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1
There are five point symmetry groups in three dimensions with order 6. In Schönflies
notation, they are denoted C6, C3h, C3v, D3 and S6.

(a) Counting the identity as a rotation, how many rotations do each group have?
How many reflections? How many rotoreflections?

We will examine each of the five groups in turn.

C6

This is the cyclic group of order 6. In 2D, this is the symmetry group of a regular hexagon
with directed sides. Clearly this group contains the six rotations around the center of the
hexagon, call them ci, i = 1, 2, . . . , 6. Taking c ≡ c1 to be the smallest non-zero rotation,
this must be a rotation of 2π/6. A general rotation by 2π/6× i is then indeed ci, where
the superscript can now be interpreted as a power. In particular, c6 = e. Thus a full
rotation of 2π is the same as doing nothing.

Since the hexagon have directed sides, no mirror planes perpendicular to the plane of
the hexagon exist. Because we consider the hexagon to reside in 2D space, the plane of
the hexagon must not be considered a mirror plane. We conclude that this group consists
purely of the rotations, and hence its presentation is

C6 =
{
c
∣∣ c6 = e

}
.

The group is thus generated by a single element c, which is exactly what is meant by a
cyclic group.

To summarize, the group contain only rotations and thus no reflections and no
rotoreflections. We may write this summary as

C6 =


rotations : e, c, c2, c3, c4, c5 (6)
reflections : (0)
rotoreflections : (0)

1
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C3h

The name of this group implies that it is constructed by appending a “horizontal” reflection,
call it σh, to the group C3, where C3 is analogous to C6, but replacing the regular hexagon
with a regular (equilateral) triangle, still remembering to make the sides directed. To
append the reflection σh, we now embed the triangle in 3D space, giving the triangle
an upper and a lower side. If these two sides are similar, reflection in the plane of the
triangle itself is a new symmetry, which is the one we associate with σh. Now that we are
dealing with 3D space, we might as well make the geometrical object 3D as well. This
can be done by simply extruding the triangle along the newly added dimension. Thus the
set of elements {c, c2, c3 = e, σh}, where c is now a rotation by 2π/3, is a subset of C3h.
As this is supposed to be a group of order 6, we miss 2 elements. That is, our set of 4
elements is not closed under composition, and thus do not form a group. The remaining
2 elements can then be constructed from c and σh. Geometrically it is clear that doing
a reflections and a rotation results in a new symmetry transformation, and so we may
take the remaining elements as cσh and c2σh. As these are compositions of rotations and
reflections, they are rotoreflections. The group elements can then be categorized as

C3h =


rotations : e, c, c2 (3)
reflections : σh (1)
rotoreflections : cσh, c

2σh (2)

C3v

This group is similar to C3h, but now the reflection σv is “vertical”, meaning perpendicular
to the plane of the triangle. In 2D space, this corresponds to the symmetry group of an
equilateral triangle, this time with undirected sides. Disregarding the third dimension
eliminate the horizontal reflection, and disregarding the directiveness of the sides allow
for vertical mirror planes. We can bring the triangle into 3D space by extruding once
gain, but this time we have to make these vertical faces directed vertically, in order not to
create an additional horizontal reflection symmetry. In analogy with C3h, the elements
of C3v are then {e, c, c2, σv, cσv, c

2σv}. In contrast to C3h, the elements cσv and c2σv
are not rotoreflections, but just reflections. This is clear geometrically, as the extruded
triangle have not just one vertical mirror plane (corresponding to σv), but actually three
vertical mirror planes. These two additional mirror symmetries can only be associated
with cσv and c2σv, which makes sense as the mirror planes are situated at an angle of
2π/3 relative to each other. Thus

C3v =


rotations : e, c, c2 (3)
reflections : σv, cσv, c

2σv (3)
rotoreflections : (0)

D3

To construct D3, we once again start with C3, which in 2D can be represented as the
symmetries of an equilateral triangle with directed sides. The D stands for dihedral,
meaning that we should remove the restriction of directed sides. The added symmetries
are then three reflections; those of C3v. If we now embed the triangle in 3D space, the
possibility of rotating the triangle by π through three axes in its plane arise, creating
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three additional symmetries. We now wish to eliminate the vertical reflections, which can
be done e.g. by coloring the vertical faces in such a manner as to break the reflection
symmetry but retaining the rotational symmetry about axes perpendicular to these faces.

Denote one of the new π-rotations by b, and the remaining two rotations can be taken
to be cb and c2b. It should be noted that although generally physically distinct, the
transformation b on the extruded triangle is equivalent to reflection in both the vertical
and horizontal plane, b = σhσv. In total,

D3 =


rotations : e, c, c2, b, cb, c2b (6)
reflections : (0)
rotoreflections : (0)

S6

As with C6, we may here think of an extruded, regular hexagon. This have horizontal
reflection symmetry, which we wish to reduce to rotoreflection symmetry. We can achieve
this by coloring each vertical face the horizontal mirror reversed of its neighbouring face(s).
This also reduces the C6 symmetry down to C3. The group elements in S6 are then the
three rotations e, c2, c4, where c is a 2π/6 rotation, together with the three rotoreflections
cσh, c3σh, c5σh.

Note that since opposing vertical faces are now painted differently, it does not matter
whether the sides of the original hexagon were directed or not.

In total, we have

S6 =


rotations : e, c2, c4 (3)
reflections : (0)
rotoreflections : cσh, c

3σh, c
5σh (3)

(b) For each of the five groups, draw or find a picture of an object with that point
symmetry group.

For each of the five point groups is drawn a 3D objects in 3D space with the corresponding
symmetry group. The chosen object is the triangular or hexagonal prism described in
(a) for each group. Directiveness of the sides are drawn as arrows on the vertical faces.
Instead of coloring in part of the faces, these arrows are simply placed asymmetrically.

For C6, a directed, regular hexagon in 2D was described, as we never needed the third
dimension. We now bring this object into 3D space and extrude it, making a hexagonal
prism. The directiveness of the hexagon is now drawn as an arrow on the extruded sides.
To remove any additional symmetries created by the 2D→ 3D transformation, we do not
place the arrow symmetrically in the center.

The 3D objects for the remaining four groups are drawn in a similar fashion. They
can all be seen in figure 1.

(c) Which of these groups (if any) are abelian?
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C6 C3h C3v

D3 S6

Figure 1 – 3D objects with point symmetry groups.

As C6 is cyclic and thus generated from a single element c, it is clearly abelian.
Even though the group C3h includes horizontal reflection σh as well as rotations c

(and combinations thereof — rotoreflections), these transformations commute and so C3h
is abelian as well. The commutativity of c and σh is a consequence of the fact that the
mirror plane of σh is perpendicular to the axis of rotation of c. That is, σh only operates
along the vertical axis, precisely the one which is left invariant by c.

The C3v group is non-abelian, as the reflections σv are not perpendicular to the axis
of rotation of c. Thus generally, a reflection followed by a rotation is not the same as a
rotation followed by a reflection.

The D3 group consists solely of rotations, but through four distinct axes. As rotations
through different axes do not commute, D3 is non-abelian.

The S6 consists of rotations as well as rotoreflections. The rotational part of the
rotoreflections is along the same axis as the pure rotations, and the reflective part is
through a mirror plane perpendicular to the axis of rotation. Thus the rotoreflections
commute with the rotations, implying that S6 is abelian.

In summary:

abelian?



C6 3

C3h 3

C3v 7

D3 7

S6 3
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(d) Which of these groups (if any) are isomorphic to each other?

Our goal here is to find all abstract groups of order 6, and then determine which of these
abstract groups each of the five point groups are isomophic to.

From Cayley’s theorem, we know that a group of order n < inf is isomorphic to a
subgroup of Sn, where Sn is the symmetric group, the group of permutations on n distinct
symbols. Setting n = 6, we get S6, the group of permutations on 6 distinct symbols,
which is not to be confused with our point group with the same name. We thus search for
abstract subgroups H ⊂ S6 with order 6, [H] = 6. Remembering that the order of each
element (permutation) in H has to be a divisor of n = 6, we have [h] ∈ {1, 2, 3, 6} ∀h ∈ H,
where [h] is the order of the element h. We should then build up H from transpositions
(2-cycles), 3-cycles and 6-cycles. Note that the trivial 1-cycle is the identity element, which
can here be thought of as a trivial permutation, in cycle-notation written (). As this will
be an element of any H we might find, we do not have to think about it.

The 6-cycle is of course unique up to the labelling of the symbols:

S6 3 1
23

4
5 6

= (1 2 3 4 5 6) (1.1)

= c6 ,

where the actual cycle is shown in order to define the cycle notation to the right. The name
c6 is given, meaning a cycle of order 6, which as already stated is unique in S6. Repeated
application of c6 corresponds to cycling around in the cycle (1.1), and so c6

6 = () = e. It is
clear then that c6 generates a cyclic group of order 6, and that this is the abstract group
of which C6 is isomorphic. The name of this abstract group is Z6.

The next possibility for [h] is 3, resulting a 3-cycle (1 2 3) = c3. We are thus in need of
three more elements to form a group of order 6. We therefore add in a new element b. We
cannot have [b] = 1 since this is the identity e = c3

3, and so in that case b would not be a
new element. Also, [b] cannot be 6 as this would make [H] > 6. Thus b is of order 2 or 3.
If [b] = 2, we have the 6 elements {e, c3, c

2
3, b, bc3, bc

2
3}. Thus if [b] = 3, b2 must be one

of the other element if we wish to keep the group order at 6. We can check explicitly that
this does not work out:

[b] = 3⇒ b2 =



e ⇒ [b] = 2 ,
b ⇒ b = e ,

bc6 ⇒ b = c3 ,

bc2
6 ⇒ b = c2

3 ,

c6 ⇒ bc3 = e ,

c2
6 ⇒ bc2

3 = e ,

and so we must have [b] = 2. We could now go on and show that the set {e, c3, c
2
3, b, bc3, bc

2
3}

with c3
3 = e = b2 is closed under compositions, i.e. that elements such as c3b are already

contained in the set. We know however from problem (c) that non-abelian groups of order
6 exists, and so this has to be the one, as this is the only candidate. We thus will not
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bother constructing the Cayley table, but let us for completeness show that this group is
non-abelian. We do this by assuming that c3 and b commute:

c3b = bc3 ⇒



(bc3)2 = c2
3 ,

(bc3)3 = b ,

(bc3)4 = c3 ,

(bc3)5 = bc2
3 ,

(bc3)6 = e ,

⇒ [bc3] = 6 ,

which is against the assumption of group elements being of order 1, 2 and 3.
With only two abstract groups of order 6, one abelian and one not, we can easily

conclude that all the abelian point groups are isomorphic to each other, and the non-abelian
are isomorphic to each other:

C6
∼= C3h

∼= S6 ,

C3v
∼= D3 .

(e) Which of these groups (if any) are simple, i.e. which have no normal subgroups?

Generally, a subgroup H ⊂ G is normal if it closed under conjugation by elements of G,
gHg−1 = H ∀g ∈ G. If G is abelian, H inherits this property and thus gHg−1 = H is
given for every subgroup H.

The abelian C6 group have proper subgroups C2 and C3, generated by c3 and c2,
respectively. Thus both C2 and C3 are normal subgroups of C6.

The abelian C3h group also have the proper subgroup C3, which is then normal.
Another subgroup of C3h is Cs

∼= Z2, generated by σh. The rotoreflections cσh and c2σh
do not participate in further subgroups, as these actually generate the entirety of C3h.

The last abelian group is S6, which have the proper subgroups C3, generated by both
c2 and c4 individually, where c is now a rotation by 2π/6, not 2π/3. Because 6 is even, S6
contains the rotoreflection c3σh which rotates through π. This transformation corresponds
to inversion, which generate its own subgroup Ci

∼= Z2, which is then also normal.
The non-abelian group C3v also contains both C3 = {e, c, c2} and Cs = {e, σv} ∼=

{e, cσv} ∼= {e, c2σv} as subgroups. However, since the rotations do not commute with the
reflections (the axis of rotation is not perpendicular to the mirror planes), these subgroups
might not be normal. It is however obvious that conjugating a rotation by a reflection
is again some rotation. Since C3 contains all the rotations of C3v, we can conclude that
C3 is normal. Similarly, conjugating the reflection by a rotation in C3v will always result
in some reflection. However, this reflection will not be the same as the one we started
with, e.g. cσvc

−1 = cσvc
2 = c2σv, where the last equality requires some mental effort. To

calculate this, we could write out the V-representation of these transformations which
acts on 3-vectors and simply carry out the matrix multiplication. However, let us do it
geometrically/graphically. Since σh /∈ C3v, all elements can be faithfully represented as
transformations on a 2D polygon, specifically the triangular∗ prism of C3v from figure 1

∗We thus have an isomorphism between C3v and the set of such triangles. The effect of the coloring is
to make each vertex distinct. There then exists one colored triangle for each of the 3! = 6 permutations of
the three vertices.



Group Theory in Quantum Mechanics Exam Problems
Jeppe Dakin
Department of Physics and Astronomy, Aarhus University, Denmark Page 7

viewed along the vertical axis. Coloring this triangle so that we may see the effects of the
transformations, we have

c2
−−−→ σv−−−→ c−−−→

σv−−−−−−−−−→ c2
−−−−−−−−−→


⇒ cσvc

2 = c2σv .

where c is taken to be anti-clockwise and σv a left-right reflection. Thus conjugating
reflections by rotations mixes the three subgroups {e, σv} ∼= {e, cσv} ∼= {e, c2σv}. I am
unsure whether these subgroups then count as normal. It depend on whether we count
each of these subgroups individually, or whether they count as one since they are all
isomorphic.

The non-abelian group D3 contain the proper subgroup C3 generated by c as well as C2
generated by b. Again, since c and b do not commute, these subgroups may not be normal.
However, since the rotation axis for c and c2 is vertical while all three axes of the rotations
b, cb and c2b lie in the horizontal plane, the rotations in C3 are perpendicular to those in
C2. At the same time, all rotations in C2 are two-fold rotations, and so applying two of
them will cancel out in the sense that the overall rotation will not be in the horizontal
plane. Thus both C3 and C2 are closed under conjugation by D3, and so they are normal
subgroups.

In summary:

simple?



C6 7

C3h 7

C3v (3)
D3 7

S6 7

2
Consider the isotropic two-dimensional harmonic oscillator Hamiltonian

Ĥ = ~2

2m
(
P̂ 2

1 + P̂ 2
2
)

+ 1
2mω

2(X̂2
1 + X̂2

2
)

= ~ω
(
â†1â1 + â†2â2 + 1

)
where X̂i are the position operators, P̂i are the momentum operators and â†i and âi are
the standard creation and annihilation operators.

(a) What is the spectrum of energies and degeneracies for this Hamiltonian?

Defining the number operators N̂i = â†i âi, the Hamiltonian can be written as

Ĥ = ~ω
(
N̂1 + N̂2 + 1

)
.
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The creation and annihilation operators satisfy the standard (bosonic) commutation
relations [

âi, â
†
j

]
= δij , (2.1)

which translates into commutation relations between the number operators and the creation
and annihilation operators: [

N̂i, âj
]

=
[
â†i âi, âj

]
= â†i

0︷ ︸︸ ︷[
âi, âj

]
+

−δij︷ ︸︸ ︷[
â†i , âj

]
âi

= −âiδij , (2.2)[
N̂i, â

†
j

]
=
[
â†i âi, â

†
j

]
= â†i

δij︷ ︸︸ ︷[
âi, â

†
j

]
+

0︷ ︸︸ ︷[
â†i , â

†
j

]
âi

= â†iδij . (2.3)

We see that the set of operators
{
â†i , âi, N̂i, δij

}
form a closed algebra.

Clearly Ĥ and N̂1 + N̂2 share the same eigenspace, and so we now wish to find the
eigenstates of N̂i. Denote a general state by |n1, n2〉, then N̂i |n1, n2〉 = ni |n1, n2〉, for
i ∈ {1, 2}. Now consider the action of N̂i on the state â†i |n1, n2〉:

N̂i

(
â†i |n1, n2〉

)
=
(
â†i N̂i + â†i

)
|n1, n2〉

= â†i
(
N̂i + 1

)
|n1, n2〉

= â†i (ni + 1) |n1, n2〉

= (ni + 1)
(
â†i |n1, n2〉

)
.

If N̂i counts the number of quanta in the i’th dimension, âi creates another such quanta.
Similarly âi can be found to annihilate a quanta in the i’th dimension:

N̂i

(
âi |n1, n2〉

)
=
(
âiN̂i − âi

)
|n1, n2〉

= âi
(
N̂i − 1

)
|n1, n2〉

= âi(ni − 1) |n1, n2〉
= (ni − 1)

(
âi |n1, n2〉

)
.

Now then, given a single state with non-zero ni, the creation and annihilation operators
can generate the full spectrum. We postulate that a “vacuum” state |0, 0〉 exists such
that the states (and hence the energies) are bounded from below. This also implies that
the eigenvalues ni are whole numbers. The spectrum is then

En1, n2
= ~ω(n1 + n2 + 1) , n1, n2 ∈ N .

If we define n ≡ n1 +n2, then for each energy En, we can choose n1 to be any of the n+ 1
integers 0 ≤ n1 ≤ n, after which n2 can only be chosen as n2 = n− n1. The degeneracies
for the Hamiltonian is thus g(n) = n+ 1.
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(b) Show that this Hamiltonian has O(2) symmetry about the origin in the xy-plane.
Describe the unitary irreducible representations of O(2). Is this symmetry
sufficient to explain the degeneracies?

We see that the Hamiltonian is isotropic because it depends only on length of vectors, not
on their direction, Ĥ = Ĥ(X̂2, P̂ 2). Thus any transformation of the vectors X̂ and P̂
which leave their lengths invariant, leaves the Hamiltonian invariant. These are rotations
around the origin along with reflections through mirror lines which goes through the origin.
In 2D space, this symmetry group is O(2).

A symmetry of an operator (here the Hamiltonian) leads to degeneracies in its eigen-
values (here energies). The possible number of degeneracies g due to a symmetry is given
by the dimensionalities of the irreducible representations of the group corresponding to
the given symmetry. If O(2) is the full symmetry of the Hamiltonian, then we would
expect representations of O(2) with arbitrarily large dimensionality to exist.

We can decompose the group O(2) into O(2) = SO(2) ⊗ Z2, where SO(2) contains
all (proper) rotations, which are those which are continuously connected to 1, an which
therefore have determinant +1. Improper rotations are then constructed from rotations
along with inversion from Z2. Now since SO(2) consists solely of rotations around the same
axis, this group is abelian, and hence we know that all irreducible representations of SO(2)
are 1-dimensional. As rotations are inherently 2-dimensional in the spatial sense, these
irreducible representations are necessarily over the field of complex numbers, which gives
us the needed two degrees of freedom. An obvious candidate for a representation of SO(2)
is then D(m)(ϕ) = Ae±imφ, where ϕ is the angle of the rotation. Because products of
representation matrices should still be a representation matrix (group element composition
is realised as matrix multiplication for representations), we must have A = 1. The
representation labels (quantum numbers) m can take on any values, as long as D(m)(ϕ)
preserves the group structure. Rotations through ϕ and ϕ+ 2π are equivalent, and so m
are required to be an integer, which also means that the sign in the exponential does not
matter:

D(m)(ϕ) = e−imφ , m ∈ Z .

Under SO(2) we can then label states by m. There then exists some operator Ĵ which is
the symmetry operator of rotation, the eigenvalue m when acting on a |m〉 state:

Ĵ |m〉 = m |m〉 .

Physically we know that the generator of rotations is the angular momentum operator Ĵ .
Note that in 2D only a single axis∗ of rotation is possible, and so be do not have a Ĵ2 and
Ĵz operator, but only a single Ĵ . This Ĵ is then reminiscent of Ĵz, as its eigenvalues are
integrally separated.

Now we append the group Z2 to SO(2) to include inversion Î as an operator. Doing
an inversion flips all directions, and so Î and Ĵ anti-commute, yielding

Ĵ
(
Î |m〉

)
= −Î Ĵ |m〉
= −m

(
Î |m〉

)
,

∗I guess plane of rotation is better terminology, as this axis is in a direction outside of the 2D space.
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and so Î |m〉 is a new eigenvector of Ĵ with eigenvalue −m. Thus

Î |m〉 = |−m〉 .

This means that the single vector |m〉 does not span the vector space required by both Î
and Ĵ (and hence O(2)), and so we must enlarge this space to {|m〉 , |−m〉}, which is then
a 2-dimensional irreducible representation. As we have found the degeneracies g larger
than this (just pick n > 1), the O(2) symmetry of the Hamiltonian cannot explain the
degeneracy.

(c) Show that that this Hamiltonian has U(2) symmetry. Hint: Show that the
transformation of the annihilation operator

â′1 = u11â1 + u12â2

â′2 = u21â1 + u22â2

(and the implied transformation of the creation operator) is a symmetry of the
Hamiltonian as long as the uij satisfy certain criteria. Describe the unitary
irreducible representations of U(2). Is this symmetry sufficient to explain the
degeneracies?

The transformations on the annihilation operator can be written succinctly as

âi → Uikâk = â′i , (2.4)

with summation over k implied. The transformations for i = 1 and i = 2 are really meant
to be done simultaneously, i.e. they are not independent transformations. I therefore
prefer the notation

â→ U â , the

where â is now a column vector containing â1 and â2, while for now, U is any complex
2× 2 matrix, U ∈ C2×2. Now, if we require Ĥ to be invariant under this transformation,
we see that U must be unitary:

Ĥ = ~ω
(
â†â+ 1

) â→U â−−−−→ ~ω
(
(U â)†(U â) + 1

)
= ~ω

(
â†U †U â+ 1

)
≡ Ĥ

⇒ U †U = 1 .

All unitary 2×2 matrices form the group U(2), and so U ∈ U(2) and Ĥ has U(2) symmetry.
For completeness, we might also want to check the invariance of the commutation

relations of annihilation and creation operators under the U(2) transformation. From (2.4)
we have â†j → (Uj`)†â

†
` = (U †)`ja

†
`, and so the commutation relations (2.1) transform as

[âi, â
†
j ]

âi→Uikâk−−−−−−→
[
Uikâk, (U †)`j â

†
`

]
= Uik(U †)`j

[
âk, â

†
`

]︸ ︷︷ ︸
δk`
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= Uik(U †)kj
= δij .

Now let us turn to a discussion about the irreducible representations of U(2). As we
did in (b), we may decompose U(2) into U(2) = SU(2) ⊗ Z2, where now again, SU(2)
includes only the proper unitary transformations; those with determinant +1, which are
continuously connected to 1. We know that the irreducible representations of SU(2) can
be labelled by two numbers j ∈ 1/2N and m ∈ Z, and that the resulting representation
matrices D(j) have dimension 2j + 1. In order to see how many of the n+ 1 degeneracies
are due to the U(2) symmetry of Ĥ, we just need to find a connection between j and n.

In [1] they analyze a system of two uncoupled harmonic 1D quantum harmonic
oscillators. As evident by the Kronecker deltas in (2.1), (2.2) and (2.3), the two directions
of the 2D oscillator is in fact uncoupled, and so we may freely use any result derived in
[1]. In particular, they derive our missing relation between j and n (equation 9.17), which
in our notation is

j = n1 + n2
2 , m = n1 − n2

2 .

This means that for a given j, −j ≤ m ≤ j. The factors of 1/2 are important, as otherwise
m would only be able to take on values in the even numbers: For fixed j, the smallest
possible change of a configuration is |n1, n2〉 → |n1 ± 1, n2 ∓ 1〉, and so |n1 − n2| changes
by 2. More importantly for us, j = 1/2(n1 +n2) = 1/2n implies that j takes on a single value
for each value of n. Remembering that the dimensionality of the irreducible representations
for SU(2) (labelled by j and m) is 2j + 1, we indeed have

dimD(j) = n+ 1 ,

which matches the found degeneracy n+ 1 = g(n) ≡ g(j). We conclude then that all of
the degeneracy of the Hamiltonian can be explained by the U(2) symmetry.

One might ask why we were able to explain some of the degeneracy by considering O(2)
symmetry, when all of the degeneracy was in the end explained by U(2) symmetry. The
answer lies in the fact that O(2) is a subgroup of U(2), which is obvious when considering
that the difference between orthogonality O†O = 1 and unitarity U †U = 1 is just a
complex conjugation, which does not matter for the real entries in O ∈ O(2).

3
In this problem you will explore the homomorphism from SU(2) to SO(3). For every
x ∈ R3, define a 2 × 2 matrix by x̃ = x · σ, where σ is the vector of Pauli matrices
σ = (σ1, σ2, σ3). This is sometimes called the quaternion representation of the vector.

(a) Show that a general matrix u ∈ SU(2) that transforms the quaternion represen-
tation of a vector like ux̃u† = x̃′ preserves the determinant det x̃ = det x̃′. What
does that mean?

Since the determinant of a product of matrices is equal to the product of determinants,
we have

det
(
ux̃u†

)
= detudet x̃ detu†
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= det x̃ ,

where detu = 1 because u ∈ SU(2), where the S (special) precisely means determinant
+1, and detu† = 1 because u† = u−1, and so u† ∈ SU(2) as well. This means that the
transformation obtained by conjugating x̃ with u is a proper similarity transformation,
resulting in a new matrix x̃′ which is really just the old x̃ but in a new basis. Thus,
the similarity transformation must correspond to a rotation of the original vector x. In
particular then, the transformation preserves the length of the vector.

(b) Any matrix u ∈ SU(2) can be parameterized by three angles α, β, γ ∈ [0, 2π)
like

u(α, β, γ) =
(

e−i/2(α+γ) cosβ/2 −e−i/2(α−γ) sin β/2
e i/2(α−γ) sin β/2 e i/2(α+γ) cosβ/2

)
.

Show that
u(α, β, γ)x̃u†(α, β, γ) = R̃x , (1)

where R̃x =
(
R(α, β, γ)x

)
· σ and R(α, β, γ) ∈ SO(3) is the normal zyz-Euler

angle matrix.

I will therefore not prove (1) by direct calculation, but rather explain why it has to be true.
We have established that the transformation x̃ → ux̃u† is really a rotation, performed
not on the vector x but on its quaternion representation x̃. Instead of constructing the
quaternion representation and then do the rotation, we might as well rotate the actual
vector x and then construct the quaternion representation from this rotated vector. The
set of all proper rotations of a 3-vector form the group SO(3), the group of orthogonal
matrices with determinant +1. Thus there must exist some R ∈ SO(3) corresponding to
each u ∈ SU(2). Both R and u depend on the same number (3) of compact parameters,
as they should.

(c) Show that the homomorphism from SU(2) to SO(3) induced by (1) is two-to-one.
What is the kernel of the homomorphism?

From (1) it is clear that if u is the matrix in SU(2) that corresponds to R ∈ SO(3),
so does −u. That means that for every rotation R, we have 2 matrices ±u. Thus the
correspondence between SU(2) and SO(3) is two-to-one, and so it is a homomorphism
but not quite an isomorphism. If it had been, the kernel of the homomorphism would
be just diag(1, 1) ∈ SU(2), which clearly leaves x̃ invariant and thus corresponds to
diag(1, 1, 1) ∈ SO(3). However, as already stated, both of ±u corresponds to the same
rotation in SO(3), and so the kernel also contains diag(−1, −1).

We ought to prove the claim that if u ∈ SU(2), so is −u. First, −u is unitary;
(−u)(−u)† = uu† = 12, where 12 is a 2× 2 unit matrix. Second, it has determinant +1;
det(−u) = det(−12) det(u) = (−1)2(+1) = +1. An interesting detail now appears: For
−u to be in the special unitary group, the group has to be of even dimension. Thus we do
not expect to find similar double-coverings in e.g. SU(3).
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(d) Why do we use SU(2) instead of SO(3) when studying rotational invariance in
quantum mechanics? What does it give us?

Classical vectors like x transform under SO(3) when rotated, and working with SU(2)
when dealing with these would be pointless. Physically, we expect certain quantities to
be conserved under rotation, e.g. the total angular momentum. In quantum mechanics
however, these quantities are promoted to operators, and it is these operators which
transform under rotation.

We might imagine the rotation as being applied to all states (Schrödinger picture),
|ψ〉 → U † |ψ〉, where |ψ〉 = |ψ(x)〉 = |ψ(x̃)〉. Requiring that some observable be invariant
under rotation means preservation of matrix elements, e.g. 〈φ|Ĵ2|ψ〉 → 〈φ|UĴ2U †ψ|〉.
Instead of acting on the states, we see that the transformation can be applied to the
operator (Heisenberg picture): Ĵ2 → UĴ2U †. Again, we see that both of ±U preserves
the matrix element.

Now removing the operator and just consider 〈φ|ψ〉. We would always require this to
be invariant under a full 2π rotation. Again, this still allows for both |ψ〉 and 〈φ| to pick
up a sign∗, which we might think of as being do to some U †, U acting on |ψ〉, |φ〉. Thus,
we can imagine a state which is only 2π-periodic up to a sign, but actually only completely
4π-periodic. It turns out that these states transform under half-integer j representations
of SU(2), in particular j = 1/2, which we call spinors. Such “strange” objects are not only
mathematically possible, but as nature would have it fully realised as fermions.

6
The proper Euclidean group in two dimensions E+

2 is the semidirect product SO(2) n T2
of rotations and translations in a plane. A general element is denoted (R, a), where
R ∈ SO(2) and a ∈ T2

∼= R3. I presume what is really meant is R2?

(a) By constructing the faithful representation of E+
2 on vectors x ∈ R2 by

T (R, a)x = Rx+ a

prove the group composition rule (R′, a′) ◦ (R, a) = (R′R, R′a+ a′). What is
the inverse of (R, a)?

Applying two Euclidean transformations successively, we get

T (R′, a′)T (R, a)x = T (R′, a′)(Rx+ a)
= R′(Rx+ a) + a′

= R′Rx+ (R′a+ a′)
⇒ (R′, a′) ◦ (R, a) = (R′R, R′a+ a′) .

One might naïvely expect that the inverse of (R, a) is (R−1, −a). As Euclidean transfor-
mations are carried out by first rotating x, then translating it, Rx+ a 6= R(x+ a), this

∗Or more generally, two opposite phases. As these must be opposite, they do not really have a phase
degree of freedom, and so we might as well just work with a sign change.
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does not work as we would have to translate by −a first, then rotate by R−1 to cancel the
original transformation. To find the true inverse transformation, we simply set the result
of the composition rule equal to the identity transformation E+

2 3 e = (1, 0), yielding

(R′R, R′a+ a′) = (1, 0)⇒
{
R′ = R−1 ,

a′ = −R′a = −R−1a

⇒ (R, a)−1 = (R−1, −R−1a) .

(b) A (properly unitized) matrix representation of E+
2 that acts on extended vectors

x̃ = (x1, x2, 1)> is given by

E
(
R(θ), a

)
=

cos θ − sin θ a1/`
sin θ cos θ a2/`

0 0 1


where ` is an arbitrary length scale and θ ∈ [0, 2π). Define J as the generator
associated with parameter θ and P1 and P2 as the generators with parameters
a1 and a2. Find the matrix form of these generators.

Consider the subgroup SO(2) ⊂ E+
2 for a moment. Elements of this group are R(θ), and

so it is this group that J generates. We can write a general element via the expansion

R(θ) =
∞∑
n=0

(−iθJ)n

n! (6.1)

which we recognize as the Taylor expansion of the matrix exponential of −iθJ , where
the −i is just a convention. For θ → 0 this gives the identity 13. Since all of SU(2) is
continuously connected to this identity and we only have a single rotation axis, we are
guaranteed that a single J can generate all R(θ) in this manner. We can thus imagine the
topology of SO(2) as a circle, naturally parameterized by θ, and where the generator J
“points” along the θ̂ direction.

If we differentiate (6.1) with respect to θ and then evaluate the equation in θ = 0, only
the n = 1 term in the exponential expansion will survive, yielding

dR(θ)
dθ

∣∣∣∣
θ=0

= −iJ . (6.2)

Enlarging the group to the entirety of E+
2 , we now calculate J explicitly from E ∈ E+

2 :

J = i
dE
(
R(θ), a

)
dθ

∣∣∣∣
θ=0

= i

− sin θ − cos θ 0
cos θ − sin θ 0

0 0 1


θ=0

=

0 −i 0
i 0 0
0 0 0

 .

Note that this J , the generator of rotations in E+
2 is slightly different from the previous J ,

the generator of rotations in SO(2); the first is the latter with one additional null row and
column added. Similarly for P1 and P2, we have

P1 = i
dE
(
R(θ), a

)
da1

∣∣∣∣
a1=0

= i

0 0 1/`
0 0 0
0 0 0


a1=0

=

0 0 i/`
0 0 0
0 0 0

 ,
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P2 = i
dE
(
R(θ), a

)
da2

∣∣∣∣
a2=0

= i

0 0 0
0 0 1/`
0 0 0


a2=0

=

0 0 0
0 0 i/`
0 0 0

 .

For completeness, let us (re)construct the pure rotations and pure translations of the
matrix representation by means of (6.2), that is by exponentiating the generators. For
rotations, we have

E
(
R(θ), 0

)
=
∞∑
n=0

(−iθJ)n

n!

=
∞∑
n=0

θn

n!

0 −1 0
1 0 0
0 0 0


n

= 13 +
∑

n∈2N+

θn

n!

0 −1 0
1 0 0
0 0 0


n

+
∑

n∈2N+1

θn

n!

0 −1 0
1 0 0
0 0 0


n

,

where the infinite sum has been split into three parts; an identity matrix 13 = diag(1, 1, 1),
a sum over all even terms excluding zero and a sum over all odd terms. This split is useful
because of the following property of the matrix (−iJ) appearing in the sums:

0 −1 0
1 0 0
0 0 0


n

=



13 if n = 0 ,

(−1)n/2

1 0 0
0 1 0
0 0 0

 if n ∈ 2N ,

(−1)
n+1

2

 0 1 0
−1 0 0
0 0 0

 if n ∈ 2N + 1 ,

where the special case n = 0 is the reason why 13 has been separated out of the sums. We
can then take the matrices out of the sums, change the summation variable and recognize
these sum for what they are:

E
(
R(θ), 0

)
= 13 +

1 0 0
0 1 0
0 0 0

 ∑
n∈2N+

(−1)n/2θn

n! +

 0 1 0
−1 0 0
0 0 0

 ∑
n∈2N+1

(−1)
n+1

2 θn

n! ,

= 13 +

1 0 0
0 1 0
0 0 0

 ∞∑
n=1

(−1)nθ2n

(2n)!︸ ︷︷ ︸
cos θ−1

+

0 −1 0
1 0 0
0 0 0

 ∞∑
n=0

(−1)nθ2n+1

(2n+ 1)!︸ ︷︷ ︸
sin θ

,

=

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

We have thus successfully constructed a general pure rotation by exponentiation of the
generator J . For the generators of translation Pi this exponentiation is much easier, as we
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see that P 2
i = 03 for both i = 1 and i = 2, thus truncating the infinite sums. The pure

translations are then

E
(
13,a

)
=
∞∑
n=0

(−ia · P )n

n!

=
1∑

n=0

(−ia · P )n

n!

= 13 − ia · P

=

1 0 a1/`
0 1 a2/`
0 0 1

 ,

where P ≡ (P1, P2). Note that we simply exponentiated both P1 and P2 together.
This is allowed because of the property of the exponential exp(A) exp(B) = exp(A+B).
This however is only true if A and B commute, which for P1 and P2 means that their
directions of translations must be perpendicular. We can think of T2 as being made up of
T2 = T1 ⊗ T1, and associate one Pi with each T1.

(c) Show that the matrix forms for J , P1 and P2 satisfy the relations

[P1, J ] = −i~P2, [P2, J ] = i~P1, [P1, P2] = 03 .

Note that the arbitrary length scale does not appear.

Direct calculation gives

[P1, J ] =

03︷ ︸︸ ︷0 0 i/`
0 0 0
0 0 0


0 −i 0

i 0 0
0 0 0

−
0 −i 0

i 0 0
0 0 0


0 0 i/`

0 0 0
0 0 0


=

0 0 0
0 0 1/`
0 0 0


= −iP2 ,

[P2, J ] =

03︷ ︸︸ ︷0 0 0
0 0 i/`
0 0 0


0 −i 0

i 0 0
0 0 0

−
0 −i 0

i 0 0
0 0 0


0 0 0

0 0 i/`
0 0 0


=

0 0 −1/`
0 0 0
0 0 0


= iP1 ,
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[P1, P2] =

03︷ ︸︸ ︷0 0 i/`
0 0 0
0 0 0


0 0 0

0 0 i/`
0 0 0

−
03︷ ︸︸ ︷0 0 0

0 0 i/`
0 0 0


0 0 i/`

0 0 0
0 0 0


= 03 .

The arbitrary length scale ` do indeed not enter in the commutation relations. I have
defined J in natural units (the choice was made back in (6.1)), which is why ~ is missing
from my expressions. We can “fix” this by letting J → ~J and simply remember to
divide the new dimensional J by ~ when it appears in expressions such as (6.1) where a
dimensionless argument is required.

(d) Using these commutation relations (and not the matrices), show that P 2
1 +P 2

2 is
an invariant. What does this mean? Can you come up with a three-dimensional
Hamiltonian that has E+

2 symmetry?

That an operator (e.g. P 2
1 + P 2

2 ) is invariant under E+
2 means that its eigenvalues are the

same for some vector before and after any E+
2 transformation. This can be checked by

computing these values for each of the infinitely many elements in E+
2 . This invariance can

also be expressed as a vanishing commutator between the operator in question and each of
the elements in E+

2 . Though not themselves elements of E+
2 , the three generators contains

the entire algebraic structure of the group, and so it suffices to check commutativity with
these three elements.

Let us compute the commutator of P 2
1 + P 2

2 and J :[
P 2

1 + P 2
2 , J

]
=
[
P 2

1 , J
]

+
[
P 2

2 , J
]

= P1
[
P1, J

]
+
[
P1, J

]
P1 + P2

[
P2, J

]
+
[
P2, J

]
P2

= −iP1P2 − iP2P1 + iP2P1 + iP1P2

= 03 .

As the generators of translation mutually commute, we immediately have[
P 2

1 + P 2
2 , Pi

]
= 03 .

Thus we can conclude that P 2
1 +P 2

2 is conserved under E+
2 . Since this is really the squared

length of the vector P , I would suspect that it is even conserved under E2. Because Pi is
the generator of translation, P 2

1 +P 2
2 is really the operator for the total squared momentum.

For a Hamiltonian with E+
2 as a symmetry group, the total squared momentum is then a

conserved quantity, in accordance with Noether’s theorem.
The simplest such E+

2 symmetric two-dimensional Hamiltonian would be the free
Hamiltonian in 2D space, which naturally have to respect spatial (Euclidean) symmetry:

Ĥ0 = P̂ 2

2m

where P̂ 2 is precisely the operator corresponding to P 2
1 + P 2

2 . If we consider the free
Hamiltonian in 3-space, the plane in which P1 and P2 operate can now be rotated out
in the third dimension, and so P 2

1 + P 2
2 becomes just a projection of the true squared
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momentum P 2
1 +P 2

2 +P 2
3 . We could alter the Hamiltonian in such a manner as to restrict

the momentum to the plane, but then I would not really call it a three-dimensional
Hamiltonian any more.

Let us go back to 2-space and a potential V (x). As for the free Hamiltonian, this
can only depend on the length of the vector due to our demand of rotational symmetry;
V (x) = V (x2) = V (|x|). Because x is an actual spatial vector, we now also have to take
translational symmetry into consideration. If x is “attached” to the background metric
(i.e. it points from the origin to some particle), this breaks the translational symmetry.
We are thus only allowed to use spatial vectors x between two objects/coordinates, and
again only the length of this; V (x) = V (|x1 − x2|). Brining V into 3-space again means
that we now have T3 symmetry and not T2 symmetry. We could however retain the
T2 symmetry in 3-space by making the third axis homogeneous (e.g. using infinite rods
instead of particles). As for rotations, we face the same problems as with P̂ 2, namely that
x1 − x2 can be rotated to have a component in the third direction. I do not see any way
out of this, except effectively restricting the system to a plane.
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