particle-particle-particle-mesh (p3m) method — as its name suggests —
is a hybrid between the pp and the pm method. The p3m method combines
the two other methods in their entirety, pulling from all the tricks that we
have established so far. It uses mesh based methods to compute gravity at

64

2.3. Hybrid Methods

large scales, while the finer, small scale gravitation is supplied by particle-
particle methods. To do this, gravity needs to be split into a long-range and a
short-range component, just as when doing Ewald summation.

In the Ewald mehtod, the force split was introduces at the level of the
Green’s function for the Laplace operator in the Poisson equation. From (2.14)
and (2.16), we had

Gs(r) = − 1
4π|r| erfc

(
|r|
2rs

)
,

G̃l(k) = − 1
k2 exp

(
−k2r2

s
)
, (2.62)

where rs is the distance scale of the force split and Gs + Gl = G∇2 solves the
Poisson equation in triply periodic boundaries, as in (2.11),

φ(r) = 4πG
N∑
j=1

mj

∑
n∈Z3

G∇2(rj + nL− r) . (2.63)

The long range part G̃l was written in Fourier space, because the convergence
rate of the sum in (2.63) was much higher if done in Fourier space, for this
part. The reason for the slowness of the pp method was that each particle
had to be paired with every other, due to the long-range nature of gravity.
The central idea of the p3m method is to delegate the computation of the
long-range component of gravity to the pm method, leaving only the short-
range component to be done with the slower pp method. This is ideal, as
the the fast pm method is accurate only at large scales. In itself though,
this does not speed up the overall computation, as all particles must still be
paired with one another in the short-range pp computation. However, since
the short-range force falls off much faster than r−2, particle pairs with large
inter-particle distances (compared to rs) contribute a negligible amount to the
total short-range force. Thus we only need to compute the short-range force
on a particle due to its neighbouring particles.

The long-range component of gravity is then computed through the same
six steps which comprises the pm method, as described in subsection 2.2.4.
The potential (2.61) should then be substituted for the short-range potential;

φ̃′(kp)→ φ̃′s(kp)

= −4πG
k2

p

exp
(
−k2

pr
2
s
) H6

W̃ 2(kp)
ρ̃(kp) , (2.64)

where G̃∇2(k) = −1/k2 has been substituted for G̃l(k) from (2.62). Renaming
the remaining variables to reflect that they are concerned with the long-range
component only, φ′ → φ′l, g′ → g′l, gi → gl,i, Fi → Fl,i, the six steps of the pm
algorithm modified only by (2.64) will result in the long-range forces Fl,i.

65

2. Newtonian Gravitation

Since we only account for nearby particles with regards to the short-range
force, we also disregard periodicity. This is not a problem as periodicity is
accounted for in the long-range component, which is where it matters. The
short-range p3m force is then the short-range term of the Ewald-force (2.19),
but without the sum over periodic images:

Fs,i = Gmi

N∑
j=1
j 6=i

mj
rj − ri
|rj − ri|3

[
erfc

(
|rj − ri|

2rs

)
+ |rj − ri|√

π rs
e−
|rj−ri|

2

4r2s

]
. (2.65)

The full periodic force is then Fi = Fl,i + Fs,i. When we discussed Ewald
summation, we chose rs as in (2.21), which led to fast convergence of both
the short-range and the long-range sum. As these sums do not occur in the
p3m method, this choice is no longer advantageous. Preferably, rs should be
made extremely small, in order to delegate as much work as possible to the
efficient long-range computation. We cannot make rs . H though, as the mesh
anisotropies will begin to show up as errors in the mesh-based long-range force.
As noted in [1], rs does not have to be much larger than H in order for these
anisotropic force errors to be well below 1%, in a root-mean-square sense. In
fact in the gadget-2 code,

rs = 1.25H ,

which is also adopted as the standard in the concept code, although it can
easily be changed in the parameter file.

Using (2.65) in the p3m method would be a disaster, as it involves the
pairwise sum responsible for the O

(
N2) complexity. We wish to approximate

this sum by simply neglecting all the terms for which |rj − ri| > Rs, where Rs
is some chosen cutoff range. In the gadget-2 code, a value of Rs = 4.5rs is
chosen. If we have as our criterion that the neglected short-range force most
not contribute more than 1% to the correct total force (for that particle), then
we must have∗

Rs = 4.8rs ,

which is the default value for the concept code. Like rs, this can easily be
changed in the parameter file. We can now write (2.65) as

Fs,i ≈ Gmi

N∑
j=1
j 6=i

|rj−ri|<Rs

mj
rj − ri
|rj − ri|3

[
erfc

(
|rj − ri|

2rs

)
+ |rj − ri|√

π rs
e−
|rj−ri|

2

4r2s

]
.

∗This follows directly from (2.65):

0.01 = erfc
(
Rs

2rs

)
+ Rs√

π rs
e
− R2

s
4r2

s ⇒ Rs

rs
≈ 4.7634 .

66

2.3. Hybrid Methods

The question of how to actually perform the sum (2.65) without visiting all
N − 1 particles remain. This can only be solved by globally, spatially sorting
the particles in advance. This is done in e.g. the treepm method, the default
method used by gadget-2. In the plain p3m method implemented in the
concept code, no additional sorting takes place. Instead we are saved from the
O
(
N2) problem by an implementation aspect which we have not yet discussed

— parallelization. Before concluding our development of the p3m method then,
we need to take a detour around parallelism.

2.3.2 Parallelization

To do large simulations, accurate within a range of scales many orders of
magnitude apart, we need many particles N . This in turn increases the
number of computer operations, which constitutes the run. We need our runs
to take a manageable amount of time, and so we have two options: Run the
simulation on faster hardware or distribute the work of the run over several
machines, which then run in parallel. In practice the latter option is preferable,
as it is relatively easy and cheap to combine many ordinary computers into a
single unit; a cluster. Most such clusters today are distributed, meaning that
they consist of many cpus grouped together into so-called nodes, where each
node has its own dedicated memory. A serious N -body code then needs to be
written as a parallel, distributed program.

The memory management of the cpus inside a node should be handed
carefully, so that one does not overwrite the data of another. The cleanest
way of doing this is to completely separate the memory associated with each
cpu, effectively isolating them from each other. From the point of view of the
code, it now does not matter whether two cpus reside inside the same node
or not. A copy of the same program, possibly slightly modified, can now be
run in parallel. The general N -body problem cannot be solved in this way, as
sharing of data between the cpus is a must. Problems which can be solved in
this isolated fashion are referred to as embarrassingly parallel, an example or
which is the tabulation of the Ewald force corrections (2.22).

For the more general problems requiring exchange of data between cpus,
two options are available. A mechanism can be deployed for safe sharing of
memory within a node, of which OpenMP (Open Multi-Processing) is the
de facto standard. We are still left with no cooperation between different
nodes, and so OpenMP alone is not ideal for massively parallel programs. The
other option is to communicate between cpus via message passing: Rather
than sharing memory, copies of data are send and received by the cpus. The
standardized system for this cpu-cpu communication is called mpi (Message
Passing Interface), and can be used by cpus within a singe node as well as cpus
belong to different nodes. For memory-bound problems, it can be advantageous
to utilize both OpenMP and mpi, as message passing between cpus of the
same node uses more memory than simply sharing it. This hybrid parallelism

67

2. Newtonian Gravitation

complicates the numerical code significantly, and so the concept code as well
as the gadget-2 code utilizes mpi only.

So far in our development of the numerical implementations of the gravita-
tional solvers, we have not taken parallelism into account. Any valid program is
automatically a valid mpi program, as it can trivially be run in embarrassingly
parallel. To hook into the features of mpi, each cpu — in mpi terminology
called a process — is given a unique rank between 0 and Np − 1, where Np is
the number of processes. In the N -body code, each process governs its own
set of particles, located within its dedicated volume of the box. At the start
of the simulation, the box is then divided up into Np equal volumes, each
designated a specific process/rank. We shall refer to these rank specific volumes
as domains. The domains are chosen to be of equal volume in an attempt to
fairly∗ spread out the workload between the processes. The processes then
receive the particles accompanying their designated domain, after which the
actual simulation can begin. If a particle later exits its domain, the particle
is immediately send to the process governing the newly entered domain. In
order to keep this communication at a minimum, the domains should have a
large volume to surface ratio. Ideally the domains are cubes, but this is only
possible for cubic Np. In the concept code, the best possible rectangular
cuboid for the given Np is computed† and chosen as the shape of the domains.

Each of our methods for solving gravity now need to be modified in such
a way as to exploit message passing to speed up the computation. Below we
discuss the needed changes of the established pp, pm and p3m methods, in
order to parallelize them to fit into the distributed scheme described above.
While the pp and the pm methods do parallelize nicely, parallelization is a key
feature of the p3m method, without which the method is no good at all.

PP

The pp method as described in section 2.1 only need slight‡ modifications in
order to be fully parallelized. The pairwise sum (e.g. (2.6)) cannot run over
all particle pairs directly, as these reside on different processes. Instead, only
particles within the same domain may be paired directly in this way. The rest
of the pairs must be obtained by communicating particle positions between
processes. For the particles i within the domain dom` of the process of rank `,

∗For large enough simulations, the universal homogeneity implies that equal volume leads
to equal number of particles.

†This amounts to finding the three-number factorization of Np with all three numbers as
similar as possible.

‡This is from the standpoint of understanding the method. The number of additional
lines of code needed to parallelize the pp method is significant.

68

2.3. Hybrid Methods

the parallelized sum becomes

N∑
j=1
j 6=i

→
∑
j 6=i

rj∈dom`

+
Np−1∑
rk=0
rk6=`

∑
j

rj∈domrk

,

where the rk sum runs over all ranks except `. To minimize the computation,
processes receiving particles should send the resulting forces back to the sender
process, so that Fij and Fji are obtained in one go. It is then important that
the process to send to and the process to receive from are different, so that the
same computation does not take place on two processes. This is not completely
possible if Np is odd however, as in the end, each process lacks only to be
paired with a single other process.

PM

In the parallel pm method, not just the particles but also the mesh is distributed.
As we shall see, this means that a lot more work needs to be done in order to
parallelize the pm method.

When doing the mass assignment, it is now possible for particle i located in
domain ` to contribute to the mesh embedded in domain `+1. This is really the
same problem as originally posed by periodicity, which we solved by introducing
pseudopoints. We therefore equip each local mesh with pseudopoints just as we
did for the entire (now called global) mesh in section 2.2.2. These pseudopoints
now correspond to real points in neighbouring domains. These additional
pseudopoints are then treated in an analogous fashion to that of the preexisting
pseudopoints, both when it comes to mass assignment, potential differencing
and force interpolation. Note that no additional ghost points need to be added.

The Fourier transforms of the pm method presents another problem, as
the data we wish to transform is now distributed. It is worth mentioning
the amount of care taken to speed up the process of Fourier transforming, as
well as fixing the problem of distributed data. We are in need of a numerical
implementation of a distributed-memory fft running on mpi. In addition,
we want the fft to be in-place and in three dimensions. Luckily, numerical
libraries with such capabilities do exist. Both concept and gadget-2 rely on
the∗ fftw (the Fastest Fourier Transform in the West, [16]) library to perform
these transforms. For reasons of speed, fftw allows only a single floating
point number to be stored at each mesh point. This introduces a problem,
since the data to be transformed are real, and so the complex result of the
transform consists of double the amount of floating point numbers. However,
Fourier transforming real data results in negative-frequency terms that are just
the complex conjugates of the corresponding positive-frequency terms. We can

∗To be precise, concept rely on fftw 3, with which gadget-2 is incompatible. Instead,
it uses fftw 2.

69

2. Newtonian Gravitation

exploit this redundancy by using a real fft, also included in the fftw library,
which intelligently skips the calculation of the negative-frequency terms. The
transformed data still does not quite fit the mesh, as the negative-frequency
parts constitutes less than half of the data (due to the zero frequency parts).
The mesh thus have to be padded with additional points, which receive values
from the fft but are now otherwise used. These inevitably coincide with the
ghost and pseudopoints, but as these get their values reassigned after the mesh
has been transformed back, it does not pose a problem. One last subtlety of
efficient and distributed ffts remain. The last step in the distributed-memory,
in-place, real, 3D fft consists of a global transposition of the data, without
which the data comes out transposed. Such a transposition is costly when the
data is distributed and so we choose to skip it, which is possible with fftw.
In Fourier space, the mesh is then transposed (along the first two dimensions).
Once we transform back and again skip the transposition within the fft, the
mesh will no longer be transposed.

The above discussion about the numerical implementation of the fft
was really only concerned with the details. The major difference between
a serial fft and a distributed-memory fft using fftw, is that the data
must be supplied in a given way. Specifically, it is expected that the mesh is
“slab decomposed”, meaning that the local mesh on each process is a yz-slab
with little thickness in the x-direction. The slab decomposition of the global
Nm ×Nm ×Nm mesh is then the Np meshes Nm/Np ×Nm ×Nm. With the
domains chosen as described above, the local meshes are not embedded within
the domains, making mass assignment impossible. To circumvent this problem,
yet another mesh is introduced, which is embedded within the local domain.
That is, both meshes are embedded within the box in a global sense, but they
are distributed differently among the processes. To distinguish between the two
meshes, we shall refer to the slab distributed mesh as the slab mesh, and the
newly introduce mesh as the domain mesh. The domain mesh then takes the
role of the mesh as described in section 2.2, with regards to mass assignment,
potential differencing and force interpolation. After assigning masses to the
domain mesh, we then communicate the values to the slab mesh, which then
gets Fourier transformed. When all operations in (transposed) Fourier space
has been done and the slab mesh has been transformed back to real space,
its potential values are then communicated back to the domain mesh. From
there, we can forget that we ever had another mesh and use the domain mesh
to compute the forces.

P3M

The parallelization of the long-range force computation in the p3m method is
exactly as that of the the force in the pm method, described above. We have
not yet discussed how to handle the sum in the short-range force (2.65), serially
or in parallel. The following discussion of this matter is based on the relatively

70

2.3. Hybrid Methods

simple p3m implementation used within concept. More sophisticated parallel
implementations of the p3m method are possible.

As stated earlier, some pre-existing spatial sorting of the particles are
needed, so that we know for which particles the condition |rj − ri| < Rs is
true. The division of particles into domains, enforced by the parallelization,
is exactly such a sorting. Within a domain, the particles remain unsorted
relative to each other, and so particle i must still be paired with all particles
j 6= i within the domain containing particle i. If Rs is chosen smaller than
the (smallest) linear size of a domain, we are guaranteed that the only other
particles that can contribute to the sum (2.65) are those in the 26 neighbouring
domains. If the simulation is run on hundreds or thousands of processes, we
see why this now gives a tremendous speedup compared to the pairwise sum
of the pp method.

The communication of the particles between the domains happens as follows.
All particles within a distance of Rs to the right boundary of their local domain
are identified, as well as those within a distance of Rs to the left boundary.
The particles near the right boundary are now send to the process governing
the domain to the right. This means that every process now receives particles
from the domain to their left. The received particles are precisely those which
should be paired with the previously identified particles near the left domain
boundary. The forces between these two groups of particles are computed in
accordance with (2.65), after which the local forces are applied to the local
particles and the external forces are send back to the process governing the
domain to the left. The forces are received from the right and applied to the
local particles near the right domain boundary. All particles have now received
short-range force contributions from the domain to their right and to their left.
The same is now done for the remaining 12 directions.

We stated earlier that Rs < minw∈{x,y,z} Ldom,w should hold true for the
p3m method to function, where Ldom,w is the linear size of a domain in the w
direction. In fact the condition is slightly more involved:

Rs <

1
2 min
w∈{x,y,z}

Ldom,w if max
w∈{x,y,z}

Ldom,w ≥
L

2 ,

min
w∈{x,y,z}

Ldom,w otherwize.
(2.66)

The top condition ensures that if the left and the right domain are really one
and the same, no specific particle-particle interaction happens twice. As stated
previously, the bottom condition ensures that all particles within a distance Rs
is within the current domain or the surrounding 26 domains. If the condition
(2.66) is now satisfied, concept will fail with an error message.

With the p3m fully constructed, we wish to test it against the pp and the
pm method. Figure 2.8 shows the power spectra of simulations run with all
three methods. It is clear that the p3m method has produced results almost
exactly equal to those of the pp method at all scales (probed by the power

71

2. Newtonian Gravitation

100 101

|k| [Mpc−1]

P
(|k
|)

pp
pm
p3m

Figure 2.8 – Power spectra of pp (red), pm (green) and p3m (blue) simulations
with identical initial conditions. The specifics of the simulations are equal to
those of Figure 2.5. The pp and the pm power spectrum are identical to those of
Figure 2.7. Because the p3m power spectrum is nearly identical to the pp power
spectrum, only its periphery is shown.

spectrum), which was what we were striving for. We now have a parallel
gravitational solver which is both accurate and efficient.

2.3.3 Modern Methods

We are done describing the gravitational capabilities of the concept code.
The most sophisticated cosmological N -body codes goes further, utilizing yet
more sophisticated methods to speed up the force computation. No increase in
accuracy is obtained, however. We shall here briefly describe the idea behind
the most common of these modern methods.

The Tree Method

Accuracies comparable to those obtained by direct particle-particle methods can
be achieved by tree methods, which have the same scaling∗ [1] O

(
N logN

)
as

pm methods. In tree methods, the entire simulation box is cubically subdivided.
That is, each mother cube (starting from the entire box) is divided into eight
daughter cubes, which again is divided into eight granddaughter cubes, and so
on, arranging the entire box into an octree. Each branch of this tree stores a
low-order multipole expansion of the enclosed mass distribution, allowing the
branch to approximately represent the configuration of all interior particles. In
the case of tree method implementation used in gadget-2, a simple monopole
expansion is used. That is, the total enclosed mass as well as the position

∗Altohugh the scaling is the same, pm methods are generally the fastest of the two.

72

2.3. Hybrid Methods

of the center of mass is stored within each branch, representing the particle
distribution within it as a single, collective particle. To calculate the force
Fi, the tree is simply “walked” from the trunk down, with each successive
subbranch “opened” if a more detailed description of the corresponding interior
particles is required for calculating Fi to the desired precision. When a branch
with a good enough description of its interior mass distribution is reached, its
multipole expansion is used to represent all particles at a deeper level of the
tree, lowering the number of effective particles in the familiar pairwise sum
substantially.

The criterion determining whether a branch should be used or opened can
be chosen in many different ways. The standard criterion used in the gadget-2
code is the following. When walking the tree during the computation of Fi, a
branch is used if

GM

r2

(
Lbranch
r

)2
≤ α|ai| , (2.67)

where Lbranch is the linear size of the branch, ai is the current acceleration of
particle i and α is some dimensionless parameter controlling the accuracy of
the force computation.

The TreePM Method

The standard gravitational method used in the gadget-2 code is the hybrid
treepm method. It is essentially the p3m method with the particle-particle
forces supplied by the tree method. The tree method works because the force
on a particle due to a distant group of particles is not very sensitive to the
exact configuration of these particles, which can then be accurately represented
as a low-order multipole expansion. In the treepm method, where only the
short-range force (2.65) is supplied by the tree walk, Fi have an even weaker
dependence on the exact configuration of the distant particle group. This
means for a any desired accuracy, the treepm method may use a larger value
of α in the opening criterion (2.67), than what may be used in the bare tree
method.

Spatial Adaptivity

Some modern N -body codes uses adaptive gravitational methods. We can
imagine a particular dense region of space, where a better spatial resolution
than elsewhere is requires to properly resolve the structure formation. Such
a local increase in resolution can be achieved by an additional, finer mesh
embedded within this region. The gadget-2 code contains this optional
feature, there referred to as zoom.

We can take this idea of submeshes further, and imagine subregions within
the dense region where even higher resolutions are needed, calling for yet
finer submeshes. Such hierarchical submeshes was first introduced by [17].

73

2. Newtonian Gravitation2. Newtonian Gravitation

10−1 100 101

|k| [Mpc−1]

10−3

10−2

10−1

100

P
(|k
|)

concept
(
p3m

)
gadget-2 (treepm)

Figure 2.9 – Power spectra at a = 1 for a concept (blue) and a gadget-2
(orange) run of identical initial conditions. The gravitational methods used by
the two N -body codes are the p3m and the treepm method, respectively. For the
simulations, N = 1283, L = 128Mpc/h has been used, together with a softening
length of ε = 30 kpc/h. The cosmology is that of the previous simulations
considered, ΩΛ = 0.7, Ωm = 0.3, H0 = 70 km s−1 Mpc−1. The mesh used in the
simulations as well as in the production of the power spectra themselves, have a
size of Nm = 1024. Since both the box and the mesh have been increases by the
same linear factor relative to the simulations of Figure 2.8, the smallest resolved
scale shown here is the same as that shown in Figure 2.8. The power spectra
shown here do extend to larger scales though.

Later, methods for automatic, adaptive insertions of these submeshes became
available, as first introduced by [18]. Such methods are generally referred to as
amr (Adaptive Mesh Refinement) methods. Naturally, these can be combined
with pp or tree methods.

With the major trends in modern gravitational methods laid out, it is time
to compare the results of concept against those of a well established N -body
code. Figure 2.9 shows powerspectra of the same simulation run with the
concept (using the p3m method) and gadget-2 (using the treepm method).
The powerspectra match almost perfectly, though at the smallest resolved
scales, gadget-2 produces slightly more structure then concept. This is most
likely because of the adaptive timestep size implemented in gadget-2, the
functionality of which are lacking in the concept code. This then concludes
our quest for gravity and point us in the direction of time evolution, the subject
of the next chapter.

74

Figure 2.9 – Power spectra at a = 1 for a concept (blue) and a gadget-2
(orange) run of identical initial conditions. The gravitational methods used by
the two N -body codes are the p3m and the treepm method, respectively. For the
simulations, N = 1283, L = 128Mpc/h has been used, together with a softening
length of ε = 30 kpc/h. The cosmology is that of the previous simulations
considered, ΩΛ = 0.7, Ωm = 0.3, H0 = 70 km s−1 Mpc−1. The mesh used in the
simulations as well as in the production of the power spectra themselves, have a
size of Nm = 1024. Since both the box and the mesh have been increases by the
same linear factor relative to the simulations of Figure 2.8, the smallest resolved
scale shown here is the same as that shown in Figure 2.8. The power spectra
shown here do extend to larger scales though.

Later, methods for automatic, adaptive insertions of these submeshes became
available, as first introduced by [18]. Such methods are generally referred to as
amr (Adaptive Mesh Refinement) methods. Naturally, these can be combined
with pp or tree methods.

With the major trends in modern gravitational methods laid out, it is time
to compare the results of concept against those of a well established N -body
code. Figure 2.9 shows powerspectra of the same simulation run with the
concept (using the p3m method) and gadget-2 (using the treepm method).
The powerspectra match almost perfectly, though at the smallest resolved
scales, gadget-2 produces slightly more structure then concept. This is most
likely because of the adaptive timestep size implemented in gadget-2, the
functionality of which are lacking in the concept code. This then concludes
our quest for gravity and point us in the direction of time evolution, the subject
of the next chapter.

74

3 Collisionless Dynamics

In the previous chapter we established methods for computing the gravitational
force Fi on each particle i due to all others. In all cases, the forces were softened,
resulting in collisionless interactions. We now need to establish a scheme for
applying these forces to the particles, evolving the system through time. In
the derivation of the forces, Euclidean space was assumed. We therefore have
to modify the forces from the previous chapter to account for the Hubble
expansion. The objective of this chapter is then twofold: Derive the Newtonian
equations of motions in comoving coordinates, including the transformation
between Euclidean and comoving forces. Next, construct a numerical scheme
for integrating the derived equations of motions through time. Such a time
integration scheme together with a gravitational solver from the previous
chapter, collectively constitutes a complete N -body code.

3.1 Equations of Motion in Comoving Coordinates
In this section we develop the equations of motion for the system of N particles,
using comoving coordinates.

3.1.1 The Single-Particle Hamiltonian

Let us develop the equations of motion for a particle in comoving coordinates,
using the Hamiltonian formalism. To do this we imagine an observer comoving
with the Hubble flow. The proper coordinates of particle i, as seen from the
observer, is denoted ri. The proper velocity of the particle is simply ṙi, where
· = d/dt and t is the proper time measured by the observer (the cosmic time).
The Lagrangian for this single particle is then given by

Li(ri, ṙi, t) = 1
2miṙ

2
i −miφ(ri) , (3.1)

where mi is the mass of the particle and φ is the proper potential. The explicit
time dependence of the Lagrangian comes from the Hubble flow, which is
implicitly embedded within ri. The comoving coordinates xi are given by

ri = axi . (3.2)

75

3. Collisionless Dynamics

The time derivative is then

ṙi = ȧxi + aẋi

= Hri + ui , (3.3)

where ui is the peculiar velocity of particle i. Any changes to ui are purely
the result of forces acting upon the particle. Choosing ui rather than∗ ṙi as
the velocity variable thus allow us to forget the expansion and concentrate on
the dynamics.

The first step in deriving the equations of motion in comoving coordinates
is to write the Lagrangian (3.1) in these coordinates. Inserting (3.2) and (3.3)
into (3.1), we get

Li(xi, ẋi, t) = 1
2mi(ȧxi + aẋi)2 −miφ(axi) , (3.4)

where now a is responsible for the time-dependence of the Lagrangian. One
important artefact of the introduction of comoving coordinates into the La-
grangian, is that it is no longer separable into kinetic† and potential terms.
That is, there exists a term in (3.4) containing both xi and ẋi. This compli-
cates further analysis, and so we wish to bring the Lagrangian back to the
original, separable form. We do this by applying a gauge transformation of
the form

Li(x, ẋ, t)→ Li(x, ẋ, t)−
d
dt

1
2miaȧx2

i .

Applying this transformation, we get

Li(xi, ẋi, t)→+ 1
2mi

(
ȧ2x2

i + a2ẋ2
i + 2aȧxiẋi

)
−miφ(axi)

− 1
2mi

(
ȧ2x2

i + aäx2
i + 2aȧxiẋi

)
= 1

2mia
2ẋ2

i −miφ(axi)−
1
2miaäx2

i

= 1
2mia

2ẋ2
i −

miϕ(xi)
a

, ϕ(xi) ≡ aφ(axi) + 1
2a

2äx2
i , (3.5)

where ϕ is the peculiar potential, the same as in (1.31). Notice that (3.5) is
indeed separated into a kinetic and a potential term.

∗Actually we can choose any velocity variable which is not explicitly spatially dependent
and is proportional to ṙi . In the end we shall use the comoving canonical momentum,
conjugate to xi.

†Here, “kinetic” and “potential” should be understood in the generalized sense. It is not
important that the Lagrangian can be expressed as the difference between the actual kinetic
and potential energy, but rather that there exist some quantities in which the Lagrangian is
separable.

76

3.1. Equations of Motion in Comoving Coordinates

With a separable Lagrangian in comoving coordinates, we now define the
comoving canonical momentum pi conjugate to xi:

pi ≡
∂Li
∂ẋi

= mia
2ẋi . (3.6)

Using (3.6), the Lagrangian (3.5) can then be expressed as

Li(xi,pi, t) = p2
i

2mia2 −
miϕ(xi)

a
.

The Hamiltonian is then

Hi(xi,pi, t) ≡ ẋipi − Li(xi,pi, t)

= p2
i

mia2 − Li(xi,pi, t)

= p2
i

2mia2︸ ︷︷ ︸
Hpi

+ miϕ(xi)
a︸ ︷︷ ︸
Hxi

, (3.7)

which again is separated into a kinetic and a potential term, here denoted
Hpi and Hxi , respectively. Hamilton’s equations now give us the equations of
motion, expressed purely in comoving quantities:

ẋi = ∂Hi(xi,pi, t)
∂pi

= pi
mia2 .

ṗi = − ∂Hi(xi,pi, t)
∂xi

= fi
a
,

(3.8)

where we have written the change in momentum in terms of the comoving
force

fi ≡ −mi∇xϕ(x)
∣∣
x=xi

, (3.9)
where a subscript x designates differentiation with respect to comoving coordi-
nates.

The Hamiltonian equations (3.8) with the comoving force defined by (3.9)
constitute the sought equations of motion. In the concept code, a given
particle i at some time is completely defined by xi and pi. The particle masses
mi are all equal∗, and so do not form part the data defining the individual
particles. In other N -body codes, additional information is kept around, such
as the acceleration (needed explicitly in e.g. the opening criterion of the tree
method (2.67)) and a unique identifier corresponding to the label i. Because
the particle data is communicated between the processes during the simulation,
the memory addresses of the particle data cannot be used to label the particles,
and so an explicit identifier is needed if we wish to follow the trajectory of a
specific particle.

∗It is however possible to create separate groups of particles, each group with its own
particle mass.

77

3. Collisionless Dynamics

3.1.2 The Comoving Force

The rate of change of the comoving momentum is proportional to the so-called
comoving force fi, as defined in (3.8). The comoving force can be written
in terms of the peculiar potential, as in (3.9), where the peculiar potential
itself is given in (3.5). The relation between this comoving force fi and the
(Euclidean) force Fi from the previous chapter is not at all clear. Replacing ϕ
by its definition (3.5), the comoving force becomes

fi = −mi

(
a2äxi + a∇xiφ(ax)|x=xi

)
= −mi

(
a2äxi + a2∇rφ(r)|r=ri

)
, (3.10)

where r = ax⇒ ∇x = a∇r has been used. Given that ṗi ∝ fi (3.8), the term
proportional to xi in (3.10) is worrying. The gravitational force ought not to
depend on our choice of origin! It turns out that this apparent problem is
actually the same as the one we encountered when doing the infinite sum over
particle images, eventually leading us to the Ewald summation method. As
discussed in chapter 2, the sum over particle images (2.12) is only conditionally
convergent. To ensure absolute convergence, one must specify the order of
summation. The correct order of summation, perhaps unsurprisingly, turned
out to be radially outwards, with the position of the particle in question as
center. In a analogous manner, the comoving force as stated in (3.10) should
always be calculated with the origin placed at xi. This may seem like a bit of
a cheat, but it is the only way of making sense of (3.10). In the following, we
remove the term in a more rigorous way, although it really do just amount to
a change in origin, done separately for each particle.

We know how to write the proper gradient of the proper potential, appearing
in (3.10), as a sum over all particles but i. To emulate an infinite universe, a
sum over particle images (2.12) should be used:

fi = mi

(
−a2äxi +G

N∑
j=1
j 6=i

mj

∑
n∈Z3

xj + nLa − xi
|xj + nLa − xi|3

)
,

where the proper coordinates have been converted back to comoving coordinates
and La = L/a is the comoving box size. We now move to continuous space by
writing the sums as an integral over delta functions,

fi = mi

(
−a2äxi +G

∫
x− xi
|x− xi|3

N∑
j=1
j 6=i

mj

∑
n∈Z3

δ(xj + nLa − x) dx

)
.

It is easy to see that if we were to erase the prefactor (x− xi)/|x− xi|3 from
the integral, it would diverge due to the sums counting up all the mass in
the Universe. The prefactor regulates the summation, making the integral
conditionally convergent — If we happen to sum in the correct order, the

78

3.1. Equations of Motion in Comoving Coordinates

integral will be finite. We may subtract the mean, comoving density %̄ from
the sums, in order to ensure absolute convergence.

fi = mi

(
−a2äxi +G%̄

∫
x− xi
|x− xi|3

dx

+G

∫
x− xi
|x− xi|3

[
−%̄+

N∑
j=1
j 6=i

mj

∑
n∈Z3

δ(xj + nLa − x)
]

dx

)
,

(3.11)
where the additional integral is introduced to cancel any effect of the inserted
mean density. We now wish to show the equality between the two upper terms
of (3.11),

a2äxi = G%̄

∫
x + xi
|x− xi|3

dx . (3.12)

Using the second Friedmann equation (1.13), the first term becomes

a2äxi = −4πG
3 a3ρ̄xi

= −4πG
3 %̄xi . (3.13)

We can prove the equality between the vectors (3.12) by showing that they
have the same divergence and curl. With the new left-hand-side (3.13) for
equation (3.12), taking the divergence of both sides yields

a2ä∇xi · xi = −4πG
3 %̄∇xi · xi

= −4πG%̄ ,

G%̄

∫
∇xi ·

x− xi
|x− xi|3

dx = −4πG%̄
∫
δ(x− xi) dx

= −4πG%̄ .

Now in both cases the curl vanishes, which it of course must do due to gravity
being conservative. We have then proven (3.12). We can thus erase these terms
in the comoving force (3.11), ridding us from the unwanted term proportional
to xi:

fi = Gmi

∫
x− xi
|x− xi|3

[
−%̄+

N∑
j=1
j 6=i

mj

∑
n∈Z3

δ(xj + nLa − x)
]

dx . (3.14)

The subtraction of a2äxi in the comoving potential should then really be
understood as a subtraction of the mean density, just as we did for the periodic

79

3. Collisionless Dynamics

potential in chapter 2. This remarkable result is known as “Jeans’ swindle”,
although it is fully rigorous [19].

As also discussed in chapter 2, subtracting the mean density of the Universe
cannot perturb the gravitational force. We ought then to be able to remove
the integral over the mean density from (3.14) in its entirety. As we can freely
shift x when doing this infinite integral, doing x→ x + xi turns the integrand
odd. Once again then, the choice of xi as the origin has proven to be the key
when it comes to removal of unwanted terms. With %̄ removed from (3.14), we
delete the integral and simultaneously remove the delta function:

fi = Gmi

N∑
j=1
j 6=i

mj

∑
n∈Z3

xj + nLa − xi
|xj + nLa − xi|3

.

Finally we recognize the comoving force fi for what it is; simply the direct
analogue of the proper force: fi = a2Fi.

3.2 Time Integration
Given some initial state of the particle system, the solution to the 6N equations
of motion (3.8) is a uniquely defined phase space trajectory. The problem of
solving these equations are referred to as the N -body problem, which generally
have no analytical solution. To find approximate solutions numerically, time is
discretized into a finite number of steps, converting the differential equations of
motion into difference equations. Time then evolves by iterating through the
time steps, with errors being introduced at each iteration. This implies that
the computed solution is not unique, but depend on the errors introduced. We
can of course control the size of these errors at will, shrinking them below any
desired maximum value by increasing the number of time steps and/or using a
higher order integration scheme. Increasing the number of steps amount to
lowering their separation ∆t, called the time step size.

In the following subsections, time evolution for our Hamiltonian N -body
system is formally derived and then numerically implemented.

3.2.1 The Drift and Kick Operators

Even though the N -body problem can not be generally solved analytically,
we can still write down the formal solution by introducing a time evolution
operator. This will turn out to be advantageous when constructing numerical
time integration schemes.

In the limit of infinite N (keeping the density finite), the potential ϕ
becomes independent of any one particular particle, effectively decoupling
ϕ from the particle positions and giving it a life of its own. In this limit,
the particles are thus independent of each other. This means that the total

80

3.2. Time Integration

Hamiltonian H of the system is just the sum of single-particle Hamiltonians.
We adopt this approximation, known as the mean field approximation, for our
system of finite but large N :

H(~x,~p, t) =
N∑
i=1
Hi(xi,pi, t) , (3.15)

where ~x ≡ (x1,x2, . . . ,xN), ~p ≡ (p1,p2, . . . ,pN). We now have a single
Hamiltonian from which the dynamics of all particles can be derived. We can
even express the evolution of the entire system through a single time evolution
operator. To do this we first need the Hamiltonian operator for the system.
Writing Hamilton’s equations of motion using Poisson brackets {•, •} allow us
to define this operator in a completely symmetric way with respect to position
and momentum:

ẋi =
{

xi,H(~x,~p, t)
}

+ ∂xi
∂t︸︷︷︸
0≡ Ĥxi ,

ṗi =
{

pi,H(~x,~p, t)
}

+ ∂pi
∂t︸︷︷︸
0≡ Ĥpi ,

(3.16)

where Ĥ = {•,H} is the Hamiltonian operator, generating time evolution for
the entire system. The partial derivatives vanish because xi and pi do not
have any explicit time dependence — they do of course evolve in time, but
this temporal evolution is encoded entirely in the Hamiltonian and is not an
explicit part of their definition. The solution to (3.16) is simply

xi(t) = exp
(∫ t

0
Ĥ
(
t′
)

dt′
)

xi(0)

≡ Û(t)xi(0) ,

pi(t) = exp
(∫ t

0
Ĥ
(
t′
)

dt′
)

pi(0)

≡ Û(t)pi(0) ,
(3.17)

where Û is the sought time evolution operator. These equations are coupled
through the xi and pi dependence of Ĥ and should therefore be solved si-
multaneously. We can express the action of Û on the entire system at once
as

Û(t) |~x(0), ~p(0)〉 =
∣∣~x(t), ~p(t)

〉
, (3.18)

where we have allowed ourselves to use |~x(t),~p(t)〉 to denote the (classical)
state of the system at time t. Since Û (and Ĥ) is defined to act on canonical
variables, in order to be precise we should augment (3.18) with a rule for how
these canonical operators act on state kets;

Û(t) |~x(0), ~p(0)〉 =
∣∣Û(t)~x(0), U(t)~p(0)

〉
=
∣∣Û(t)x1(0), . . . , Û(t)xN (0), Û(t)p1(0), . . . , Û(t)pN (0)

〉
=
∣∣Û(t)x1(0)

〉
· · ·
∣∣Û(t)xN (0)

〉∣∣Û(t)p1(0)
〉
· · ·
∣∣Û(t)pN (0)

〉
=

N⊗
i=1

∣∣Û(t)xi, Û(t)pi
〉

81

3. Collisionless Dynamics

(and similar for Ĥ). In the last equality the large ⊗ operator is used to
compound single-particle states into the (many-particle) state of the entire
system.

The bare formal definition of the time evolution operator (3.17) is of little
use when it comes to actually applying it numerically. For this we need to
know explicitly how Û acts on the canonical variables. To make progress we
remember that the single-particle Hamiltonian is separated into kinetic and
potential terms. The total kinetic and potential Hamiltonians can then be
written analogous to (3.15):

H~p(~p, t) =
N∑
i=1
Hpi(pi, t) ,

H~x(~x, t) =
N∑
i=1
Hxi(xi, t) ,

where the single-particle kinetic and potential Hamiltonians are given in
(3.7). The separation of the Hamiltonian means that the time evolution of
the positions depend only on H~p while the time evolution of the momenta
depend only on H~x. We can therefore define kinetic T̂ = {•,H~p} and potential
V̂ = {•,H~x} Hamiltonian operators, where ~̇x = T̂~x and ~̇p = V̂ ~p. The linearity
of the Poisson bracket together with H = H~p +H~x guarantees that Ĥ = T̂ + V̂ .
Finally we can construct separate time evolution operators for the kinetic and
potential parts as

D̂(t) = exp
(∫ t

0
T̂
(
t′
)

dt′
)
, K̂(t) = exp

(∫ t

0
V̂
(
t′
)

dt′
)
. (3.19)

These are known as the drift and kick operator, respectively. The drift
operator D̂(t) translates all particle positions t forward in time while leaving
the momenta fixed. The kick operator K̂(t) changes all particle momenta by
applying the gravitational force over t time, while leaving the positions fixed.
That is, they solve the two Hamiltonian equations of motion (3.8) without
taking into account the coupling between them. This is of course not quite
what we want, but at least we can explicitly write down how these operators
act on the system:

D̂(t) |~x(0), ~p(0)〉 =
N⊗
i=1

∣∣∣∣xi(0) + pi(0)
mi

∫ t

0

dt′

a2(t′) , pi(0)
〉
,

K̂(t) |~x(0), ~p(0)〉 =
N⊗
i=1

∣∣∣∣xi(0), pi(0) + fi(0)
∫ t

0

dt′

a(t′)

〉
,

(3.20)

where the changes in positions and momenta are read off of (3.8). We remember
that the force on particle i only undergo temporal changes through the temporal

82

3.2. Time Integration

changes in the comoving positions, which is why it can be taken outside the
integral in the kick operation. The equations (3.20) are closed-form expressions
for “drifting” and “kicking” the entire system. That is, for solving either of
the two coupled Hamiltonian equations of motion at a time, but not both
simultaneously. We now need to establish a connection between the drift and
kick operators (3.19) and the time evolution operator (3.17), which solves the
coupled Hamiltonian equations of motion. We know that the generators of Û , D̂
and K̂ are additive; Ĥ = T̂ + V̂ . Therefore Û(t) = exp

(∫ t
0
[
T̂
(
t′
)

+ V̂
(
t′
)]

dt′
)
.

This is not simply the product of D̂ and K̂ because these (and T̂ and V̂) do
not commute. After all, translating positions and then updating the momenta
yields different final positions than first updating the momenta and then do the
translation. To connect Û to D̂ and K̂ one therefore must use the Zassenhaus
formula:

Û(t) = exp
(∫ t

0
T̂
(
t′
)

dt′ +
∫ t

0
V̂
(
t′
)

dt′
)

= exp
(∫ t

0
T̂
(
t′
)

dt′
)

exp
(∫ t

0
V̂
(
t′
)

dt′
)

× exp
(
−1

2

[∫ t

0
T̂
(
t′
)

dt′,
∫ t

0
V̂
(
t′
)

dt′
])
· · ·

= D̂(t)K̂(t) exp
(
−1

2

[∫ t

0
T̂
(
t′
)

dt′,
∫ t

0
V̂
(
t′
)

dt′
])
· · · , (3.21)

where [•, •] denotes the commutator and each additional factor in the infinite
product is the exponential of some expression involving still more deeply nested
commutators of

∫ t
0 T̂ (t′) dt′ and

∫ t
0 V̂ (t′) dt′. The T̂ and V̂ operators appear

symmetrically in the definition of Û , but not in the final equalities of (3.21).
This means that switching T̂ ↔ V̂ and D̂ ↔ K̂ in (3.21) produces an equally
valid equation. To use (3.21) numerically we of course have to truncate the
infinite product somehow. In the next subsection we shall see exactly how this
is done.

3.2.2 The Symplectic Leapfrog Integrator

A naïve time integration scheme was included in listing 2.1. In comoving
variables, this scheme looks like

pi(t+ ∆t) = pi(t) + fi(t)∆t ,

xi(t+ ∆t) = xi(t) + pi(t+ ∆t)
mi

∆t ,
(3.22)

where ∆t is the size of the time step, somehow incorporating the integrals with
the scale factor (3.20), embedded within D̂ and K̂. It is clear that this indeed
is a possible numerical implementation of the kick and drift operators defined

83

3. Collisionless Dynamics

in (3.20). However, (3.22) treats positions and momenta asymmetrically, as
the current positions are uses to update the momenta (through fi(t)) while
the future momenta are used to update the positions. This could of course be
chosen the other way around, or even symmetrically∗. The consequences of
such a choice are not obvious and depend heavily on the nature of the system
in question.

Hamiltonian systems are not structurally stable against non-Hamiltonian
perturbations, as such perturbations generally do not preserve phase space
volume. That is, numerical errors in the temporal evolution have better be
Hamiltonian themselves, or the geometry of the solution (the phase space
trajectory) can be severely distorted. Trying to use an ordinary numerical
integration method (e.g. Runge-Kutta) to integrate a Hamiltonian system will
thus break Liouville’s theorem of conservation of phase space volume. Ensuring
that the errors are themselves Hamiltonian is thus of great importance, even
more so than minimizing their sizes, as demonstrated in [1]. Errors which are
Hamiltonian in nature can be achieved if each step of the integration is itself
a canonical transformation. Such canonical integration schemes are called
symplectic. The Hamiltonian errors in symplectic integration schemes then
ensures conservation of phase space volume, but only in a time-averaged sense;
the phase space volume will temporally oscillate around the true value.

We thus wish to construct a symplectic time integrator for our system
of particles. We start by writing the drift and kick operators as incremental
operators, evolving the system forwards by ∆t regardless of the current time t:

D̂(∆t) |~x(t), ~p(t)〉 =
N⊗
i=1

∣∣∣∣xi(t) + pi(t)
mi

∫ t+∆t

t

dt′

a2
(
t′
) , pi(t)

〉
,

K̂(∆t) |~x(t), ~p(t)〉 =
N⊗
i=1

∣∣∣∣xi(t), pi(t) + fi(t)
∫ t+∆t

t

dt′

a
(
t′
)〉 . (3.23)

The drift and kick operators treat ~x and ~p as temporally discrete variables,
while a is treated as being continuous. We could choose to discretize a as well,
but this would bring no real benefit as the integrals in (3.23) are relatively
fast to compute. In the concept code, the Runge–Kutta–Fehlberg method is
implemented to do these integrals.

The drift and kick operators of (3.23) constitute the building blocks of our
symplectic time integrator. As they are build out of the canonical operators T̂
and V̂ (3.19), they are themselves symplectic. Any composition of drift and
kick operators is then also symplectic. We now wish to define a numerical
approximation to Û which is directly computable, as one such composition. The
only strict requirement is that the amount of “drifting” should equal the amount
of “kicking”, so that ~x and ~p are equally evolved. The simplest such choices

∗Which would require us to save an intermediate copy of one of the variables.

84

3.2. Time Integration

amounts to the time evolution operators D̂(∆t)K̂(∆t) and K̂(∆t)D̂(∆t), the
latter being similar to (3.22). Both of these two possible choices for the
approximation to Û(∆t) are valid, although they are unequal as D̂ and K̂
do not commute. From the Zassenhaus expansion (3.21) of the true time
evolution operator, we see that the two proposed approximations are only
first order accurate in ∆t. We would like to opt for a second-order accurate
approximation to Û , and so the search continues. One initial thought might
be to just calculate the commutator [T, V] to gain the missing accuracy, but
it is not clear how one would go about this, as we are without any concrete
expressions for T̂ and V̂ .

Instead of resorting to calculating commutators, we can use symmetry
arguments to construct a second-order accurate approximation to Û . Let
us start by considering the time-reversal of the first-order approximations
proposed above:

[
K̂(∆t)D̂(∆t)

]−1 =
[
exp
(∫ t+∆t

t
V̂
(
t′
)

dt′
)

exp
(∫ t+∆t

t
T̂
(
t′
)

dt′
)]−1

= exp
(
−
∫ t+∆t

t
T̂
(
t′
)

dt′
)

exp
(
−
∫ t+∆t

t
V̂
(
t′
)

dt′
)
,

where inversion precisely amounts to time-reversal for any time evolution
operator. Time-reversing K̂D̂ is then done unsurprisingly by negating T̂ and
V̂ , but the more subtle switch T̂ ↔ V̂ is also needed. The above is true because
from it, it follows that[

K̂(∆t)D̂(∆t)
][
K̂(∆t)D̂(∆t)

]−1 = 1 =
[
K̂(∆t)D̂(∆t)

]−1[
K̂(∆t)D̂(∆t)

]
.

We could have done the same for the other composition, D̂(∆t)K̂(∆t). As
the physical drifting and kicking of particles occur simultaneously, switching
D̂ ↔ K̂ in any expression regarding time evolution produces an equally valid
(though different) expression. As not to state everything twice then, we shall
resort to only writing one form of such expressions. It is now clear that a more
symmetric (with regards to time reversal) time evolution operator would be

Û (∆t) = K̂

(
∆t
2

)
D̂(∆t)K̂

(
∆t
2

)
, (3.24)

with the nice property Û−1(∆t) = Û (−∆t). Since this is the case we can
argue that in a Zassenhaus-like expansion of Û (∆t), all even powers of ∆t
must vanish. If not, equal terms with the same sign would appear inside the
exponentials of Û (∆t) and Û−1(∆t), generating the same nontrivial evolution
whether the system is propagated forwards or backwards in time, inconsistent
with the known time reversibility of Û . Note that this argument does not
work for the previously proposed first-order accurate approximations to Û ,
K̂D̂, because here, time reversal meant not just negating ∆t but also effectively

85

3. Collisionless Dynamics

swapping T̂ ↔ V̂ . As can be seen in (3.21) this swap introduces a minus sign
in the second order term due to the commutator. The same happens for all
higher, even terms.

The expansion of Û (3.24) argued for above do indeed exist and is derived
in [20]:

Û (∆t) = exp
(∫ t+∆t/2

t
V̂
(
t′
)

dt′
)

exp
(∫ t+∆t

t
T̂
(
t′
)

dt′
)

× exp
(∫ t+∆t/2

t
V̂
(
t′
)

dt′
)

= exp
(∫ t+∆t

t

(
T̂
(
t′
)

+ V̂
(
t′
))

dt′

+ 1
24

∫∫∫ t+∆t

t

2
[
T̂
(
t′
)
,
[
T̂
(
t′′
)
, V̂ (t′′′)

]]
−
[
V̂
(
t′
)
,
[
V̂
(
t′′
)
, T̂
(
t′′′
)]]
dt′ dt′′ dt′′′

+O
(
∆t5

))
,

where the three integrals all share the same limits. This expansion do indeed
conform to the above argument, and it confirms that the time evolution
operator Û (3.24) is a second order accurate approximations to Û (3.21).
The time evolution operator (3.24) is known as the kick-drift-kick (kdk) time
evolution operator, while its K̂ ↔ D̂ dual is known as the drift-kick-drift
(dkd) time evolution operator. Because positions and momenta are updated
at interleaved times within a single time step, ~x and ~p temporally “leapfrog”
over each other. The kdk and dkd integrators are therefore known as leapfrog
integrators, which finally explains the amphibious subscript on Û .

As Û (∆t) is only accurate to second order in ∆t, it is of course important
to choose the time step size ∆t small. To evolve the system an amount
Nts∆t� ∆t forwards in time, Û (∆t) is simply applied many times:

Û(Nts∆t) ≈

Nts times︷ ︸︸ ︷
Û (∆t)Û (∆t) · · · Û (∆t)

= K̂

(
∆t
2

)
D̂(∆t)K̂

(
∆t
2

)
K̂

(
∆t
2

)
D̂(∆t)K̂

(
∆t
2

)
· · · K̂

(
∆t
2

)
D̂(∆t)K̂

(
∆t
2

)
= K̂

(
∆t
2

)
D̂(∆t)

× K̂(∆t)D̂(∆t)K̂(∆t)D̂(∆t) · · · K̂(∆t)D̂(∆t)︸ ︷︷ ︸
(Nts − 1) times

K̂

(
∆t
2

)
,

(3.25)

86

3.2. Time Integration

where the composition property∗ of the kick operator has been used to write
K̂(∆t/2)K̂(∆t/2) = K̂(∆t). We shall refer to (3.25) as the kdk leapfrog
integration scheme. Again, the dkd leapfrog integration scheme, where we
begin and end with a drift operator, is equally valid. The leapfrog integration
scheme (3.25) is not only symplectic and second order accurate, but also
very computationally efficient. Except for the first and last operation, time
integration is done through an alternating series of drift D̂(∆t) and kick K̂(∆t)
operators, exactly as would be the case for the first order accurate scheme first
considered. That means that the upgrade from first to second order accuracy
only costs one additional kick/drift operation for the entire simulation run!

3.2.3 Time Step Size

We need to define the time step size ∆t, used by the symplectic leapfrog
integrator (3.25). The basic criterion is that ∆t should be small enough to
accurately resolve the dynamics. How one chooses to quantify this can of
course be done in many different ways. A time scale common to all particles is
the instantaneous age of the Universe. Naturally, ∆t should be chosen smaller
than this age, and so

∆t(t) = βt (3.26)

may be used to define the time step size, where β � 1 is some constant
controlling the accuracy of the time integration and t is the instantaneous age
of the Universe. We then see that the time step size increases as the Universe
evolve. Not having a constant ∆t is very important for the efficiency of the
code, as otherwise computational resource are being wasted on resolving time
finer than what is needed. It should be noted that having a finite time step size
suppresses structure at small scales, as gravity “has no time to act” for scales
below ∆t|p|/m. It is then of no use having a good spatial resolution (large N)
without a correspondingly good temporal resolution (small β). Determining
∆t solely based on the instantaneous age of the Universe is however rather
primitive, as different particles require different ∆t in order to produce results
of similar accuracy. In the concept code, the bare global criterion (3.26) is
all that is implemented.

The errors produced in the equations of motion due to the finite time step is
different for each particle. The dynamical time scales for particles in overdense
regions are vastly smaller than those of particles in underdense regions. To
achieve similar accuracies across all particles then, individual and adaptive
values of ∆t are needed. Determining the relative density within the region
surrounding a given particle is not straight forward, and so often a tracer for
the over/underdensity is used instead. Tracers easy to come by are the particle
velocity and acceleration: Generally, particles in overdense regions have larger

∗Which follows trivially from its definition (3.24) and the additive property of the integral.

87

3. Collisionless Dynamics

velocities and accelerations. In gadget-2, the individual time step sizes are
then determined by∗

∆t(t) = βtmin
(

1, 2
⌊

log2

(
1
βt

√
2ηε
|a|

)⌋)
. (3.27)

where ε is the softening length, |a| is the current particle acceleration and η is
a dimensionless parameter, controlling the accuracy. The expression within the
logarithm sets ∆t(t) to the time it would take the particle to travel the distance
ηε, if initially at rest. For the case of parallel acceleration and momentum,
η is then the fractional error in the position update due to having a finite
time step size. If the time step size computed in this way increases beyond
the global time step size βt, it is capped at this maximum value. In addition,
the time step size is rounded down in such a way as to force ∆t(t) to be
discretized in a power of two hierarchy, where ∆t(t) ∈ {2nβt |n ∈ N}. This
discretization is important once we allow for individual time step sizes, as it
allows for synchronization time points, where all particles have been evolved
equally. A series of leapfrog integrators, each with its own n, are then used
to evolve the particle system. At synchronization points, the particles can
then be transferred to another integrator, if the needed time step size for the
particle has changed. For the power of two hierarchy of (3.27), a particle can
then always jump down to the integrator with half it’s current time step size,
but up to the integrator of double the current time step size only at every
second time step. As found in [21], allowing for individual and adaptive time
steps can potentially lead to speedups as large as ∼ 50.

The reason for introducing individual and adaptive time steps in N -body
codes comes down to the fact that the rate of change of the gravitational
force is different for each particle, determined by the local surroundings of the
particle. For the gravitational methods utilizing force splitting (e.g. the p3m
method), only the short-range need to be treated in a similar way. That is,
individual time step sizes are not needed for the long-range force, as its rate of
change is similar for all particles due to the homogeneity on large scales. In
addition, changes in the long-range force occurs at a larger time scale than
changes in the short-range force, which again can be attributed to the more
uniform mass distribution encountered at larger scales. To optimize the time
integration yet further then, the adaptive time integration is used only for the
short-range forces, while the long-range forces are supplied only when all the
hierarchical integrators are synchronized. That is, the time step size for the
long-range force is simply that of (3.26). This rather neat interplay between
the gravitational solver and the time integration is what is implemented in
gadget-2.

∗To be precise, gadget-2 replaces the instantaneous age of the Universe for the instanta-
neous Hubble time. Also, gadget-2 additionally implements an alternative, non-hierarchical
scheme.

88

3.2. Time Integration

Allowing for individual time steps breaks strict symplecticity, as the force
on a particle at a given time is now dependent upon the state of other par-
ticles at different times, destroying time reversibility. The accompanying
non-Hamiltonian perturbation to the Hamiltonian is however small enough
that these non-Hamiltonian perturbations can be ignored, if using a small
enough time step. Another very interesting effect of allowing for individual
and adaptive time steps, is that the kdk and the dkd leapfrog integrators now
differ significantly in accuracy. For the kdk leapfrog, the acceleration |a| —
used in the determination (3.27) of the size of the upcoming time step — is
that of the current time, since a complete time step consists of a drift followed
by a kick. In the dkd leapfrog however, a complete time step consists of a kick
followed by a drift, which means that |a| is the acceleration of the particle from
half a time step ago. The adjusted time step sizes are then determined using a
false premise, further increasing the size of the non-Hamiltonian perturbations
by a factor of 2 [1]. The kdk leapfrog is thus superior to the dkd leapfrog,
once we allow for individual and adaptive time step sizes.

89

4 Review and Final Remarks

The goal of this work have been to study the internals of cosmological N -
body codes, theoretically as well as practically. A theoretical understanding
of the physics that these codes strive to emulate has been developed. We
have found that Newtonian mechanics appended with the expansion of space,
itself incorporated via the introduction of comoving coordinates, accurately
describes the evolution of the matter within the Universe. A reoccurring
surprise was the strange behaviour of the Newtonian gravitational potential in
an infinite universe, which had to be regulated using Jean’s swindle to remain
well defined. We saw that the N -body approach were not needed until about
the beginning of matter domination, as prior to this during the radiation era,
linear perturbation theory were fully adequate.

A theoretical understanding of the methods used by N -body codes has
also been obtained. An infinite universe could be emulated using a periodic
box. This could either be put in by hand as in the Ewald method, or achieved
automatically using Fourier techniques. Having a finite N led to collisions
between the particles, which were supposed to represent collisionless fluid
elements. To counteract these collisions, the gravitational potential were
softened. Again, this could either be done by hand by representing the particles
as Plummer spheres rather than delta functions, or achieved automatically
by discretizing space, using mesh methods. A general trick used by the
gravity solvers were to split the 1/r2 force into a long-range and a short-range
component, which were then solved in Fourier and real space, respectively.
This splitting served different purposes for the different methods. In the Ewald
method, this force split were responsible for the absolute (and fast) convergence
of the summation. In the p3m method, the force split was used to effectively
remove the discretization of space imposed by the mesh (at least for particles
near each other), which greatly approved upon the accuracy of the albeit fast
pm method.

Numerical time evolution was studied in detail. It turned out that to
integrate a Hamiltonian system forwards in time, special considerations were
needed in order not to perturb the Hamiltonian. We derived the widely
used leapfrog integration scheme and discussed the surprising result of the
superiority of the kdk leapfrog over its dkd dual, once individual and adaptive
time steps were allowed.

91

4. Review and Final Remarks

All of the methods studied in detail has been implemented into the concept
code. These implementations have been tested against each other and against
the gadget-2 code. The development of the concept code has resulted in
a successful N -body simulator, capable of evolving dark matter particles in
any cosmology. It has been written in a highly structured form, anticipating
future additions. Besides its primary functionality of evolving a system of
particles in time, other features have also been developed. For input/output
of initial conditions and snapshots, concept uses its own hdf5 format. To
allow for compatibility with gadget-2, the (second kind of) snapshot format
of gadget-2 is additionally implemented. The functionalities used to produce
some of the plots of this thesis are also part of the concept code. Specifically,
the raw box visualizations in Figure 2.4 as well as the decomposition of the
particle configuration into a power spectra, as seen plotted in e.g. Figure 2.5,
have been produced directly in concept.

92

References

[1] Volker Springel. The cosmological simulation code gadget-2. Monthly
Notices of the Royal Astronomical Society, 364, 2005.

[2] P.A.R. Ade et al. Planck 2015 results. XIII. Cosmological parameters.
2015.

[3] Barbara Ryden. Introduction to Cosmology, page 67. Addison-Wesley,
2003.

[4] Antony Lewis, Anthony Challinor, and Anthony Lasenby. Efficient com-
putation of CMB anisotropies in closed FRW models. Astrophys. J.,
538:473–476, 2000. http://camb.info.

[5] W. H. Press and P. Schechter. Formation of Galaxies and Clusters
of Galaxies by Self-Similar Gravitational Condensation. Astrophysical
Journal, 187:425–438, February 1974.

[6] P. P. Ewald. Die berechnung optischer und electrostatischer gitterpoten-
tiale. Annalen der Physik, 369, 1921.

[7] M. J. L. Sangster and M. Dixon. Interionic potentials in alkali halides and
their use in simulations of the molten salts. Advances in Physics, 25:247,
1976.

[8] L. Hernquist, F. R. Bouchet, and Y. Suto. Application of the Ewald
method to cosmological N-body simulations. The Astrophysical Journal,
75:234, February 1991.

[9] H. C. Plummer. On the problem of distribution in globular star clusters.
Monthly Notices of the Royal Astronomical Society, 71:460–470, March
1911.

[10] A. Knebe. Lecture notes Computational Astrophysics: Physical Processes.
http://popia.ft.uam.es/aknebe/page3/files/
ComputationalAstrophysics/PhysicalProcesses.pdf, 85, 2005.

93

http://camb.info
http://popia.ft.uam.es/aknebe/page3/files/ComputationalAstrophysics/PhysicalProcesses.pdf
http://popia.ft.uam.es/aknebe/page3/files/ComputationalAstrophysics/PhysicalProcesses.pdf

4. Review and Final Remarks

[11] E. Puchwein and B. Moster. Lecture notes Cosmic Structure formation
on Supercomputers (and laptops), Lecture 2: Gravity solvers and
parallelization.
http://www.ast.cam.ac.uk/~puchwein/NumericalCosmology02.pdf,
13, 2014.

[12] J. Brandbyge. Quantitative cosmology - Massive neutrinos in non-linear
structure formation. PhD thesis, The Faculty of Science, Aarhus University,
Denmark, August 2010, http://phys.au.dk/fileadmin/site_files/
publikationer/phd/Jacob_Brandbyge.pdf.

[13] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles.
Taylor & Francis, Inc., Bristol, PA, USA, 1988.

[14] Juhan Kim, Changbom Park, Graziano Rossi, Sang Min Lee, and III Gott,
J. Richard. The New Horizon Run Cosmological N-Body Simulations.
J.Korean Astron.Soc., 44(issue):217–234, 2011.

[15] Thomas Sauer and Yuan Xu. On multivariate lagrange interpolation.
MATH. COMP, 64:1147–1170, 1994.

[16] Matteo Frigo, Steven, and G. Johnson. The design and implementation
of fftw3. In Proceedings of the IEEE, pages 216–231, 2005.

[17] J. V. Villumsen. A new hierachical particle-mesh code for very large scale
cosmological N-body simulations. Astrophys. J., 71:407–431, November
1989.

[18] Chris Jessop, Martin Duncan, and W.Y. Chau. Multigrid methods for n-
body gravitational systems. Journal of Computational Physics, 115(2):339
– 351, 1994.

[19] Michael Joyce. Infinite self-gravitating systems and cosmological structure
formation. AIP Conf.Proc., 970:237, 2008.

[20] Dion O’Neale. Split-step methods for nonlinear highly oscillatory problems.
Master’s thesis, Mathematischen Institute der Heinrich-Heine-Universität,
Düsseldorf, Deutschland, June 2005.

[21] Thomas R. Quinn, Neal Katz, Joachim Stadel, and George Lake. Time
stepping N body simulations. Astrophys.J., 1997.

94

http://www.ast.cam.ac.uk/~puchwein/NumericalCosmology02.pdf
http://phys.au.dk/fileadmin/site_files/publikationer/phd/Jacob_Brandbyge.pdf
http://phys.au.dk/fileadmin/site_files/publikationer/phd/Jacob_Brandbyge.pdf

	Summary
	Introduction
	Cosmology
	The Expanding Universe
	The Metric
	Basic Equations of Cosmology

	Newtonian Cosmology
	The Newtonian Limit of General Relativity
	Expanding Space

	Newtonian Perturbation Theory
	Comoving Fluid Equations
	Matter Fluctuations
	The N-body Approach

	Newtonian Gravitation
	The Particle-Particle Method
	Newton's law of Universal Gravitation
	Ewald Summation
	Numerical Implementation
	Softening
	Recap of the Method

	The Particle-Mesh Method
	Overview
	Mesh Operations
	The Force Computation
	Numerical Implementation

	Hybrid Methods
	The Particle-Particle-Particle-Mesh Method
	Parallelization
	Modern Methods

	Collisionless Dynamics
	Equations of Motion in Comoving Coordinates
	The Single-Particle Hamiltonian
	The Comoving Force

	Time Integration
	The Drift and Kick Operators
	The Symplectic Leapfrog Integrator
	Time Step Size

	Review and Final Remarks
	References

