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ABSTRACT
We present version 1.0 of the cosmological simulation code concept, designed for
simulations of large-scale structure formation. concept contains a P3M gravity solver,
with the short-range part implemented using a novel (sub)tiling strategy, coupled
with individual and adaptive particle time-stepping. In addition to this, concept
contains a fully non-linear fluid solver to treat non-baryonic components which are not
easily treatable using the particle implementation. This allows e.g. for the inclusion
of non-linear massive neutrinos (which can be relativistic) and for simulations that
are consistent with general relativistic perturbation theory. Decaying dark matter
scenarios are also fully supported. A primary objective of concept is ease of use.
To this end, it has built-in initial condition generation and can produce output in
the form of snapshots, power spectra and direct visualisations. It also comes with a
robust installer and thorough documentation. concept is the first massively parallel
cosmological simulation code written in Python. Despite of this, excellent performance
is obtained, even comparing favourably to other codes such as gadget at similar
precision. The concept code itself along with documentation is openly released at
https://github.com/jmd-dk/concept .
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1 INTRODUCTION

Measurements of inhomogeneities in our Universe have been
performed over a vast range of scales, spanning sub-galactic
scales all the way to the current horizon. On large scales and
at early times the amplitude of density fluctuations is small
enough that it can be treated accurately using perturbation
theory. However, on smaller scales and at later times this is
no longer the case, and structure formation must be evolved
through simulation.

The dominant clustering component is cold dark matter
which is well described by a collisionless fluid with negligible
thermal velocity dispersion. This means that the full 6D
phase space distribution, f(r ,p), can be collapsed to a 3D
sheet which can be followed in time. By far the most efficient
way of doing this is to use N -body simulations in which
the underlying fluid is described by a large number N of
discrete particles, each following the appropriate equations of
motion. This method has the advantage of being inherently
Lagrangian — regions of high density will automatically
correspond to regions of high N -body particle count, unlike
e.g. solving the fluid equations using a static Eulerian grid.
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Such simulations of cosmic structure formation have a
long history, going back to the pioneering work of Hoerner
(1960) who proposed to study stellar clusters using N -body
methods. The first papers on N -body methods used direct
summation to find the individual forces on particles. However,
this approach quickly becomes prohibitively expensive for
large N , given that it is an O(N2) problem.

In order to make the problem tractable a number of
numerical schemes have been developed over the years, in-
cluding tree codes (Barnes & Hut 1986) and particle-mesh
(PM) codes (Hockney & Eastwood 1988). Tree methods work
by first grouping the particles into nodes in a hierarchical
tree structure, which is then ‘walked’ to some sufficient depth
relative to a given particle in order to provide an approximate
but cheap estimate of the gravitational force from several
other particles at once. In PM codes a density field on a grid
is constructed through interpolation of the particles, which
is then transformed to the gravitational potential, typically
using fast Fourier techniques. The PM method is much faster
than direct summation for large N , scaling as O(N logN).
Though tree codes have a similar scaling O(N logN), they
are not as fast as PM codes. However, as pure PM codes are
restricted by the finite size of the grid cells, this limits their
resolution to scales a few times larger than this size.

The shortcomings of the PM method can be mended
by augmenting it with direct summation of particle forces
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over short distances. This method was first described in
Hockney et al. (1974) and applied to a cosmological setting
by Efstathiou & Eastwood (1981). It is known as PP-PM, or
P3M (see Hockney & Eastwood (1988); Bertschinger (1998)
for reviews).

While P3M codes work extremely well for large-scale
cosmological simulations in which clustering is moderate, the
non-hierarchical nature of the short-range force becomes an
issue when the matter distribution becomes very uneven,
e.g. for a close-up simulation of a single galaxy formation.
This serious problem can be circumvented by using either
a tree decomposition of the short-range force (as in the
TreePM method of gadget (Springel 2005b)), or by applying
adaptive mesh refinement to the PM grid (Couchman 1991).

This paper is about release 1.0 of the concept code,
a massively parallel simulation code for cosmological struc-
ture formation. The main goal of any such code is to track
the non-linear evolution of matter, which concept achieves
via N -body techniques, i.e. by describing matter as a set of
Lagrangian particles. Additionally, concept allows for any
species to be modelled as a fluid, with quantities like energy
density, momentum density and pressure being evolved on a
spatially fixed, Eulerian grid. This allows for non-standard
simulations, such as ones including non-linearly evolved mas-
sive neutrinos (Dakin et al. 2019a) and ones fully consistent
with general relativistic perturbation theory (Tram et al.
2019; Dakin et al. 2019c). These more exotic aspects of
concept dates back to previous releases and will not be
described in detail in this paper.

The main feature new to the 1.0 release of concept
is that of explicit short-range gravitational forces. Previ-
ously, the only feasible1 gravitational method available was
that of PM, leaving gravity badly resolved at small scales.
In concept 1.0 the extremely fast PM method is retained,
though the default gravitational solver is now that of P3M,
i.e. long-ranged PM augmented with short-ranged direct sum-
mation. This newly added short-range force is implemented
using an efficient and novel scheme, based on what we call
tiles and subtiles. The increased spatial resolution resulting
from the added short-range forces calls for a corresponding
increase in the temporal resolution, though needed only in
regions of high clustering. Thus, concept 1.0 further comes
with a new individual and adaptive particle time-stepping
scheme.

The main goal of this paper is threefold: 1) To de-
scribe the numerical methods employed by concept 1.0, 2)
to demonstrate the validity of the code by comparing its
results to those of other simulation codes, 3) to measure the
code performance in terms of both scaling behaviours and
absolute comparison to other codes. For the code compar-
isons, we use the well-known gadget-2 code (Springel 2005b)
as well as its newer incarnation gadget-4 (Springel et al.
2020).

This paper is structured as follows: In section 2 we de-
scribe the numerical methods built into concept 1.0, with a
focus on gravity and time-stepping. Section 3 then goes on to

1 An inefficient implementation of P3M has in fact been available
for years. The basic PP method was (and still is) available as well,
though due to its O(N2) scaling this is intended only for internal
testing.

validate the code results, while code performance is explored
in section 4. Finally, section 5 provides a summary and a
discussion about the usefulness of the code as it currently
stands, as well as what might be implemented in the future
in order to enhance both its capabilities and performance. In
addition, other features and non-standard software aspects
of concept 1.0 are briefly discussed in appendix A.

2 NUMERICAL METHODS

This section describes the main numerical methods and imple-
mentations used in concept 1.0, responsible for the gravita-
tional interaction between matter particles and their resulting
temporal evolution.

The basic setup of concept is that of a cubic, toroidal
periodic box of constant comoving side length Lbox, con-
taining N matter particles of equal mass m, each having
a comoving position xi(t) and canonical momentum qi(t),
evolving under self-gravity in an expanding background, cap-
tured by the cosmological scale factor a(t), with t being
cosmic time. The code is parallelised using the Message Pass-
ing Interface (MPI), with the box divided into equally shaped
cuboidal domains — one per process — which in turn are
mapped one-to-one to physical CPU cores.

The equations of motion for the particles are fully written
out in section 2.2. Before that, section 2.1 sets out to find the
comoving gravitational force f i, the only force considered;
∂tqi ≡ f i/a.

2.1 Gravity

This subsection develops the gravitational solvers available
in concept 1.0, starting with the PP and PM method and
culminating in the P3M method. While the concept 1.0
implementations of PP and PM does not deviate much from
standard procedures, the P3M implementation is novel.

2.1.1 PP gravity

The particle-particle (PP) method solves gravity via direct
summation over pairwise interactions. This direct approach
makes the PP method essentially exact, but comes at the
cost of O(N2) complexity, drastically limiting its usability.
Regardless, the PP method is worth studying in detail as it
introduces many aspects used for the superior P3M method.

From particles to fields For a set of N point particles in
infinite space one could simply use Newton’s law of universal
gravitation. As we seek more flexibility we shall instead
think in terms of the peculiar potential ϕ, defined through
the Poisson equation (Peebles 1980)

∇2ϕ(x) = 4πGa2
δρ(x) , (1)

where G is the gravitational constant and the Laplacian is to
be taken with respect to comoving space x ≡ r/a(t), r being
physical space. The physical density contrast field δρ(x) is
constructed from the particles by assigning them a localised
shape S(x), so that

δρ(x) = m

a3

∑
n∈Z3

{
− N

L3
box

+
N∑
j=1

S(x − xjn)
}
, (2)
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with xjn ≡ xj + Lboxn and the periodicity of the box imple-
mented by the sum over all integer triplets n. The subtraction
of N times the reciprocal box volume ensures that δρ(x) av-
erages to zero, assuming the shape S to be normalised to
unity.

For point particles, S(x)→ Sδ(x) ≡ δ3(x), δ3 being the
three-dimensional Dirac delta function. Given a shape, (1)
and (2) can be solved for the potential;

ϕ(x) = −Gm
a

N∑
j=1

∑
n∈Z3

|x − xjn |−1 , (3)

where we have introduced the generalised reciprocal dis-
tance |x|−1, the subscript denoting an arbitrary shape. For
the choice of point particles Sδ, we simply have |x|−1 →
|x|−1

δ = |x|−1. The comoving force on particle i, f i =
−am∇ϕ(x)|x=xi

, is then

f i = −Gm2
N∑
j=1
j 6=i

∑
n∈Z3

|xijn |−3xijn , (4)

where xijn ≡ xi − (xj + Lboxn) and the divergence at j = i
has been removed. For point particles |x|−3

δ = (|x|−1
δ )3 =

|x|−3.

Softening As the N tracer particles are meant to represent
an underlying continuous density field, it is desirable to soften
the force by choosing a particle shape that is more spread out,
dampening the effects of two-body interactions. A simple
choice is that of a Plummer sphere (Plummer 1911);

SP(x) ≡ 3
4πε3

(
1 + x2

ε2

)−5/2
(5)

⇒ |x|−1
P =

(
x2 + ε2

)−1/2
, (6)

where ε ≥ 0 is the softening length, typically chosen to be
a few percent of the mean inter-particle distance Lbox/

3√N .
Substituting |x−xjn |−1 for |x−xjn |−1

P into (3) and |xijn |−3

for |xijn |−3
P = (|xijn |−1

P )3 into (4) then results in the Plum-
mer softened potential and force, respectively.

Ideally we would like the softening to vanish for large
particle separation, i.e. we seek a shape with compact support.
Though concept 1.0 implements both the point particle Sδ
and the Plummer sphere SP, the default softening shape is
the B-spline of Monaghan & Lattanzio (1985), as also used

by gadget:

SB(x) ≡ 8
πε3B


1− 6x2

B(1− xB) xB <
1
2

2(1− xB)3 1
2 ≤ xB < 1

0 1 ≤ xB

(7)

⇒ |x|−1
B =



32
εB

(
− 1

5x
5
B + 3

10x
4
B

− 1
6x

2
B + 7

80

) xB <
1
2

32
εB

(
1
15x

5
B −

3
10x

4
B + 1

2x
3
B

− 1
3x

2
B + 1

10 −
1

480x
−1
B

) 1
2 ≤ xB < 1

|x|−1 1 ≤ xB ,

(8)

|x|−3
B =



32
ε3B

(
x3

B −
6
5x

2
B + 1

3

)
xB <

1
2

32
ε3B

(
− 1

3x
3
B + 6

5x
2
B −

3
2xB

+ 2
3 −

1
480x

−3
B

) 1
2 ≤ xB < 1

|x|−3 1 ≤ xB ,

(9)

where xB ≡ |x|/εB and εB is the B-spline softening length.
Note that the symbol |x|−3

B 6= (|x|−1
B )3. Equations (8) and (9)

then define the B-spline softened potential and force via (3)
and (4), respectively. As in Springel (2005b) we set εB = 2.8ε,
keeping the Plummer softening length ε as the canonical
softening parameter.

Ewald summation The triply infinite sums of (3) and (4)
can be evaluated using the technique of Ewald (1921) (see
also Hernquist et al. (1991)). This amounts to writing the
functional part of the potential (3) — i.e. the reciprocal
distance — as a sum of a short-range and a long-range part;
|x|−1 = Gsr(x) + Glr(x). We employ the common choice
Gsr(x) = erfc(|x|/[2xs])|x|−1, Glr(x) = erf(|x|/[2xs])|x|−1,
where xs ≥ 0 is the short-/long-range force split scale. Trans-
forming the long-range part to Fourier space2, Glr(k) =
4π exp(−x2

s k2)/k2, the potential may be written

ϕ(x) = −Gm
a

N∑
j=1



∑
n∈Z3

[
Gsr(x − xjn)

+
(
|x − xjn |−1 − |x − xjn |−1)

]
− L−3

box

∑
h∈Z3\0

Glr(kh) cos(kh [x − xj ])


,

(10)

with kh ≡ 2πL−1
boxh. In (10) the softening is implemented by

the parenthesis in the real-space sum over n, ensuring that
only the Newtonian part of the potential is softened, which

2 In an attempt to minimise notational clutter, Fourier-space
quantities are distinguished from their real-space counterparts
through their argument only.
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decouples the choice of softening from the choice of how the
potential has been split. For the B-spline softening (8) with
compact support, this parenthesis vanishes for all images n
of particle j but that closest to x, meaning that softening is
only applied to the nearest image.

Figure 1 depicts a simulation box with particles, along
with various numerical aspects. For the top left particle,
three single-particle potentials are shown: The unsoftened
Newtonian potential ∝ |x|−1, the softened Newtonian po-
tential ∝ |x|−1

B and the softened short-range potential3
∝ Gsr(x)+(|x|−1

B −|x|
−1). It is clearly seen how the softening

removes the divergence near the particle — without changing
the potential further out for this case of B-spline softening —
and that the short-range potential tends to zero much more
rapidly than the Newtonian potentials. We shall come back
to Figure 1 several more times, referring to different aspects.

Given the Ewald prescription of the potential (10), the
comoving force on particle i becomes

f i = −Gm2
N∑
j=1
j 6=i



∑
n∈Z3


|xijn |−3 erfc

(
|xijn |
2xs

)
+ |xijn |−2
√
πxs

exp
(
−

x2
ijn

4x2s

)
+
(
|xijn |−3 − |xijn |−3)

 xijn

+ 4π
L3

box

∑
h∈Z3\0

exp
(
−x2

s k2
h
)

k2
h

sin(kh [xi − xj ])kh


,

(11)

where again the softening term (|xijn |−3−|xijn |−3) vanishes
for all images n of particle j but the one closest to particle
i, in the case of B-spline softening.

The crux of the Ewald technique is that the infinite
sums of (10) and (11) converge exponentially, whereas the
original infinite sums of (3) and (4) converge much more
slowly and in fact only conditionally (de Leeuw et al. 1980).
For some chosen xs the Ewald sums can then safely be
truncated at some finite maximum |n| and |h|. For the PP
method concept uses the values suggested by Hernquist
et al. (1991);
xs = Lbox

4 ,

|xijn | < 3.6Lbox ,

h2 < 10 ,

(12)

as do gadget-2.
Despite having limited the infinite Ewald sums to a

doable number of terms (12), the force computation for
each particle pair {i, j} — corresponding to the large brace
of (11) — is still substantial. In practice, concept pre-
computes this force for a cubic grid of particle separations
between 0 and Lbox/2 in all three dimensions, with the
softened contribution |xijn |−3 excluded. During simulation,
forces are then obtained using CIC interpolation (covered in
section 2.1.2) in this grid, with particle separations outside
the tabulated region handled using symmetry conditions.

3 The value of xs used for the short-range potential in Figure 1 is
one fitting for the P3M method (see section 2.1.3), not for Ewald
summation.

The softened |xijn |−3xijn from the nearest image is then
added. By default a grid size4 of 64 is used for the Ewald
grid.

2.1.2 PM gravity

Though the path towards the softened, Ewald-assisted peri-
odic force (11) went through the potential ϕ, this potential
itself is never actually computed by concept when using
the PP method. The particle-mesh (PM) method takes a
different approach, establishing ϕ as a cubic grid of size nϕ,
from which particle forces are obtained via numerical differ-
entiation and interpolation. The most expensive step of this
method is the creation of ϕ, which in concept is based on
fast Fourier transforms (FFTs). Assuming (very reasonably)
that the number of grid elements n3

ϕ ∝ N , the PM method
then inherits the O(N logN) complexity of the FFT (Cooley
& Tukey 1965), vastly outperforming the O(N2) PP method.
The price to pay is that of a limited resolution of gravity
imposed by the finite size of the grid cells Lϕ = Lbox/nϕ,
which in practice is much larger than the particle softening
length ε of the PP method.

We can explicitly solve the Poisson equation (1) for the
potential,

ϕ(x) = −Ga2|x|−1 ∗ δρ(x) (13)

⇒ ϕ(k) = −4πGa2

k2 δρ(k) , (14)

where the convolution transforms to multiplication in Fourier
space. The strategy of the PM method is to first interpolate
the particle masses onto a grid, obtaining δρ(x), then Fourier
transforming this grid to obtain δρ(k), converting to potential
values ϕ(k) through (14), then Fourier transforming back to
real space, obtaining ϕ(x). The same grid in memory is used
to store all of these different quantities.

Mesh interpolation As for the PP method, we wish to
construct a density field ρ(x) given the particle distribution
by assigning a shape S to the particles. Unlike direct sum-
mation, computing forces via the potential does not allow us
to explicitly remove particle self-interactions, corresponding
to the skipped j = i terms of (4) and (11). Instead, the
particle shapes must be chosen such that self-interactions do
not occur. For a cubic grid, this limits the possible shapes
to the hierarchy (Hockney & Eastwood 1988)

Spi (x) = L−3pi
ϕ ∗

pi times
Π
(

x
Lϕ

)
, (15)

with the interpolation order pi ∈ N0 and the big∗ operator
representing repeated convolution. With the empty convolu-
tion understood to be the Dirac delta function, we obtain
S0(x) = δ3(x) as the lowest-order shape in the hierarchy.
Higher-order shapes are then constructed through convolu-
tion with the cubic top-hat Π(x/Lϕ) spanning exactly one

4 Whenever the size of a (cubic) grid is given, it refers to the
number of elements along each dimension. In case of the Ewald
grid, this then consists of 64× 64× 64 elements (each containing
a force vector).

MNRAS 000, 1–24 (2021)



The cosmological simulation code concept 1.0 5

grid cell, with the top-hat function given by

Π(x) =
3∏
d=1

Π
(
x [d]) , Π(x) =


1 |x| < 1

2
0 1

2 ≤ |x| ,
(16)

where Π of vector input is defined by multiplying results
obtained from individual scalar inputs, x [d] representing the
d’th Cartesian scalar component of vector x.

Given some interpolation order pi ≥ 1 we let the contin-
uous density contrast field δρ(x) be defined through (2) with
S → Spi−1, with Spi−1 in turn given by (15). We then define
the discretised grid version of the density contrast δρm —
with m ∈ Z3 labelling the mesh points at5 xm = Lϕ(m + ½)
— via interpolation of the continuous δρ(x) as follows:

δρ(1)
m ≡ L−3

ϕ Π
(

x
Lϕ

)
∗ δρ(x)

∣∣∣∣
x=xm

(17)

= m

a3

∑
n∈Z3

{
− N

L3
box

+ L−3
ϕ

N∑
j=1

Wpi

(
xmjn

Lϕ

)}
, (18)

= m

a3

∑
n∈Z3


− N

L3
box

+ L−3
ϕ Wpi

(
x
Lϕ

)
∗

N∑
j=1

δ3(x − xjn)
∣∣∣∣∣
x=xm


,

(19)
where we have introduced the dimensionless weight functions
Wpi (x/Lϕ) ≡ L3

ϕSpi (x) and used xmjn ≡ xm− (xj +Lboxn).
Equality (18) is the one used for code implementation. The
parenthesised superscript counts the number of particle ↔
mesh interpolations carried out, which we shall want to keep
track of.

Deconvolved potential With the PM grid holding δρ(1)
m

values, an in-place FFT converts the values to δρ(1)
h , the grid

version of δρ(k) with h ∈ Z3 labelling the grid points at kh =
2πL−1

boxh. This FFT treats the finite numerical representation
of δρ(1)

m as periodic, implementing the sum over images n of
(18) and (19) automatically.

The density values are then converted to potential values
using (14), resulting in grid values

ϕ
(1)
h = −4πGa2

k2
h
δρ

(1)
h , ϕ

(1)
0 = 0 , (20)

where the k = 0 ‘DC’ mode is explicitly zeroed, correspond-
ing to removing the background density. This enables us
to work with density values ρ rather than density contrast
values δρ in the implementation, meaning we can ignore the
subtraction of N/L3

box in (18) and (19).
From (19) it is then clear that we can correct for the

interpolation by dividing out the Fourier transformed weight
function, allowing us to obtain deconvolved versions of the
grid:

ϕ
(c)
h =

[
Wpi (Lϕkh)

L3
ϕ

]c−1
ϕ

(1)
h . (21)

5 Here vector-scalar addition is defined as adding the scalar to
each element of the vector. Unlike e.g. gadget, concept 1.0 uses
cell-centred grid values (by default), hence the offset by half a grid
cell.

The properly deconvolved potential grid is then given by
ϕ

(0)
h . Applying such deconvolution removes much of the spu-

rious Fourier aliasing, improving the accuracy of the grid
representation at small scales (Sefusatti et al. 2016).

Obtaining forces We now transform back to real space
using an in-place inverse FFT, obtaining ϕ(c)

m . We can then
construct a force grid as

f (c)
m = −amL−1

ϕ Dpdϕ
(c)
m , (22)

where Dpd is some finite difference operator of order pd. The
resulting force grid f (c)

m must then be interpolated back to the
particle positions and applied. Ignoring the sum over images
n and subtraction of the background N/L3

box as previously
mentioned, this interpolation is implemented by (18), except
that now the sum runs over mesh points instead of particle
indices, as this time the interpolation is from the mesh onto
the particles:

f i =
∑

m∈Z3

Wpi

(
xi − xm

Lϕ

)
f (−1)

m (23)

= 4πGm2

L4
ϕ

particle ← mesh︷ ︸︸ ︷∑
{

m
ffl

ffl maxd

∣∣x[d]
i −x[d]

m

∣∣< piLϕ
2

}Wpi

(
xi − xm

Lϕ

)
Dpd F

−1
/0

m←h

{

[
Wpi (Lϕkh)

L3
ϕ

]−2

︸ ︷︷ ︸
2 deconvolutions

Poisson kernel︷︸︸︷
1

k2
h
F

m→h

N∑
j=1

Wpi

(
xm − xj
Lϕ

)
︸ ︷︷ ︸

particles → mesh

}
,

(24)

where we specifically use f (−1)
m to take into account the

additional particle ← mesh interpolation, resulting in a total
of 2 deconvolutions. The annotated equality (24) provides a
complete overview of the PM method by gathering up the
different steps, with F representing the forward FFT and
F−1
/0 the inverse FFT — normalised so that FF−1ϕm = ϕm

— and the subscript indicating nullification of the k = 0 mode
prior to performing the inverse transform. The m ↔ h below
the FFT operators are just to indicate the change to the grid
index caused by the transforms. Read this large expression
backwards for it to follow the flow of the algorithm. For
localised weight functions Wpi the infinite sum over m in
(23) only need to be over mesh points in the vicinity of xi,
as indicated for the sum over m in (24). We shall look at
Wpi in detail shortly, including how this particular definition
of “the vicinity” arise.

In practice, the values stored in the PM grid goes
through the transformations ρ(1)

m → ρ
(1)
h → ϕ

(−1)
h → ϕ

(−1)
m .

A separate scalar grid is used to store the forces obtained
from ϕ

(−1)
m , along each dimension d in turn. This scalar

force grid is then interpolated onto all particles using (23);
{f [d]
i } ← f (−1)[d]

m = −amL−1
ϕ D[d]

pdϕ
(−1)
m .

Order of interpolation and differentiation Though the
entire PM method is summarised by (24), we have yet to
explicitly write out the weight functions Wpi(x) and their
Fourier transforms Wpi (kh) for different orders pi. Similarly
we have not yet specified the difference operators Dpd for
different orders pd. We shall do so now.

From the definition Wpi (x/Lϕ) ≡ L3
ϕSpi (x) along with
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6 Dakin, Hannestad & Tram

(15), the first weight functions are given by

WNGP(x) =


1 |x| < 1

2
0 1

2 ≤ |x| ,
(25)

WCIC(x) =
{

1− |x| |x| < 1
0 1 ≤ |x| ,

(26)

WTSC(x) =



3
4 − x

2 |x| < 1
2

1
8(2|x| − 3)2 1

2 ≤ |x| <
3
2

0 3
2 ≤ |x| ,

(27)

WPCS(x) =



1
6(3|x|3 − 6x2 + 4) |x| < 1
1
6(2− |x|)3 1 ≤ |x| < 2

0 2 ≤ |x| ,

(28)

where common names — ‘nearest grid point’ (NGP) for
pi = 1, ‘cloud in cell’ (CIC) for pi = 2, ‘triangular shaped
cloud’ (TSC) for pi = 3, ‘piecewise cubic spline’ (PCS) for
pi = 4 — have been used as labels. The behaviour regarding
vector input is inherited from the top-hat (16), i.e. Wpi (x) =
Wpi(x [1])Wpi(x [2])Wpi(x [3]). All four weight functions are
available in concept 1.0. From (25)–(28) it is clear that
grid points further away than pi/2 grid units — along any
dimension — from a particle’s position do not take part in
its interpolation; hence the set of grid points m included
in (24). In Figure 1 the PM grid is drawn as thin grey
lines, and the mass of the particle in the lower middle has
been assigned to nearby grid points using PCS interpolation.
The mass fractions are shown as assigned to the centres of
the cells, reflecting the choice of cell-centred grid values in
concept 1.0.

As the hierarchy of real-space weight functions are gener-
ated through repeated convolution (15), their Fourier trans-
forms are generated through exponentiation (i.e. repeated
multiplication). Given that W1(x) is just the top-hat (16),
we obtain

Wpi (Lϕk)
L3
ϕ

=
3∏
d=1

sincpi

(
Lϕk[d]

2

)
, (29)

with the cardinal sine function sinc(x) ≡ sin(x)/x and we
once more retain the same behaviour regarding vector input.

Now let us turn to the finite difference operator Dpd .
This vector operator can be separated into three copies of the
same scalar operator Dpd = (D[1]

pd , D
[2]
pd , D

[3]
pd ), each acting

along a separate dimension. The most natural choice is to use
the optimally accurate symmetric difference approximation
given the order pd. If by pd we mean the number of grid
points used for this approximation — imposing pd ∈ 2N due
to the operation being symmetric — these operators can be
constructed as (see e.g. Fornberg (1988))

Dpdϕm =
pd/2∑

∆m=−pd/2

∂ξ

pd/2∏
∆m′=−pd/2

∆m′ 6=∆m

ξ −∆m′
∆m−∆m′

∣∣∣∣∣
ξ=0

ϕm+∆m , (30)

where the vector element superscript has been omitted and

ϕm is to be understood as a one-dimensional grid (or slice of
the 3D grid ϕm) with points labelled by m ∈ Z at Lϕ(m+½).
concept 1.0 implements pd ∈ {2, 4, 6, 8}, which from (30) is

D2ϕm = 1
2

(− ϕm−1

+ ϕm+1

)
, (31)

D4ϕm = 1
12

(+ ϕm−2 − 8ϕm−1

− ϕm+2 + 8ϕm+1

)
, (32)

D6ϕm = 1
60

(− ϕm−3 + 9ϕm−2 − 45ϕm−1

+ ϕm+3 − 9ϕm+2 + 45ϕm+1

)
, (33)

D8ϕm = 1
840


+ 3ϕm−4 − 32ϕm−3

− 3ϕm+4 + 32ϕm+3

+ 168ϕm−2 − 672ϕm−1

− 168ϕm+2 + 672ϕm+1

 , (34)

with the symmetric property clearly manifest.
The interpolation order pi and difference order pd may be

chosen independently, leading to many possible PM schemes
available in concept 1.0. By default, concept 1.0 uses pi = 2
(CIC) interpolation and pd = 2 differentiation for computing
gravity via the PM method.

Parallelisation We have yet to discuss the details of the
MPI parallelisation of concept 1.0, which necessarily must
be integrated into the gravitational schemes. Given np MPI
processes, concept divides the box into np equally shaped
cuboidal domains and assigns one such domain to each pro-
cess. The exact domain decomposition chosen is uniquely6

the one with the least elongated domains, minimizing the
surface to volume ratio, in turn minimising communication
efforts between processes. The domain decomposition shown
in Figure 1 — with a thick black outline around each domain
— is for a simulation with np = 6 processes, resulting in the
decomposition 3× 2× 1.

For the PP method, particles in one domain must explic-
itly be paired up with particles in all other domains. After
having carried out the interactions of particles within their
local domain, each process sends a copy of its particle data
to another process — the ‘receiver process’ — while simulta-
neously receiving particle data from a third process — the
‘supplier process’. The interactions between local and received
non-local particles are then carried out, with the momentum
updates to the non-local particles sent back to the supplier
process, while at the same time receiving and applying corre-
sponding local momentum updates from the receiver process.
This carries on for all such ‘dual’ process/domain pairings, of
which there are bnp/2c from the point of view of any given
local process, not counting the pairing between the local
process and itself.

For the PM method the parallelisation efforts are more
involved. The PM grid is distributed in real space according to
the domains. Each grid cell must be entirely contained within
a single domain, imposing the restriction that the number of
domain subdivisions of the box along each dimension must
divide nϕ. For the PM grid in Figure 1, nϕ = 54 is chosen,
which indeed is divisible by 3, 2 and 1.

To carry out the required FFTs on the distributed grid,

6 Up to permutation of the dimensions.

MNRAS 000, 1–24 (2021)



The cosmological simulation code concept 1.0 7

concept employs the FFTW library (Frigo & Johnson 2005),
specifically its MPI-parallelised, real, 3D, in-place transforma-
tions. FFTW imposes a ‘slab’7 decomposition of the global
grid, in conflict with the cuboidal domain decomposition.
Before performing a forward FFT, concept then constructs
a slab-decomposed copy of the domain-decomposed PM grid.
Similarly, once the slab-decomposed grid is transformed back
to real space, its values are copied over to the domain-
decomposed grid. Furthermore, while in Fourier space, grids
are transposed along the first two dimensions, as the last
step in the distributed FFT routines is a global transposition,
which is skipped. Similarly skipping this transposition step
when transforming back to real space brings the dimensions
back in order.

When it comes to particle interpolation using Wpi(x)
(25)–(28) and grid differentiation using Dpd (31)–(34), data
from a few (depending on the orders pi and pd) grid cells
away are required. Near a domain boundary, some of this
required data belongs to a neighbouring domain and thus re-
side on a non-local process. To solve this, local domain grids
are equipped with additional ‘ghost layers’ of grid points
surrounding the primary, local part of the grid. These ghost
points must then be kept up-to-date with the correspond-
ing non-local data, and vice versa. The required thickness
nghost of the ghost layers — i.e. the number of ghost points
sticking out perpendicular to a domain surface — depends
upon the orders pi and pd. As already mentioned, (25)–(28)
demonstrate that interpolation through Wpi(x) touches at
most pi/2 grid points to either side of a particle (along each
dimension), thus requiring nghost ≥ bpi/2c. For Dpd , the
number of required ghost points can readily be read off of
(31)–(34) as8 nghost ≥ dpd/2e. In total then,

nghost = max(bpi/2c, dpd/2e) (35)

ghost points are needed around local real-space domain grids.
Figure 1 shows the ghost layers around the lower middle

domain as “ghostly shaded” PM cells, using nghost = 2. As
seen, the periodicity of the box is handled very naturally,
which is really a secondary job almost automatically fulfilled
by the ghost layers. Even in cases where the box is not
subdivided along a given dimension, ghost layers are then
still needed to implement the periodicity of the PM grid.

2.1.3 P3M gravity

While the PM method is unrivalled in its performance, it
comes with a severe limitation in resolution due to the finite
grid cell size Lϕ. One approach to overcome this is to only
use PM for gravity at scales sufficiently large compared to Lϕ,
and then supply the missing short-range gravity using direct
summation (PP) techniques. This hybrid PP-PM (P3M)
method is the default gravitational solver of concept 1.0. It
comes with a free parameter xr which trades the accuracy of
the PP method for the efficiency of the PM method, with
practical values yielding a good balance.

7 Meaning distributed only along a single dimension.
8 Though rounding up pd/2 is redundant for the symmetric dif-
ference operations of even order pd, it becomes important for
non-symmetric odd orders. concept does in fact additionally
implement D1, in both a ‘forward’ and a ‘backward’ version.

Combining PP and PM For the long-range part, the
P3M method goes trough all of the same steps as the PM
method of section 2.1.2, with the Poisson kernel 4π/k2 (14) re-
placed with the long-range kernel Glr(k) = 4π exp(−x2

s k2)/k2

(10) introduced earlier for the Ewald summation. Next, the
missing short-range forces — corresponding to the potential
Gsr(x) = |x|−1 erfc(|x|/[2xs]) or the real-space sum over n
of the force (11) — are added in using direct summation.
Below, both the long-range and short-range sub-methods of
the P3M method are spelled out:

f i = 4πGm2

L4
ϕ

particle ← mesh︷ ︸︸ ︷∑
{

m
ffl

ffl maxd

∣∣x[d]
i −x[d]

m

∣∣< piLϕ
2

}Wpi

(
xi − xm

Lϕ

)
Dpd F

−1
/0

m←h

{

[
Wpi (Lϕkh)

L3
ϕ

]−2

︸ ︷︷ ︸
2 deconvolutions

long-range kernel︷ ︸︸ ︷
exp
(
−x2

s k2
h
)

k2
h

F
m→h

N∑
j=1

Wpi

(
xm − xj
Lϕ

)
︸ ︷︷ ︸

particles → mesh

}



long-range

− Gm2 ∑
{ j ~ |xijn′ |<xr }

j 6=i


|xijn′ |−3 erfc

(
|xijn′ |

2xs

)
+ |xijn′ |−2
√
πxs

exp
(
−

x2
ijn′

4x2s

)
+
(
|xijn′ |−3 − |xijn′ |−3)︸ ︷︷ ︸

softening

 xijn′



short-range

(36)

The exponential decay of the short-range force of (36) allows
us to only consider particle pairs within a distance xr a
few times larger than xs. In particular, choosing xs small
compared to the box ensures that only the single image
n′ of particle j nearest to particle i has a non-negligible
influence, ridding us of the sum over images n. In (36) then,
xijn′ ≡ xi− (xj +Lboxn′) with n′ chosen such that |xijn′ | =
minn∈Z3 |xijn |.

We seek to minimize xs in order to delegate as large of
a fraction of the total work load as possible to the efficient
PM part. Make xs too small however and the discrete nature
of the grid will start to show up as spurious defects in the
long-range force. The default values employed by concept
for P3M is the same as those used by gadget-2:{
xs = 1.25Lϕ ,
xr = 4.5xs ,

(37)

which is also what is depicted in Figure 1. Here 2xs is shown
for the upper left particle as dictating the width of the
short-range potential, and a circle of radius xr is shown
around every particle, illustrating their gravitational region
of influence.

Using (37), the performance of the P3M method in
concept 1.0 then depends on the grid size nϕ through Lϕ =
Lbox/nϕ. We prefer to run with

nϕ = 2 3√
N , (38)

i.e. having 8 times as many PM cells as particles. While
requiring quite a bit more memory than say nϕ = 1 3√N ,
this large cells to particles ratio lowers xs, shifting a larger
fraction of the computational burden onto the efficient long-
range force, speeding up simulations significantly. Even so, for
typical simulations the majority of the computation time is
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︷
︸︸

︷

Lbox︷
︸︸

︷

Ly
dom

︷
︸︸

︷

Ly
tile

{Lp,y
sub

{Lϕ

︷ ︸︸ ︷xr

{2ǫ

{2xs

Figure 1. The full geometric picture of the simulation box, demonstrating various aspects. In the example shown we imagine running a
simulation with np = 6 processes, resulting in a domain decomposition of 3× 2× 1. For clarity we shall ignore the last dimension. The
entire cubic box (outer black square) of length Lbox is then subdivided into 3× 2 domains (black rectangles) all of size Lxdom ×L

y
dom. The

global, cubic PM grid is shown in grey, with a grid size of nϕ = 54. A low number N = 8 of particles is shown as small, different coloured
solid circles with radii given by the softening length ε chosen as 0.03Lbox/

3√N . We note that the actual number of particles in a standard
simulation of nϕ = 54 would be much greater. The mass of the grey particle in the lower central domain is shown as being assigned to the
PM grid cells using interpolation, specifically PCS. Also, ghost layers of the local PM grid using nghost = 2 are shown around this domain
as “ghostly” shaded cells. The raw Newtonian, softened Newtonian and softened short-range single-particle potentials are shown for the
yellow particle at the upper left, with xs dictating the width of the localised short-range potential. As seen, the short-range potential
is vanishingly small a distance xr away from the particle. The values (37) are used for xs and xr. For two particles to interact under
short-range gravity, they must be within xr of each other, i.e. each coloured hollow circle must contain the other particle. Thus here, only
the blue and red particle pair interact. The domains are subdivided into tiles of size Lxtile × L

y
tile, shown in brown. Each tile has to be at

least xr along each dimension, here leading to a tile decomposition of 3× 4 of each domain. The 3× 3 tiles within reach of a given particle
has been shaded with the colour of that particle, indicating neighbouring tiles needed to be checked for possible interacting partners of
the given particle. Given this information alone, one can see that the upper right blue and red, the lower left magenta and cyan, as well
as the lower right green and purple particles all have a change of pairwise interacting. Each tile is further subdivided into subtiles —
shown in orange — independently within each domain. Their size are given by Lp,xsub ×L

p,y
sub with p labelling the domain/process. Coloured

hatched regions around particles show which subtiles are within reach xr of the subtile containing each particle. From this information, it
is now clear that the green and purple particle are too far separated to interact. The subtile decomposition employed within the lower left
domain is insufficient to tell us that the magenta and cyan particle do not interact.

spent on the short-range forces, and so it is vital to implement
these efficiently, to which we shall attend shortly.

As for the PM method of section 2.1.2, the P3M method
in concept 1.0 employs pi = 2 (CIC) interpolation by default.
As the long-range mesh of P3M is generally much smoother
than the mesh of PM, it makes sense to increase the order
of differentiation, and so pd = 4 is chosen as the default for
P3M gravity in concept 1.0. The default P3M settings of
concept 1.0 thus coincide with the (hard-coded) TreePM
settings of gadget-2.

Tiles What remains to be discussed is exactly how to effi-
ciently implement the short-range9 sum of (36), where each
particle should be paired only with neighbouring particles
within a distance xr. What we need is to sort the particles
in 3D space using some data structure, which then allows
for efficient querying of nearby particles given some location.

The data structure employed for the particle sorting in
concept 1.0 is one we refer to as a tiling. Here each domain
is subdivided into as many equally sized cuboidal volumes —
called tiles — as possible, with the constraint that the tiles
must have a size of at least xr along each dimension. This
guarantees that a particle within a given tile only interacts

9 The perhaps equally complicated-looking long-range sum over
m of (36) is in fact trivial to implement for our regular grid.

MNRAS 000, 1–24 (2021)
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with other particles in the surrounding 3 × 3 × 3 block of
tiles, i.e. with particles within its own tile or within the 26
neighbouring tiles. The tiling is shown in brown on Figure 1,
where the shape and size of the domains give rise to a tile
decomposition 3× 4× 9 (with the last dimension suppressed
on the figure) of each domain. Note that since the domains
are not cubic, the tiles will generally not be so either, as is
the case on the figure. As all domains are equally shaped, all
domain tilings will be similar, giving rise to a global (box)
tiling. Further note that this global tiling generally do not
align with the global PM mesh.

With the geometry of the tiling fixed, the particles are
sorted into tiles in O(N) time. The interactions between par-
ticles within tiles are now carried out in a manner somewhat
similar to the parallelisation strategy of the PP method de-
scribed towards the end of section 2.1.2, though now both at
the domain and at the tile level, below described separately
for the two cases of tile interaction purely within the local
domain and tile interaction across a domain boundary:

Local tile interaction: Every process iterates over its tiles,
in turn considering them as the ‘receiver tile’. After dealing
with the interactions of particles within a given receiver tile
itself, a neighbouring tile is selected as the ‘supplier tile’.
Interactions between particles of the receiver and supplier
tile are then carried out. A different neighbouring supplier
tile within the local domain is then continually selected, until
exhaustion. Once all neighbouring, local tiles (up to 26) have
been dealt with, a different tile is considered as the receiver,
and so on. Importantly, when selecting the next supplier tile,
the one chosen must not have already been paired with the
current receiver tile using opposite receiver/supplier roles.

Non-local tile interaction: The local process/domain is
‘dual-paired’ with a non-local receiver and supplier pro-
cess/domain, as in the PP method. Unlike the PP method,
only the 26 neighbouring domains are considered, resulting
in 13 pairings. The particles within local tiles neighbouring
the receiver domain are sent to the receiver process, while
corresponding particles are received from the supplier pro-
cess. The local tiles neighbouring the supplier domain is
then iterated over, in turn given the role as the receiver tile.
Each such local receiver tile is then sequentially paired with
non-local supplier tiles from the subset of the tiles (up to
9) received from the supplier process which neighbour the
local receiver tile in question. Having directly updated the
momenta of local particles due to the interactions, the non-
local momentum updates are additionally sent back to the
supplier process, while corresponding momentum updates
are received from the receiver process, which are then applied
as well.

Having at least 3 tiles across the box along each dimension
ensures that the above scheme does not double count any tile
pairs, even in extreme cases such as np = 1 where all 26 “non-
local neighbour domains” are really all just the local domain
itself. This constraint10 is thus imposed by concept 1.0.

10 In fact concept 1.0 requires the global tiling to consist of
at least 4 tiles across each dimension, as this simplifies some
logic regarding the periodicity. For the standard values (37), this
restricts nϕ ≥ 23 — really nϕ ≥ 24 as concept further needs
grid sizes to be even — which is not much of a restriction at all.

With ntile the total number of tiles in the box, the
average number of particles in a tile is N/ntile, resulting in a
time complexity for the tiled short-range force computation
of O(N2/ntile). As ntile ∝∼ n3

ϕ this again shows how using
a finer PM grid shifts the computational burden from the
short-range computation over to the long-range computation.
Furthermore, using n3

ϕ ∝ N , we see that the tiles formally
reduce the full short-range interaction to linear time O(N),
beating the rivalling O(N logN) tree methods. In practice,
having large inhomogeneities will make different tiles require
different computational effort, degrading the performance.
If the inhomogeneities extend to the domain scale, further
degrading arise due to load imbalance between the processes,
which concept currently does not attempt to mend.

Subtiles The basics of the tile-based short-range particle
pairing has now been established, but it has room for opti-
misations. One such optimisation is that of subtiles, i.e. finer
tiles within the main tiles.

In Figure 1, the circle of radius xr shown around every
particle demonstrates the reach of the short-range force. In
addition, the 3 × 3 block of tiles surrounding a particle is
shaded with a colour matching that particle, showing the
possible tiles in which interacting partner particles might
reside. Though in fact only the blue and red particle in the
upper right are close enough to interact, the magenta and
cyan pair in the lower left as well as the green and purple
pair in the lower right seem like equally good candidates for
possible interaction, from the point of view of the tiling.

Once two particles i and j have finally been paired up by
the tiling mechanism, their separation |xi − xj | is measured,
upon which the interaction is aborted if |xi−xj | > xr. With
perfectly small tiles of volume x3

r , this happens for 9 % of
interactions with both particles within the same tile, for
66 % of interactions between tiles sharing a face, for 91 %
of interactions between tiles sharing only an edge, and for
98 % of interactions between tiles sharing only a corner. The
reason for adding subtiles is to exclude many of these non-
interactions early, accelerating the short-range computation.
This is done by extending the tile pairing mechanism with
another, deeper layer, pairing up subtiles. Crucially, only
subtiles close enough so that they could potentially contain
interacting particles are paired, leading each receiver subtile
to be paired up with subtiles within a surrounding, blocky
sphere, approaching a smooth sphere of radius xr in the limit
of infinite subtiles.

Unlike the main tiles, subtiles are local to each domain,
meaning that each process is free to choose its own subtile
decomposition, though with the same employed throughout
the domain. Figure 1 shows a variety of subtile decomposi-
tions in orange, e.g. 2× 3 for the lower right domain. Here
we also find the green and purple particle, which need to be
paired according to the tiling, as the green particle is within
the purple shaded region, and vice versa. The green and
purple hatching shows which subtiles are reachable from the
particular subtile containing each particle. As the hatched
regions do not contain the subtile of the other particle, it
means that adding in this subtiling indeed saves us from
having to consider this irrelevant particle pair. Turning to
the lower left domain of Figure 1, we see that the applied
subtile decomposition of 1× 2 is insufficient to rid us of the
irrelevant pairing of the magenta and cyan particle, even

MNRAS 000, 1–24 (2021)



10 Dakin, Hannestad & Tram

though their separation is more than twice the critical dis-
tance xr. Increasing the number of subdivisions by just 1 in
either dimension would have made the difference.

Finally let us consider the blue and red particle pair
at the upper right of Figure 1, where no amount of sub-
tiling will reject the pairing since these particles are close
enough for interaction to take place. For the domain con-
taining the red particle, a subtile decomposition of 3× 4 is
used, which is substantial enough for the red hatched region
to become slightly blocky. As the two particles reside on
different processes, the interaction cannot take place before
one of the processes sends its particle to the other process, as
described earlier. The received particle(s) are then re-sorted
according to the local subtiling, which is then traversed in
order to locate particle pairs. This means that the subtile
decomposition used for the blue↔ red interaction depends
upon which process ends up as being considered the receiver
and which the supplier. This is why Figure 1 shows the blue
and red hatched regions extending into the other domain,
disregarding the different subtiling used here. Though the
details of the inter-process communication may then affect
the number of paired particles, which particle pairs end up
interacting in the end remain unaffected.

Though subdividing space further could always lead to a
still lower number of mistakenly paired particles, the overhead
associated with the increased number of subtiles means that
there exists a sweet spot. Generally, higher particle number
densities calls for finer subtile decompositions. By default,
concept 1.0 automatically estimates the optimal subtiling
within each domain. Over time, each process periodically
checks whether it is worth subdividing further due to the
increased inhomogeneity. It does so by temporarily applying
a slightly more refined subtile decomposition and comparing
the measured time for a short-range force computation with
a record of previous such computation times. If superior, the
refined subtiling is kept, otherwise the old one is switched
back in. The subtiles are thus both spatially and temporally
adaptive.

Other optimisations concept 1.0 goes to great lengths
in order to arrive at a performant short-range computation,
as evident from the implementation of subtiles, including
automatic refinement. Here we briefly want to discuss further
such short-range optimisations employed.

The two-level tile + subtile structure is reminiscent of a
shallow tree. While the geometry of a full tree reflects the
underlying particle structure, the geometry of our (sub)tilings
is determined solely by the simple Cartesian subdivisions.
This allows us to pre-compute which of the (sub)tiles to pair
with each other, eliminating a lot of decision making from
within the actual ‘walk’ (the iteration over tiles→ subtiles→
particles), which in turn saves on clock cycles and lowers
the pressure on the branch predictor. Having a static, non-
hierarchical data structure further results in simple access
patterns with minimal pointer chasing, allowing for proper
exploitation of CPU cache prefetching.

Once two particles i and j have been selected for in-
teraction, the first thing to do is to compute their mutual

squared11 distance |xijn′ |2, after which the interaction is
rejected if |xijn′ |2 ≥ x2

r , in accordance with the short-range
sum of (36). Here we need to effectively shift xi − xj by
Lboxn′ as to minimise |xijn′ |2 = |xi − xj − Lboxn′|2, cor-
responding to finding the image of particles j nearest to
particle i. The solution n′ can in fact be determined just
from knowing the tiles of particle i and j, and so we pre-
compute this already at the tile pairing level. In the typical
case of many tiles across the box, the vast majority of tile
pairs will have n′ = 0. To take advantage of this, explicit
loop unswitching12 is utilised to completely eliminate the
redundant zero-shift in these cases.

With particles i and j finally selected and deemed close
enough for interaction to occur, we now need to compute
their mutual short-range force, given by the large bracket
of (36). Given that it is needed within the tightest loop of
the program, this large expression is quite expensive. We
thus have it (including the softening term) tabulated in a 1D
table, indexed by |xijn′ |2 between 0 and x2

r . Here we use the
cheapest possible (1D) NGP lookup, with the table being
rather large13 in order to ensure accurate results nonetheless.
This strategy works well for modern hardware with large
CPU caches.

To further enable good utilisation of the CPU caches,
the particles are ordered in memory in accordance with the
visiting order resulting from the tile → subtile → particle
walk. The drifting of the particles will gradually degrade this
previously optimal sorting, and so the in-memory reordering
of the particles is periodically reapplied.

Recap of subvolumes The simulations of concept 1.0
make use of several different, nested subvolumes, in particular
when using P3M. It may not be clear why we need this many
levels of nested subvolumes, or indeed why we do not opt for
even more. In fact, each such level exists for a very particular
reason, which is briefly outlined below.

Box: Though usually not thought of as a subvolume, the
simulation box itself exists in order to reduce an infinite
universe to a finite volume with a finite number of degrees
of freedom. The infinity of space is then imitated by the
imposed periodicity.

Domains: The box is subdivided into domains in order to
reduce the N -body problem into parallelisable chunks, to be
distributed over many CPUs. concept uses a one-to-one
mapping between domains, CPU cores and MPI processes.

Tiles: The domains are subdivided into tiles in order to
take advantage of the finite range of the short-range force,
divvying up the particles into subvolumes with the guar-
anteed property that particles within one such subvolume
does not interact with particles further away than the near-
est neighbour subvolumes. In particular, this lends itself to
easy, near-minimal communication between processes at the
domain level.

11 We keep working with squared distances in order not to perform
an expensive square root operation.
12 This is achieved through custom transpiler directives and code
transformation, briefly described in section A2.
13 By default this table has 212 elements, exploiting the large
CPU caches of modern machines. A far smaller table and e.g. linear
interpolation would work as well, but at the cost of performance.
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Subtiles: Subtiles exist purely as an optimisation layer,
accelerating the short-range computation through effective
early rejection of particle pairs, by corresponding elimination
of subtile pairs. Unlike all other subvolumes, the number of
subtiles are free to change over time, adapting to increased
inhomogeneity. In addition, since subtiles are never shared
between processes, the number of subtiles is free to vary from
domain to domain, introducing spatial adaptivity as well.

One can imagine introducing a still deeper level of sub-
volumes, i.e. ‘subsubtiles’, with the hope of further speeding
up the computation. For this to not be equivalent to simply
increase the number of subtiles, the coarseness of the subsub-
tilings would have to vary across the domain, e.g. within each
tile or subtile. This would in turn imply that the subvolume
geometry considered by a given process varies from place to
place, which will decrease CPU cache performance. On top,
there of course comes a point where sorting particles into
still finer subvolumes and indexing into them outweigh the
benefits from slightly increased early particle pair rejection.
Given a large enough number of processes np, the spatial
adaptiveness of the subtilings ensures that this in fact is
the optimal level at which to stop subdividing space. We
conjecture that this is the case also for typical values of np.

2.2 Time-stepping

This subsection describes the time-stepping mechanism imple-
mented in concept 1.0, including how the global simulation
time step is chosen throughout cosmic history, and how this
global time step is subdivided into finer steps, generating
adaptive particle time-stepping.

As eluded to in section 2.1, concept employs cosmic
time t as its choice of time integration variable, and makes use
of comoving coordinates x ≡ r/a — with r being physical
coordinates — and associated canonical momenta q ≡ a2mẋ
with ˙ ≡ ∂t. The Hamiltonian equations of motion for the
particles are then (Peebles 1980)

ẋi(t) = qi(t)
a2(t)m ,

q̇i(t) = f i(t)
a(t) ,

(39)

with the comoving force f i being the primary subject of
section 2.1.

Given the state of the N -body system ({xi(t)}, {qi(t)})
at some time t, the coupled14 equations (39) can be solved
numerically by alternatingly evolving {xi(t)} → {xi(t+∆t)}
(keeping {qi} fixed) and {qi(t)} → {qi(t + ∆t)} (keeping
{xi} fixed) over discrete time steps of size ∆t.

2.2.1 Global time step size

Typical cosmological N -body simulations start from initial
conditions at early, linear times (say t ≈ 10 Myr) and evolve
the system forward to the present, non-linear time (say
t ≈ 14 Gyr). During this evolution, physical phenomena —
related to the particles themselves as well as the background
— and numerical aspects introduce various time scales, above

14 Remember that f i depends explicitly on all positions {xj 6=i}.
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Figure 2. Primary time step limiters in concept 1.0 and resulting
time step size, expressed as ∆ ln a = ∆a(t)/a(t) = ln a(t+ ∆t)−
ln a(t), as function of scale factor a. Different limiters dominate
at different times, as indicated by the dotted line, showing the
evolution of the time step size itself. Note that ‘∆a (early)’ and
‘Hubble’ are part of the same limiter, with the limiter value chosen
as the maximum of the two sub-limiter values. Most limiters
depend solely on the background cosmology, the exception being
the P3M limiter which depends on the particle dynamics and
thus the simulation resolution. The P3M limiter is shown for the
cases Lbox ∈ {2, 1,½} 3√N Mpc/h, with smaller box sizes (higher
resolution) leading to lower allowed time step sizes. The dotted
line is shown going through all three cases, though of course only
a single P3M limiter exists for a given simulation. The qualitative
change in behaviour of some of the limiters at late times is caused
by the transition to Λ domination, wit matter-Λ equality indicated
by the vertical dashed line. A standard ΛCDM cosmology (see
Table 1 in section 3) was used to produce the figure, with all not-
too-exotic simulations resulting in similar limiter values. Though
∆ ln a decreases over time, the maximum allowed time step size ∆t
is generally increasing since ∆t ∝ a3/2∆ ln a (matter domination).

which the discrete time-stepping cannot operate if we are to
hope for a converged solution. This leads to the concept of a
time step limiter; a condition imposing a maximum allowed
value for ∆t, given by a small fraction of a corresponding
time scale. Below we list the main such limiters (time scales)
implemented in concept 1.0, shown together in Figure 2.

Dynamical: The gravitational dynamical time scale
(Gρ̄)−1/2, with ρ̄ the background density of all non-linear
components in the simulation.

Fixed ∆a (late): The time step ∆t corresponding to a fixed
∆a.

Fixed ∆a (early) and the Hubble time: This limiter is
constructed as the maximum of two sub-limiters; the value
∆t which corresponds to a fixed ∆a, and the instantaneous
Hubble time H−1(t).

P3M : The time it takes to traverse a distance equalling
the short-/long-range force split scale xs given the root mean
square velocity of the particle distribution, xs/

√
〈ẋ2〉.

As seen from Figure 2, which limiter dominates is subject
to change during typical simulations. Of the above, only the
P3M limiter is non-linear — meaning it depends on the
particle system — with higher particle resolutions leading to
a smaller maximal allowed ∆t. All other limiters listed are
obtained solely from the background.

Studying the linear growth of matter perturbations in a
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12 Dakin, Hannestad & Tram

matter-dominated universe, we have D ∝ a, D = D(a) being
the growth factor. A fixed relative tolerance on the discrete
evolution of D is then ensured if we keep ∆D/D ∝ ∆a/a =
∆ ln a constant. As evident from Figure 2 this is equivalent
to having ∆t ∝ H−1, i.e. the Hubble limiter. This limiter is
employed by gadget-2 all the way from early times until
non-linear limiters take over. We have found that this leads
to unnecessarily fine time steps early on, probably due to
the very simple initial conditions with each particle coasting
along a nearly straight path. While gadget-2 includes the
horizontal dashed line of of Figure 2 as part of its Hubble
limiter, concept 1.0 effectively changes the ‘fixed’ value of
∆ ln a by instead using the dynamical limiter at early times,
employing the constant ∆a (early) as a bridge between the
two.

concept 1.0 implements a few extra limiters, which only
come into play for non-standard simulations. These include
a non-linear PM limiter and a non-linear Courant limiter
for fluid components, as well as component-wise background
limiters for the relativistic transition time for components
with changing equation of state (relevant for e.g. non-linear
massive neutrinos, see Dakin et al. (2019a)) and for the life
time of decaying components (relevant for decaying matter,
see Dakin et al. (2019b)).

For minimal loss of symplecticity during time-stepping
(described in section 2.2.2), the time step size ∆t should be
kept constant over many steps. On the other hand, keeping
∆t at a lower value than necessary introduces further steps
than required given the target accuracy. In concept we
use a period of 8 steps15, after which the particle system is
synchronised (see section 2.2.2) and ∆t allowed up increase
in accordance with the limiters.

2.2.2 Adaptive particle time-stepping

With the size of the time step ∆t determined, concept
integrates the particle system forward in time using a sym-
plectic second-order accurate leapfrog scheme (Quinn et al.
1997), as is typical for N -body simulations. This is imple-
mented using drift and kick operators D and K, which ad-
vance the canonical variables as {xi(t)}

D(∆t)−−−−→ {xi(t+ ∆t)},
{qi(t)}

K(∆t)−−−−→ {qi(t + ∆t)}. Discretising (39), their imple-
mentations become16(
{xi(t)}
{qi(t)}

)
D(∆t)−−−−→


{

xi(t) + qi(t)
m

∫ t+∆t

t

dt′
a2(t′)

}
{qi(t)}

 , (40)

(
{xi(t)}
{qi(t)}

)
K(∆t)−−−−→

{xi(t)}{
qi(t) + f i(t)

∫ t+∆t

t

dt′
a(t′)

} . (41)

To evolve the synchronised system ({xi(t)}, {qi(t)}) it is first
desynchronised by applying K(∆t/2). The system is then
evolved through repeated application of D(∆t) followed by

15 Beyond striking a good balance, a period of 8 steps plays well
with the non-linear fluid implementation as described in Dakin
et al. (2019a). Should the maximum allowed value of ∆t decrease
below its current value, the current period is terminated early.
16 Importantly, f i itself has no explicit dependence on a, as seen
from e.g. (36).

K(∆t), under which {xi} and {qi} take turns leapfrogging
past each other in time. Re-synchronisation of the canon-
ical variables is achieved by some final drift and kick of
appropriate size less than or equal to ∆t.

Individual time steps As the non-linear P3M time step
limiter of Figure 2 is set through the root mean square
velocity of the particle distribution, the resulting limit on
∆t will be appropriate for typical particles, but not all. In
particular, particles in high-density regions will tend to have
much larger velocities, in turn requiring smaller time steps.
One could lower the proportionality factor of the P3M limiter
accordingly, but at the cost of having unnecessarily fine time
steps for the majority of the particles, wasting computational
resources. Inspired by the approach of Springel (2005b),
concept 1.0 instead allows each individual particle i to be
updated on a time scale ∆t/2`i , where `i ∈ N0 is called the
rung. Particles on rung 0 follows the global time-stepping,
while particles on higher rungs receive short-range forces at
a higher rate. The slowly varying and collectively computed
long-range force remains as is, i.e. it follows the rhythm of
rung 0.

With each particle assigned a rung, the system is evolved
using a hierarchical scheme demonstrated by Figure 3, here
shown for nrung = 3 rungs. In practice, this number dynam-
ically adapts as needed, though with a default maximum
value of 8. Though particles act as ‘receivers’ only during
kicks of the given rung in which they are assigned, they
act as ‘suppliers’ for kicks within every rung. This asymme-
try breaks strict symplecticity and momentum conservation,
though the errors introduced are so small that this is of no
concern17.

To determine which rung `i a given particle i belongs
to, we impose that it must not accelerate across a certain
fraction18 η of its softening length ε within the time ∆t/2`i ,
disregarding its initial velocity. That is,

`i(t) = max

0,

log2 ∆t

√
|ai(t)|

2ηε


 (42)

where ai is the ‘comoving acceleration subject to qi = 0’,
which from (39) is q̇i/(a2m). This is implemented as

ai(t) = [qi(t)− qi(tprev)]
[
m

∫ t

t−tprev

dt′a2(t′)
]−1

, (43)

where tprev < t refers to the time of the previous short-
range kick undertaken by the particle. At the beginning of
the simulation no such previous time exists, and so a “fake”
kick is computed without applying the resulting momentum
updates.

17 gadget-4 (Springel et al. 2020) implements a time-stepping
scheme similar to the one used in concept 1.0 as well as one with
manifest momentum conservation. This other scheme does not
deliver significant improvements to the accuracy, but does come
at the cost of additional force computations.
18 In gadget-2 the corresponding parameter is called
ErrTolIntAccuracy and typically has a value of η = 0.025, which
is also chosen as the default value used by concept 1.0.
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Figure 3. Time-stepping scheme of concept 1.0 using rung-based leapfrogging. The series of connected hexagons indicates the discrete
timeline followed by the particle positions {xi} as they are evolved through drift operations. Note that all positions remain mutually
synchronised throughout time. The momenta {qi} are distributed among the different rungs, each with its own discrete timeline indicated
by horizontally connected circles. For clarity, we consider the case of only nrung = 3 rungs. At the initial time t0, all rungs are synchronised
mutually and with the positions, as indicated by the vertical band covering the dark circles and the dark (and blue) hexagon. An initial
‘half’ kick of size ∆t/2`+1 is now applied within each rung `, evolving them forward in time to the blue circles. As kicks of different
rungs commute (Newtonian gravitation has no dependency on momentum), the order in which these kicks are applied do not matter.
Considering the two-coloured hexagon now as blue, the whole system is now in a blue state. Through rung-based kicks and collective
drifts, the system now changes state from blue→ yellow→ green→ red→ blue, each cycle amounting to a full global time step ∆t. We
have 2nrung−1 = 4 types (colours) of states due to the choice of nrung = 3. The changes of state respect the leapfrogging scheme for all
rungs and are self-similar from one rung to the next: From blue to yellow, one drift of size ∆t/2`≥nrung−1 is followed by a similar sized
kick, only applicable to the highest rung ` = nrung − 1 = 2. All lower rungs evolve trivially from blue to yellow. Yellow→ green consists
of a similar drift followed by a kick of size ∆t/2`≥nrung−2 in the highest two rungs ` ∈ {2, 1}. Green→ red is similar to blue→ yellow.
Red→ blue consists of the usual drift followed by a kick of size ∆t/2`≥nrung−3, i.e. a kick to all rungs ` ∈ {2, 1, 0}. Once back at a blue
state, a full time step ∆t has been completed, as indicated by the tilted blue band. Note though that only the positions are truly at
t1 = t0 + ∆t, while the momenta are all “half a step ahead”. Synchronisation at some arbitrary time tsync is achieved simply by restricting
the drifts and kicks to not evolve past this time, while otherwise keeping the scheme as is. Once synchronised, all rungs are recomputed
and assigned. After a kick within a rung, some particles may accelerate enough so that they no longer belong within their given rung, in
accordance with (42). Such particles jump to a more appropriate neighbouring rung by making their next kick either ½ or ¾ as large as
usual, as indicated by the vertical arrows. Jumping to a lower rung is only possible at every other kick. In the above, ‘kicks’ really refer to
momentum updates due to short-range forces only, i.e. the lower half of (36). The long-range forces are applied to all particles whenever
rung 0 is kicked.

3 CODE VALIDATION AND COMPARISON

This section seeks to demonstrate the correctness of the
results obtained with concept 1.0. This is done by comparing
the power spectra of concept 1.0 simulations to those of
similar gadget simulations. This strategy thus presupposes
the correctness of gadget itself, which is well motivated
by its wide usage and thorough testing over the past two
decades.

3.1 Simulation setup

GADGET-like CONCEPT simulations A large effort has
gone into making concept consistent with general relativis-
tic perturbation theory. Thus, the large-scale power spectrum
obtained from concept simulations should agree with that
of linear Einstein-Boltzmann codes such as class (Blas et al.
2011), which is successfully demonstrated in Tram et al.
(2019); Dakin et al. (2019c,b). To this end, concept makes
use of the full class background and employs the N -body
gauge framework. Initial conditions generated by concept
are thus in N -body gauge. During simulation, this gauge is
preserved by continually applying linear gravitational effects

Table 1. Cosmological parameters used for all simulations.

Parameter Value
H0 67 km s−1 Mpc−1

Ωb 0.049
Ωcdm 0.27
As 2.1× 10−9

ns 0.96

from the non-matter species19 to the particles, implemented
using PM techniques.

Besides concept, this strategy for making simulations
consistent with general relativistic perturbation theory is
further adopted by the pkdgrav3 code (Euclid Collaboration
et al. 2021), though gadget-4 remains purely Newtonian.
For a proper comparison between concept and gadget,
we then need to run concept in a ‘gadget-like’ mode. We
still generate all simulation initial conditions using concept
in its ‘standard’ mode, and so the simulations start off in

19 Here photons and neutrinos, both of which are necessarily part
of the class cosmology.
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14 Dakin, Hannestad & Tram

N -body gauge. This is contrasted with typical Newtonian
setups, where the initial conditions are in no well-defined
gauge at all, but has been back-scaled from the full, linear
a = 1 solution in order to ensure agreement with relativistic
perturbation theory on large scales at the present day. As we
do not apply radiation perturbations during the simulations
nor make use of back-scaled initial conditions, our simulations
are not consistent with either approach. We stress that this
does not affect the results in any appreciable way. What is
important for the comparisons is that concept and gadget
make use of exactly the same initial conditions and simulation
approach.

Leaving out the general relativistic correction kicks dur-
ing concept evolution is easy, as these are only applied once
explicitly specified in the parameter file. For the background
evolution, concept inherits the tabulated solution from
class (incorporating radiation), whereas gadget solves the
matter + Λ Friedmann equation internally. This simplified
background can be used within concept as well, in which
case it is likewise solved internally by the N -body code.
Lastly, the two codes differ in how they place the PM grid,
concept 1.0 using cell-centred grid values and gadget using
cell-vertex grid values. In effect, the PM grids of the codes
are relatively displaced by half a grid cell, Lϕ/2, in all three
directions. This makes a difference as the positions of the
particles in the initial conditions are specified with respect
to absolute space, not the PM grid. Though any effect on
results from a purely numerical aspect such as this goes to
demonstrate non-convergence of the solution, it is preferable
to use identical PM setups when the comparison is between
codes, as opposed to the absolute result. Thus for these tests,
all grids within concept (including that used for initial
condition generation) has been switched to cell-vertex mode.
With these changes to the standard concept setup, we are
ready to perform gadget-like concept simulations20.

Parameters All concept and gadget simulations in this
section use the cosmology as specified in Table 1 and other
simulation parameters as specified in Table 2, with non-
listed parameters taking on default21 concept 1.0 values. For
gadget parameters that do not have a concept equivalent,
we likewise seek to employ default values. However, gadget-2
does not have a proper notion of default parameter values,
and so we specify our chosen parameter values specific to
gadget-2 in Table 3, with parameters not listed there (nor in
Tables 1 or 2) taking on values as suggested by the gadget-2
user guide (Springel 2005a).

We settle for N = 10243 particles and thus a PM
grid of size nϕ = 2048, and run simulations for box sizes
Lbox ∈ {2048, 1024, 512, 256}Mpc/h. All power spectra are
computed with concept using a grid similarly of size 2048,
employing PCS interpolation and interlacing (Hockney &
Eastwood 1988).

20 The documentation includes a section on how to perform
gadget-like simulations in practice.
21 concept inherits non-specified cosmological parameters from
class.

Table 2. Simulation parameters used for all simulations unless
explicitly stated otherwise, with the number of particles N and
the box size Lbox as free parameters.

Parameter Symbol Value
Softening length ε 0.03Lbox/

3√N
PM grid size nϕ 2 3√N
Short-/long-range force split scale xs 1.25Lbox/nϕ
Short-range cut-off xr 4.5xs
Initial scale factor abegin 0.01

Table 3. Simulation parameters specific to gadget.

Parameter Value
MaxSizeTimestep 0.03
TypeOfOpeningCriterion 1
ErrTolForceAcc 0.005
TreeDomainUpdateFrequency 0.1

Table 4. Parameters for high-precision gadget-2 simulations.

Parameter Value
ErrTolForceAcc 0.001
TreeDomainUpdateFrequency 0.05

3.2 Comparison to GADGET

In Figure 4 we show absolute power spectra from the
concept and gadget-2 simulation in the 512 Mpc/h box.
Very good agreement between the codes is evident for all
scales and times. This is impressive given that the non-linear
power grows by more than a factor of 2× 105 during the
course of the simulations, and that the non-linear small-scale
power at z = 0 is more than 30 times greater than its linear
counterpart, demonstrating high non-linearity.

For a more precise comparison between the concept
and gadget results, their relative power spectra are shown
in Figure 5, this time for all four box sizes. Here we see
extraordinary good agreement between the two codes, for
all scales and times irrespective of the box size. In all cases,
the power spectra agree almost perfectly at large scales.
Below some particular scale the results begin to diverge,
with concept predicting slightly less power than gadget
for large box sizes and early times (low clustering) and
slightly more power than gadget for small box sizes and
late times (high clustering), culminating in ∼ 1 % difference
at the Nyquist scale.

Choosing a 1 ‰ relative difference as a proxy for the
scale at which the results begin to diverge from each other,
we find this scale to be kdiv ≈ 24 × 2π/Lbox, meaning it
is relative to the resolution of the simulation(s) and does
not depend on some absolute scale. That is, the difference
between the codes is roughly independent on the box size /
particle resolution. This 1 ‰ relative difference is shown in
Figure 5 as the innermost grey bands.

We do see some difference as we vary the box size. In par-
ticular, concept predicts slightly less power than gadget
for large boxes and slightly more power than gadget for
small boxes. As the main difference between the codes is
that gadget approximates the short-range force using a tree
while concept does not, we might hope that this difference
is the main source of their disagreement. To test this we ad-
ditionally run gadget-2 using higher-precision tree settings
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https://jmd-dk.github.io/concept/tutorial/gadget.html


The cosmological simulation code concept 1.0 15

100

101

102

k
3/

2 P
[(M

pc
/
h

)3/
2 ]

...
...

.

0.1 1
k [h/Mpc]

10−3

concept 1.0

gadget-2

linear

concept 1.0

gadget-2

linear

z = 0
z = ½
z = 1
z = 2
z = 3
z = 5
z = 10
z = 99

Figure 4. Evolution of the power spectrum in concept 1.0 and
gadget-2 simulations with N = 10243 particles in a 512 Mpc/h
box. For reference, the linear power spectrum is shown as well.
Due to the large gap between the initial power at z = 99 and the
power at the first output time z = 10, the vertical axis has been
broken in two. We plot k3/2P rather than P or k3P as this results
in less steep spectra, allowing for a more detailed view.

as listed in Table 4 (all other parameters stay the same),
rebuilding the tree anew more frequent and traversing it
more deeply. The results of such high-precision gadget-2
simulations are also shown in Figure 5, compared against the
same concept result as before. For all boxes, increasing the
tree precision of gadget has the effect of lowering the power,
leading to better agreement with concept for the smaller
box sizes. Interestingly, improving the tree approximation
worsens the agreement for the larger box sizes. This is most
likely related to the “fuzzy short-range interaction boundary”
of gadget-2 discussed further down.

Increasing the precision of the tree force as in Ta-
ble 4 has another effect. Looking carefully at all but the
smallest box size of Figure 5, we see that the large-scale
power spectra very slightly disagree (at a few tens of a
per mille) for the ‘standard’-precision gadget simulations,
whereas this constant offset drops by a factor ∼ 10 with
the high-precision gadget runs. We stress that even with
the ‘standard’-precision gadget runs, this constant off-
set is very tiny. Indeed, in order to obtain this good of
an agreement we have had to update the values of vari-
ous physical constants used in gadget-2 to match the ex-
act values used in concept 1.0. Here the most important
one is probably the gravitational constant, which gadget-2
sets to G = 6.672× 10−11 m3 kg−1 s−2 whereas concept 1.0
uses the latest value from the Particle Data Group (2020)
G = 6.674 30× 10−11 m3 kg−1 s−2. Without this matching of
the values of physical constants, the constant offset between
gadget-2 and concept 1.0 grows by a factor ∼ 2.5.

The relative spectra at the largest scales for the largest
box size Lbox = 2048 Mpc/h develops a slight but persistent
wiggle early on. This effect not only remains but worsens for
still larger boxes, and so it is associated with large physical
scales, irrespective of the simulation resolution. The feature
is robust against increased temporal precision of either code,
and also against lowering the tree opening angle of gadget.
However, the wiggle can be made to completely disappear by
running gadget with a slightly increased short-range cut-off

scale, xr & 5.0xs. This is surprising, as the short-range force
should have no effect on the largest scales. Indeed, running
concept with a similarly increased xr only perturbs its
spectrum at small scales, leaving the larger scales invariant.

While Figure 5 does not show the case of increased xr
for the largest box size Lbox = 2048 Mpc/h, it does show
xr = 5.5xs for Lbox = 512 Mpc/h at early times, which we see
reduces the discrepancy between concept 1.0 and gadget-2
to the point where they now agree at the per mille level at
all relevant scales. We believe this to be explained by the
cut-off xr being strictly enforced at the particle-particle level
in concept 1.0, whereas the tree in gadget-2 makes this
cut-off somewhat fuzzy due to the physical extent of its nodes.
At low clustering this difference ought to be especially pro-
nounced as a lot of precise force-cancellation takes place for
the near-homogeneous particle distribution. Including even
slightly different sets of particles in any given force computa-
tion then start to make a significant difference. In Figure 5
we indeed only find a deficit of power in gadget-2 relative
to concept 1.0 at low clustering (large boxes and/or early
times). Increasing xr pushes the fuzzy interaction boundary
in gadget-2 to greater distances, with the short-range force
exponentially decaying, decreasing its significance. We note
that no drastic change to the late-time relative spectrum
comes about due to the increase in xr, hence why Figure 5
only shows the xr = 5.5xs case at early times. Also note-
worthy is the fact that the xr = 5.5xs lines of Figure 5 use
the high-precision settings for gadget-2, without which the
increase of the cut-off scale from xr = 4.5xs to xr = 5.5xs
actually degrades the agreement with concept 1.0 at all
times.

4 CODE PERFORMANCE

With the correctness of concept 1.0 established by the pre-
vious section, we now set out to demonstrate various perfor-
mance aspects of the code, both internally and by comparison
to gadget-2/4. All simulations employed in this section use
the cosmology as specified in Table 1 along with other sim-
ulation parameters as specified in Table 2, just as in the
previous section.

All simulations (of this and the previous section) are
carried out on the Grendel compute cluster at Centre
for Scientific Computing Aarhus (CSCAA), using com-
pute nodes consisting of two 24-core Intel Xeon Gold
6248R CPUs at 3.0 GHz, interconnected with Mellanox
EDR Infiniband at 100 Gbit/s. Both concept 1.0 and
gadget-2/4 are built using GCC 10.1.0 with optimisa-
tions -O3 -funroll-loops -ffast-math -flto and linked
against FFTW 3.3.9 (concept 1.0 and gadget-4) or 2.1.5
(gadget-2), itself built similarly though without link-time
optimisations -flto. All of concept 1.0, gadget-2/4 and
FFTW 2/3 are run in double-precision. All is linked against
and run with OpenMPI 4.0.3.

4.1 Weak scaling

Here we study the ‘weak’ scaling of concept 1.0, i.e. how
the computation time is affected for increased problem size
while keeping the computational load per process fixed. That
is, we hold Lbox ∝ 3√N and np ∝ N for varying N , np
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Figure 5. Relative power spectra between concept 1.0 and gadget-2, for simulations with N = 10243 particles and four different box
sizes. The relative spectra are shown at various times, with the initial time z = 99 left out as here the concept and gadget spectra match
exactly by construction. The full lines correspond to gadget-2 simulations using the ‘standard’ gadget-2 precision settings of Table 3.
For late times, the same concept spectra are additionally shown relative to gadget-2 spectra from simulations using the high-precision
settings of Table 4, using dashed lines. For the 512 Mpc/h box, we additionally show the case of increased xr = 5.5xs (in both concept 1.0
and high-precision gadget-2) at early times. Grey bands mark relative errors of 1 %, ½ % and 1 ‰. For each panel, the k axis extends to
the Nyquist scale of the particle grid, kNyquist = 3√N/2× 2π/Lbox = 1024π/Lbox.

being the total number of MPI processes, each running on
a dedicated CPU core. For perfect weak scaling, increasing
the problem size together with the number of CPU cores in
lockstep should not incur any increase to the computation
time.

Choosing Lbox = 2 3√N Mpc/h and N/np ∼ 2043, the
weak scaling of concept 1.0 is shown in Figure 6. From the
top panels, we see that the short-range computation exhibits
almost perfect weak scaling at early times and still reasonably
good weak scaling at late times. The long-range computation
has a less optimal scaling, even overtaking the short-range
computation at early times when having many processes. This
suboptimal scaling of the long-range computation is owed
mostly to the FFTs, as evident from the dashed orange lines
having similar shape to the full orange lines but with steeper
slope. At late times the computation time is completely
dominated by the short-range computation, rendering the
bad scaling of the long-range part ignorable. In all, this leads
to reasonably good overall weak scaling of concept 1.0.

Looking at the lower panel of Figure 6, the suboptimal
weak scaling of the long-range computation is again evident,
here as a clear separations between (most of) the dashed
lines. The long-range computation time is however close
to constant throughout the simulation. For the short-range

times, the different simulations follow each other closely,
though still with larger simulations being somewhat slower.
The cost of the short-range computation increases as the
universe becomes more clustered. Here this effect kicks in
at z ∼ 10 and continues to the present day. This increase
is caused by the particle-particle interaction count going
up with the amount of clustering. As the load imbalance
remains small even at late times and high core count, this is
not a significant factor in the slowdown of the short-range
computation over the course of the simulation time span.

4.2 Strong scaling

Here we study the ‘strong’ scaling of concept 1.0, i.e. how
the computation time is affected when increasing the number
of CPU cores used within the simulation, keeping everything
else fixed. That is, for some chosen Lbox and N we vary np.
For perfect strong scaling, the computation time is required to
drop linearly with the number of cores, i.e. the computation
time should be inversely proportional to the computational
firepower thrown at the problem.

Figure 7 shows the strong scaling of concept 1.0 for
Lbox = 1024 Mpc/h, N = 5123. The short-range computa-
tion scales very well, especially at early times, as evident from
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Figure 6. Weak scalability for concept 1.0 simulations in boxes of size Lbox = 2 3√N Mpc/h, keeping the particle load per process N/np
roughly fixed at 2043 particles. The simulations range from serial all the way to 1024 cores and 20483 particles. The top panels show the
wall-clock computation time per time step near the beginning z ∼ 99 and end z ∼ 0 of the simulations, averaged over 8 time steps. Full
lines show the total computation time and its dominant components, namely the short-range and long-range gravitational computations.
The FFT part of the long-range computation is further separated out and shown using dashed lines. Finally, perfect weak scaling of the
total computation time is shown with dotted lines. We cannot explain the dip at np = 2, which is seen in both the short- and long-range
computation time. The dip at np = 512 is caused by having slightly smaller particle load per process than usual (note that this dip
appears even in the perfect scaling). Here we ought to use N ≈ 16323, but nϕ = 2 2√N must be divisible by np = 512 due to restrictions
in concept (the FFTW slabs must be evenly divisible amongst the processes).
The lower panel shows the evolution of the computation time over the simulation time span for every other simulation, averaged over 8
time steps. Here only the short-range (full) and long-range (dashed) computation times are shown. Towards z = 0 the load imbalance
can be seen as a widening of the short-range lines, with the widths given by twice the standard deviation of the individual short-range
computation times among the processes within a given simulation. The redshift z axis is shown as scaling linearly with the simulation
time steps.

the upper panels of the figure. The long-range computation
shows a somewhat worse strong scaling behaviour than the
short-range computation, even overtaking as the dominant
computation for high core counts at early times. As evident
from the similar shape of the full and dashed orange curves,
this behaviour is caused to the FFTs.

The sudden jump in the trend line of the long-range
computation time at np ≥ 32 is probably explained by the
np < 32 simulations all running entirely within a single CPU,
whereas the np ≥ 32 simulations all utilise several CPUs,
even distributed over several compute nodes for np ≥ 64. As
the short-range computation vastly dominates at later times,

this suboptimal strong scaling of the long-range force is not
an issue in practice. In total, this makes the overall strong
scaling of concept 1.0 reasonably good.

The top panels of Figure 7 includes the odd case of
np = 37, a prime. This is to demonstrate that concept 1.0
may be run with any number of processes and that the nature
of this number does not significantly affect its performance.
The computation time of the FFTs does increase noticeably,
but as usual this effect is dwarfed by the dominance of the
short-range computation at late times. Over the course of a
whole simulation then, the nature of np is of little importance.

For the lower panel of Figure 7, decent strong scalings
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Figure 7. Strong scalability for concept 1.0 simulations with N = 5123 particles in a box of size Lbox = 1024 Mpc/h. The simulations
range from serial all the way to 1024 cores, corresponding to a load ranging from 5123 to ∼ 503 particles per core. The top panels show the
wall-clock computation time per time step near the beginning z ∼ 99 and end z ∼ 0 of the simulations, averaged over 8 time steps. Full
lines show the total computation time and its dominant components, namely the short-range and long-range gravitational computations.
The FFT part of the long-range computation is further separated out and shown using dashed lines. Finally, perfect strong scaling of the
total computation time is shown with dotted lines. In addition to having the number of processes being powers of two, we further show
the case of np = 37 as disconnected dots. As concept requires nϕ to be divisible by np, this one simulation has been run with slightly
increased grid size nϕ = 1036 instead of the usual nϕ = 2 3√N = 1024 used for the other simulations.
The lower panel shows the evolution of the computation time over the simulation time span for every other simulation, averaged over 8
time steps. Here only the short-range (full) and long-range (dashed) computation times are shown. Towards z = 0 the load imbalance
can be seen as a widening of the short-range lines, with the widths given by twice the standard deviation of the individual short-range
computation times among the processes within a given simulation. The redshift z axis is shown as scaling linearly with the simulation
time steps.

of the short- and long-range computations are evident from
the nearly equidistant separations between the lines. As for
the weak scaling results of Figure 6, we again find the com-
putation time of the long-range force to be mostly invariant
over the simulation time span, and that the cost of the short-
range computation increases as the universe becomes more
clustered. At late times, load imbalance starts to become sig-
nificant for the simulations with large core counts, degrading
the strong scaling.

4.3 Absolute performance

The above explorations of the weak and strong scaling of
concept 1.0 demonstrate excellent scaling behaviour when
increasing the problem size N and/or the core count np.
Keeping both of these fixed, the computation time required

for a given simulation depends on the level of clustering,
which in turn depends on the particle resolution through the
box size Lbox. We thus now want to investigate the absolute
performance of concept 1.0 as a function of the particle
resolution, which we do by comparing the total computation
time of concept 1.0 simulations to equivalent gadget-2
simulations.

Even though Figure 5 generally demonstrates improved
agreement between concept 1.0 and gadget-2 for the high-
precision gadget settings of Table 4, we here exclusively
run gadget with the ‘standard’ settings of Table 3. We
choose to do so as it would be unfair not to allow gadget
to make good use of its tree approximation when comparing
performance, given that the observed improvements brought
about by the high-precision settings are relatively minor. For
the two larger boxes of Figure 5, running gadget-2 with the
high precision settings only incurs a performance hit of a
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Figure 8. Scalability across particle resolutions for concept 1.0
and gadget-2 simulations with N = 5123 particles, all run using
64 processes evenly distributed across two dedicated compute
nodes. The wall-clock computation times of entire simulations
are plotted against the box size Lbox, from a very large box
Lbox = 4096 Mpc/h down to a very small box Lbox = 96 Mpc/h.
Alternatively, the horizontal axis may be viewed in terms of the
Nyquist scale of the particle grid, kNyquist = 3√N/2× 2π/Lbox =
512π/Lbox. The blue line is a linear (in kNyquist) fit to the
gadget-2 points, whereas the full orange line is a fit to the
concept 1.0 points using separate linear behaviour at either end
and a sigmoid transition between the two. The dashed orange
line is constructed from the full orange line by subtracting wasted
short-range computation time due to load imbalance, and so rep-
resent the absolute performance of concept 1.0 had it contained
a perfect load balancing scheme.

few percent, though this grows to ∼ 30 % for the two smaller
boxes.

In Figure 8 we plot the total computation times
of concept 1.0 and gadget-2 simulations for various
box sizes, corresponding to Nyquist scales of the parti-
cle grid ranging from kNyquist ∼ 0.4h/Mpc to kNyquist ∼
17h/Mpc. For kNyquist . 5 Mpc/h concept 1.0 is much
faster than gadget-2, whereas gadget-2 is much faster
than concept 1.0 for kNyquist & 5 Mpc/h.

We believe that the superior performance of concept 1.0
at low to moderate clustering has two primary causes.
First, the non-hierarchical tile + subtile data structure of
concept 1.0 is much faster to traverse than the tree struc-
ture of gadget, due to simple, precomputed access patterns
and minimal pointer chasing. At low clustering, all particles
have a similar number of short-range interaction partner
particles, and so the benefits of the grouping carried out
by the tree is minimal. At stronger clustering, the number
of particle-particle short-range interactions increases drasti-
cally, which is then efficiently approximated by much fewer
particle-node interactions using the tree, outweighing the
more expensive tree walk. Second, concept 1.0 employs a
much coarser time-stepping at high redshift than gadget,
as discussed in section 2.2. As evident from Figure 5 this
does not induce noticeable artefacts in the solution.

The slowness of concept 1.0 at very high resolution
means that it is currently impractical to use the code for

simulations in this regime. Though a tree implementation in
concept would undoubtedly speed up the expensive short-
range computation at these resolutions, Figure 5 reveals a
more important possible optimisation; load balancing. Cur-
rently concept does no attempt at balancing the computa-
tional load across the CPU cores, as discussed in section 2.1.3.
At large clustering, this leads to correspondingly large load
imbalance of the short-range computation, as visible in e.g.
the lower panel of Figure 7. The dashed line in Figure 8 shows
the theoretical computation time of concept 1.0 runs with
the load perfectly balanced (assuming the balancing itself is
cost free), and as so represents the best performance improve-
ment we can hope to obtain were we to build load balancing
into concept. Though still slower than gadget-2 for runs
with very high resolution, this alone would be enough to
make it feasible to perform such simulations with concept.

The data points of Figure 8 are fitted to trend-lines. In
the case of gadget-2, a simple linear fit match the data
nicely. In the case of concept 1.0, the scaling behaviour is
less trivial. In the low-resolution regime concept 1.0 exhibits
linear scaling as well. The other extreme is more tricky to
gauge due to scarcity of data, but the fits suggests that here
too it moves towards (a different) linear scaling, both in the
actual case and with perfect load balancing. The different
scaling behaviours at the two ends reflect the fact that at
high resolution the short-range force completely dominate
the computational budget, whereas at low resolution the long-
range computation is comparably (if not more) expensive. In
the case of gadget, but the short- and long-range computa-
tion scales as O(N logN), and so shifting the computational
burden from one to the other does not significantly change
the scaling behaviour.

4.4 Memory consumption

With the previous subsections having thoroughly investigated
the time complexity of concept 1.0, let us now turn to its
space complexity (consumption of memory).

To understand the memory usage of concept 1.0 we
simply tally up the memory consumed by its major data
structures, most important of which are the particle data
arrays and the P(3)M mesh. The canonical vector variables
of each particle contribute to the memory budget with 3
triplets of 8-byte (i.e. double precision) floats (position xi,
momentum qi, momentum update ∆qi), as well as 3 1-byte
integers for keeping track of the rung `i. The tiling brings in
another 8-byte integer per particle. At late times the number
of allocated particles somewhat exceeds N due to particle
exchange between the processes. The memory spent on the
particles thus slightly increases during the simulation, why
the above memory consumption should be scaled up by some
small factor, say ∼ 1.25.

Each of the n3
ϕ P(3)M grid cells store an 8-byte float, with

3 such global grids present in memory (domain-decomposed
potential, slab-decomposed potential, force). All together,
this yields a memory consumption ofM ≈ (104N+24n3

ϕ) B,
where B is a byte. The tiles and their pre-computed pairings
further contribute noticeably to the total memory, as do
various buffers. Aided by measurements, we find the true
memory consumption to be closer to

M ≈ (120N + 28.3n3
ϕ) B , (44)
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Figure 9. Memory scalability for concept 1.0 simulations in boxes
of size Lbox = 2 3√N Mpc/h at z = 0. While the blue points are
data, the blue line is the estimate (45). The dotted black line is
perfect scaling M ∝ N , with outset in the np = 2 data (the serial
case np = 1 is not representative due to a lack of communication
buffers).

given the P3M parameters (37).
Factoring in communication buffers and ghost layers,

the memory consumption further depends on the number of
processes np. Finally, libraries loaded by the code provide a
constant minimum memory usage. In total, a good memory
estimate for concept 1.0 comes out as

M ≈ (0.119 + 0.144np + 3.46× 10−7N) GB , (45)

where our standard choice (38) has been used to eliminate
n3
ϕ in favour of N .

Figure 9 demonstrates the validity of the memory
estimate (45) for fixed particle resolution. We see that
concept 1.0 follows this estimate nicely, and that the term
proportional to N dominates for typical setups, leading to
perfect scaling M ∝ N . Higher particle resolutions will come
at a somewhat higher proportionality factor, though with
this scaling retained.

The memory usage (44) is very similar to what is re-
ported for gadget-2 in Springel (2005a), namely ∼ 110
bytes per particle and 24–32 bytes per P3M grid cell, though
this can be halved if using single-precision. While not feasi-
ble with concept 1.0 due to vastly increased computation
time, gadget may be run with a smaller P3M grid than
our standard choice (38), significantly reducing the memory
requirement. As lowering nϕ shifts more of the computa-
tional burden onto the short-range computation, Figure 8
demonstrates this difference between the two codes nicely,
with higher resolution corresponding to more expensive short-
range computations and thus smaller nϕ. We note that de-
creasing nϕ from 2 3√N to e.g. 1 3√N does make gadget
significantly slower as well, but by an acceptable amount in
the case of limited memory resources.

In practice, the availability of memory resources is rarely
a limiting factor for most N -body simulations, with modern
HPC CPUs each having access to hundreds of GB of RAM.
With the total memory of simulations scaling as M ∝ N
and the total computation time as (at best) ∝ N logN , the

availability of memory will only become less of a problem
in the future, assuming similar advances in computational
throughput and memory technology.

4.5 Internal data structures

The P3M method of concept 1.0 employs both temporal
and spatial adaptiveness in the form of rung-based parti-
cle time-stepping as described in section 2.2.2 and dynamic
domain-specific subtiling as described in section 2.1.3. With
the overall code performance showcased in the previous sub-
sections, let us now take a closer look at these dynamic data
structures as a function of time and particle resolution.

4.5.1 Rung population

The left panel of Figure 10 show the rung population at
z = 0 in simulations of different particle resolution. For
very large boxes, only the few — here 4 — lowest rungs
are populated. Increasing the particle resolution (lowering
the box size) leads to migration of particles to higher rungs,
slowly draining rung 0 and now populating rungs 4 and 5 as
well. This is expected from the larger particle accelerations
(see (42)) induced by the increased amount of clustering.

For kNyquist & 2h/Mpc however, the trend reverses and
particles jump back down to the lower rungs. We can under-
stand this perhaps surprising find by considering the interplay
between rungs `i (42) and the global time step size ∆t. From
Figure 2 we see that we require Lbox & 2 3√N Mpc/h in order
for the P3M limiter not to dictate a lowering of ∆t near z = 0.
That is, Lbox ∼ 2 3√N Mpc/h is the smallest box one can
choose before the global time step size is decreased as a result,
and so this box size has the largest ∆t in relation to the
amount of clustering. As Lbox ∼ 2 3√N Mpc/h corresponds
to kNyquist = 1.57h/Mpc, this exactly matches the observed
behaviour of the left panel of Figure 10. We note that rungs
` > 5 are obtainable through increased clustering, e.g. as
the result of increasing the amplitude As of the primordial
perturbations.

The right panel of Figure 10 shows the time evolution
of the simulation with Lbox = 2 3√N Mpc/h or equivalently
kNyquist = 1.57h/Mpc. All particles start at rung 0 and stays
there until a little after z = 10, after which rungs 1–3 are
quickly populated, followed by rung 4 at z ∼ 4 and finally
rung 5 at z ∼ 1.5, though with each higher rung occupying
much fewer particles than the ones below. That non-linearity
commence at around z ∼ 10 is consistent with the sudden
increase in short-range computation time seen in e.g. the
lower panel of Figure 7, which we now understand as arising
from an increase in kick operations due to additional rungs
being populated.

The bulby look of the evolution of each rung count on
the right panel of Figure 10 reflects the time step cycles of 8
steps, as described in section 2.2.1. At the end of each cycle,
the global time step ∆t is allowed to increase, prompting
higher rungs as specified by (42). With all particles moving
to their newly assigned rung before the next cycle begins,
this results in steep increases to the count of rungs ` > 0.

At z ∼ 1 a qualitative change in behaviour is seen for
the rung population of the right panel of Figure 10, where
instead of migrating to higher rungs with time, the particles
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Figure 10. Distribution of particles across rungs in concept 1.0 simulations with N = 5123 particles. The left panel shows stacked
bar charts of the rung distribution at z = 0 for simulations with different box sizes Lbox or equivalently different particle resolutions
kNyquist = 3√N/2 × 2π/Lbox = 512π/Lbox. In all cases rung 0 is the most populous one, with the particle count within each rung
rapidly declining for the higher rungs. Rungs 4 and 5 are only populated at intermediate box sizes, with particles within simulations in
very large or very small boxes only occupying rungs 0–3. The right panel shows the temporal evolution of the rung population for the
Lbox = 1024 Mpc/h simulation, averaged over 8 time steps. All particles start on rung 0 and only begins to jump to higher rungs after
z = 10. The redshift z axis is shown as scaling linearly with the simulation time steps.

all more or less stay on their given rung throughout the rest
of the simulation. Once more we can understand this from
Figure 2, where z ∼ 1 ⇒ a ∼ 0.5 is where the P3M limiter
begins to dominate, no longer allowing the global time step
size ∆t to drastically increase with each finished time step
cycle. As the value of the P3M limiter is determined by the
root mean square velocity of the particle distribution itself
(see section 2.2.1), the global time step ∆t is now evolved
in sync with the velocity distribution of the particles, hence
why the particles now remain satisfied occupying the same
rung for the rest of the simulation. Looking again at the
lower panel of Figure 7 or Figure 6, this change in behaviour
is once again seen in the short-range computation times, as
the slopes suddenly decrease at z ∼ 1. As the z axes are all
shown as scaling linearly with time steps (as opposed to e.g.
z itself, a or t), this slope is proportional to the increase in
computation time from one step to the next

4.5.2 Subtile decomposition

5 DISCUSSION AND CONCLUSIONS

Summary. State where CONCEPT shines and where it does
not. Discuss possible future upgrades regarding features and
performance improvements.

ACKNOWLEDGEMENTS

We wish to thank Volker Springel for valuable discussions, in
particular on the code comparison between concept 1.0 and
gadget-2/4. We are thankful to Tiago Castro for pointing
out several bugs and shortcomings of concept prior to the
1.0 release. We acknowledge computing resources from the

Centre for Scientific Computing Aarhus (CSCAA). This work
was supported by the Villum Foundation.

REFERENCES

Angulo R. E., Pontzen A., 2016, Monthly Notices of the Royal
Astronomical Society: Letters, 462, L1

Barnes J., Hut P., 1986, Nature, 324, 446
Behnel S., Bradshaw R., Citro C., Dalcin L., Seljebotn D. S.,

Smith K., 2011, Computing in Science & Engineering, 13, 31
Bertschinger E., 1998, Ann.Rev.Astron.Astrophys., p. 599
Blas D., Lesgourgues J., Tram T., 2011, JCAP, 1107, 034
Cooley J. W., Tukey J. W., 1965, Math. Comput., 19, 297
Couchman H., 1991, Astrophys.J.Lett., 368, L23
Dakin J., Brandbyge J., Hannestad S., Haugbølle T., Tram T.,

2019a, Journal of Cosmology and Astroparticle Physics, 2019,
052

Dakin J., Hannestad S., Tram T., 2019b, Journal of Cosmology
and Astroparticle Physics, 2019, 032

Dakin J., Hannestad S., Tram T., Knabenhans M., Stadel J.,
2019c, Journal of Cosmology and Astroparticle Physics, 2019,
013

Efstathiou G., Eastwood J. W., 1981, Mon. Not. Roy. Astron.
Soc., 194, 503

Euclid Collaboration et al., 2021, Monthly Notices of the Royal
Astronomical Society, 505, 2840

Ewald P. P., 1921, Annalen der physik, 369, 253
Fornberg B., 1988, Mathematics of computation, 51, 699
Frigo M., Johnson S. G., 2005, Proceedings of the IEEE, 93, 216
Harris C. R., et al., 2020, Nature, 585, 357
Hernquist L., Bouchet F. R., Suto Y., 1991, The Astrophysical

Journal Supplement Series, 75, 231
Hockney R. W., Eastwood J. W., 1988, Computer simulation using

particles
Hockney R. W., Goel S., Eastwood J., 1974, Journal of Computa-

tional Physics, 14, 148
Hoerner S., 1960, Z. Astrophys.., 50, 180

MNRAS 000, 1–24 (2021)

http://dx.doi.org/10.1038/324446a0
http://dx.doi.org/10.1088/1475-7516/2011/07/034
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.1088/1475-7516/2019/02/052
http://dx.doi.org/10.1088/1475-7516/2019/06/032
http://dx.doi.org/10.1088/1475-7516/2019/06/032
http://dx.doi.org/10.1088/1475-7516/2019/08/013
http://dx.doi.org/10.1093/mnras/194.3.503
http://dx.doi.org/10.1093/mnras/194.3.503
http://dx.doi.org/10.1093/mnras/stab1366
http://dx.doi.org/10.1093/mnras/stab1366
http://dx.doi.org/10.1038/s41586-020-2649-2


22 Dakin, Hannestad & Tram

96128192256384512768
1024

Lbox [Mpc/h]

0.0

0.2

0.4

0.6

0.8

1.0

su
bt

ile
di

st
ri

bu
tio

n

20 10 5 3 2 1 0.5 0
z

0.0

0.2

0.4

0.6

0.8

1.0

su
bt

ile
di

st
ri

bu
tio

n

Lbox = 128 Mpc/h

1 × 1 × 1
2 × 2 × 2
3 × 3 × 3
4 × 4 × 4
5 × 5 × 5
6 × 6 × 6
7 × 7 × 7
8 × 8 × 8
9 × 9 × 9
10 × 10 × 10

1.57
2.09

3.14
4.19

6.28
8.38

12.6 16.8
kNyquist [h/Mpc]

Figure 11. Distribution of subtile decompositions across the domains for simulations with N = 5123 particles run on 64 processes.

1 × 1 × 1

2 × 2 × 2

3 × 3 × 3

4 × 4 × 4

5 × 5 × 5

6 × 6 × 6

7 × 7 × 7

8 × 8 × 8

9 × 9 × 9

dynamic

subtile decomposition

20

22

24

26

28

to
ta

ls
ho

rt
-r

an
ge

co
m

pu
ta

tio
n

tim
e

[h
r]

5 3 2 1 0.5 0
z

−20 %

−10 %

0

10 %

20 %

sh
or

t-
ra

ng
e

co
m

pu
ta

tio
n

tim
e

pe
r

st
ep

re
la

tiv
e

to
su

bt
ile

de
co

m
po

si
tio

n
1

×
1

×
1

Figure 12. Computation times for the short-range force in simulations with N = 5123 particles in a box of size Lbox = 192 Mpc/h, run
on 64 processes.

Monaghan J. J., Lattanzio J. C., 1985, Astronomy and astro-
physics, 149, 135

Particle Data Group 2020, Progress of Theoretical and Experi-
mental Physics, 2020, 083C01

Peebles P. J. E., 1980, The large-scale structure of the universe
Plummer H. C., 1911, Monthly notices of the royal astronomical

society, 71, 460
Quinn T., Katz N., Stadel J., Lake G., 1997, arXiv preprint astro-

ph/9710043
Sefusatti E., Crocce M., Scoccimarro R., Couchman H. M. P.,

2016, Monthly Notices of the Royal Astronomical Society, 460,
3624

Springel V., 2005a, Max-Plank-Institute for Astrophysics, Garch-
ing, Germany

Springel V., 2005b, Mon. Not. Roy. Astron. Soc., 364, 1105
Springel V., Pakmor R., Zier O., Reinecke M., 2020, arXiv preprint

arXiv:2010.03567

Tram T., Brandbyge J., Dakin J., Hannestad S., 2019, Journal of
Cosmology and Astroparticle Physics, 2019, 022

de Leeuw S. W., Perram J. W., Smith E. R., 1980, Proceedings of
the Royal Society of London. A. Mathematical and Physical
Sciences, 373, 27

APPENDIX A: OTHER CODE ASPECTS

The purpose of this section is to provide brief overviews
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A1 Additional features

Though this paper focuses on the core N -body functionality
of P3M and adaptive time-stepping, concept 1.0 in fact
contains a lot of additional features. Here some of these are
briefly listed.

Multiple possible non-linear components using either a
particle or fluid representation; cold dark matter, decaying
cold dark matter (Dakin et al. 2019b), massive neutrinos
(Dakin et al. 2019a). Various parameters are tunable at a
per component basis.
Linear components allowing for simulations consistent

with general relativistic perturbation theory; photons, mas-
sive/massless neutrinos (Tram et al. 2019), dynamical dark
energy (Dakin et al. 2019c), dark radiation (Dakin et al.
2019b).

On-the-fly initial condition generation of all implemented
species, either using standard Gaussian noise or the ‘paired
and fixed’ technique of Angulo & Pontzen (2016).
Complete integration of class (Blas et al. 2011), used

to obtain background values such as a(t) and linear per-
turbations for initial conditions and linear components. All
perturbations are transformed to N -body gauge so that sim-
ulation results can be interpreted in a relativistic setting
(Tram et al. 2019).

Output: Power spectra (data, image), 2D renders (data,
image, terminal visualisation), 3D renders (image), snapshots.
concept 1.0 implements its own snapshot format capable
of storing particle and fluid components, as well as the full
specification of the well-known gadget format (Springel
2005b).

Grids used for P(3)M (36), power spectra and 2D renders
may use any of the implemented interpolations (25)–(28)
with optional deconvolution as well as optional interlacing22

(Hockney & Eastwood 1988). The grid size of each component
is independent, with collective grids computed by adding
up (properly shifted) Fourier values, used when e.g. several
components contribute to the PM grid or when computing
combined auto-spectra of multiple components.

Various auxiliary utilities are included alongside the main
code, which provide functionality outside of running sim-
ulations, such as computing power spectra directly from
snapshots.

All user interaction happens through a script with discov-
erable command-line options, which handles building (on
modification) of the code and job execution or even submis-
sion via Slurm/TORQUE/PBS.
Complete and flexible installation script for automated

installation of concept 1.0 — along with all of its depen-
dencies — with no special permissions required. Successfully
tested on dozens of Linux clusters and laptops.
Docker images of concept 1.0 are freely available on

Docker Hub, convenient for quickly trying out the code.
Large suite of integration tests for continuous code vali-

dation. As the installation depends on online resources, the
installation along with the entire test suite is automatically
tested periodically on GitHub, with the latest result publicly
visible.

22 By default deconvolutions are always on, while interlacing is
enabled for power spectra but not for P(3)M.

Thorough documentation — including an expansive tuto-
rial — of how to use the code is publicly released together
with the source.

A2 Code language and build process

Though no knowledge of the internals of concept is needed
in order to make use the code, we here want to give a brief
overview as the technology employed is rather unique.

Today most scientific code gets written using higher-level
languages, probably mainly due to the rapid development
these languages and their ecosystems allow for. These lan-
guages are typically dynamical and interpreted, which comes
at a performance penalty. High-performance simulation codes
are thus still primarily written in low-level languages such
as Fortran, C and C++. While allowing for performant code
where needed, this also forces the lower level aspects upon the
rest of the code base, with no performance benefits. This gen-
erally makes the code harder to read and extend, especially
for the many scientists not fluent in such languages.

The most prevalent high-level language used for scientific
computing in the current era is arguably Python, which is
also the language chosen for concept. While performance
to some extent is obtainable through the use of libraries
such as NumPy (Harris et al. 2020) and FFTW (Frigo &
Johnson 2005), this is not enough to compete with high-
performance low-level codes such as gadget. To this end
concept makes heavy use of Cython (Behnel et al. 2011),
which translates Python code to equivalent C code, which
must then be compiled as any other C program. By further
specifying the types of key variables, the translated result
can be made as good as hand-written C.

While Cython does allow for seamless mixing of dynamic
Python code and typed “C-like” Python code, some of its
low-level features (e.g. access to raw pointers) require syntax
which breaks Python compatibility (meaning the code now
only runs after transpilation to C). As rapid development and
debugging relies heavily on the code being executable as a
pure Python script, concept effectively implements its own
language on top of Cython, with new Python-compatible
syntax for these missing functionalities.

While the raw concept source code may then be exe-
cuted directly in Python, it can alternatively (and preferably)
be built by first transpiling it to valid Cython code23 using
a custom built-in transpiler, after which the code is further
transpiled to C using the Cython transpiler, and then finally
compiled to machine code using a C compiler.

Besides serving as a bridge between Python and low-level
Cython, the built-in transpiler further enables quite a few
performance enhancements through direct source code trans-
formations. These include early run-time or even compile-
time expression evaluation, loop unswitching and iterator
inlining. Oftentimes these are optimisations which cannot
be applied by the C compiler itself and which are not easily
manually expressible in C.

23 While with standard Cython one has to further write a header
file per code file (as in C), we have automated this task as part of
the built-in transpiler. Thus the source code consists solely of the
bare Python files, with everything else generated from this.
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