
1 Nonlinear equations
1.1 Introduction
Non-linear equations (or root-finding) is a problem of finding a set of n variables
x

.
= {x1, . . . , xn} which satisfy a system of n non-linear equations

fi(x1, ..., xn) = 0
∣∣∣
i=1,...,n

. (1)

In vector notation the system is written as

f(x) = 0 , (2)

where f(x)
.
= {f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)}.

In one-dimension, n = 1, it is generally possible to plot the function in the
region of interest and see whether the graph crosses the x-axis. One can then be
sure the root exists and even figure out its approximate position to start one’s
root-finding algorithm from. In multi-dimensions one generally does not know if
the root exists at all, until it is found.

The root-finding algorithms generally proceed by iteration, starting from some
approximate solution and making consecutive steps—hopefully in the direction of
the suspected root—until some convergence criterion is satisfied. The procedure
is generally not even guaranteed to converge unless starting from a point close
enough to the sought root.

We shall only consider the multi-dimensional case here since i) the multi-
dimensional root-finding is more difficult, and ii) the multi-dimensional routines
can also be used in the one-dimensional case.

1.2 Newton’s method
Newton’s method (also reffered to as Newton-Raphson method, after Isaac Newton
and Joseph Raphson) is a root-finding algorithm that uses the first term of the
Taylor series of the functions fi to linearise the system (1) in the vicinity of a
suspected root. It is one of the oldest and best known methods and is a basis of a
number of more refined methods.

Suppose that the point x = {x1, . . . , xn} is close to the root. The Newton’s
algorithm tries to find the step ∆x which would move the point towards the root,
such that

fi(x+∆x) = 0
∣∣∣
i=1,...,n

. (3)

The first order Taylor expansion of (3) gives a system of linear equations,

fi(x) +

n∑
k=1

∂fi
∂xk

∆xk = 0
∣∣∣
i=1,...,n

, (4)

or, in the matrix form,
J∆x = −f(x), (5)

1

where J is the matrix of partial derivatives,

Jik
.
=

∂fi
∂xk

, (6)

called the Jacobian matrix. In practice, if derivatives are not available analytically,
one uses finite differences,

∂fi
∂xk

≈ fi(x1, . . . , xk + δxk, . . . , xn)− fi(x1, . . . , xk, . . . , xn)

δxk
, (7)

where the step δxk is usually (unless the user knows better) chosen as δxk = |xk|
√
ϵ

where ϵ is machine precision. For double-precision numbers
√
ϵ = 2−26. As a rule

of thumb one should always try to rescale one’s problem such that the typical scale
of one’s variables is around unity.

The solution ∆x to the linear system (5)—called the Newton’s step—gives the
approximate direction and the approximate step-size towards the solution.

The Newton’s method converges quadratically if x is sufficiently close to the
solution. Otherwise the full Newton’s step ∆x might actually diverge from the
solution. Therefore in practice a more conservative step, λ∆x with λ < 1, is
usually taken. The strategy of finding the optimal λ is referred to as line search.

It is typically not worth the effort to find λ which minimizes ∥f(x + λ∆x)∥
exactly, since ∆x is only an approximate direction towards the root. Instead, an
inexact but quick minimization strategy is usually used, called the backtracking
line search, where one first attempts the full step, λ = 1, and then backtracks,
λ← λ/2, until the condition

∥f(x+ λ∆x)∥ <
(
1− λ

2

)
∥f(x)∥ (8)

is satisfied. If the condition is not satisfied for sufficiently small λmin the step is
taken with λmin simply to step away from the difficult place and try again.

Here is a typical algrorithm for the Newton’s method with backtracking line
search and condition (8),

repeat
calculate the Jacobian matrix J
solve J∆x = −f(x) for ∆x
λ← 1
while ∥f(x+ λ∆x)∥ >

(
1− λ

2

)
∥f(x)∥ and λ ≥ 1

64 do λ← λ/2
x← x+ λ∆x

until converged (e.g. ∥f(x)∥ < tolerance)

A somewhat more refined backtracking linesearch is based on an approximate
minimization of the function

ϕ(λ)
.
=

1

2
∥f(x+ λ∆x)∥2 (9)

2

using interpolation. The values ϕ(0) = 1
2∥f(x)∥

2 and ϕ′(0) = −∥f(x)∥2 are already
known (check this). If the previous step with certain λtrial was rejected, we also
have ϕ(λtrial). These three quantities allow to build a quadratic approximation,

ϕ(λ) ≈ ϕ(0) + ϕ′(0)λ+ cλ2 , (10)

where
c =

ϕ(λtrial)− ϕ(0)− ϕ′(0)λtrial

λ2
trial

. (11)

The minimum of this approximation (determined by the condition ϕ′(λ) = 0),

λnext = −
ϕ′(0)

2c
, (12)

becomes the next trial step-size.
The procedure is repeated recursively until either condition (8) is satisfied or

the step becomes too small (in which case it is taken unconditionally in order to
simply get away from the difficult place).

1.3 Quasi-Newton methods
The Newton’s method requires calculation of the Jacobian matrix at every iter-
ation. This is generally an expensive operation. Quasi-Newton methods avoid
calculation of the Jacobian matrix at the new point x + λ∆x, instead trying to
use certain approximations, typically rank-1 updates.

1.3.1 Broyden’s rank-1 updates

Broyden’s algorithms [1] estimate the Jacobian J +∆J at the point x+∆x using
the finite-difference approximation,

(J + ∆J)∆x = ∆f , (13)

where ∆f
.
= f(x+∆x)−f(x) and J is the Jacobian at the point x. Equivalently, one

can apply the same approximation for the update B+∆B of the inverse Jacobian
matrix,

∆x = (B +∆B)∆f , (14)

The matrix equation (14) is under-determined in more than one dimension as
it contains only n equations to determine n2 matrix elements of ∆B. Broyden
suggested to choose ∆B as a rank-1 update that is linear ∆x. A rank-1 update
has exactly n free parameters which can be determined form the (inverse secant)
equation (14). For example, one can choose the update in the form

∆B = c∆xT , (15)

3

where c is an unknown vector. Inserting this ansatz into (14) and solving for c
gives the update

∆B =
∆x− B∆f

∆xT∆f
∆xT . (16)

Here is a list of several rank-1 updates of the inverse Jacobian matrix,

1. “Good Broyden’s method”,

∆B = c∆xTB ⇒ ∆B =
∆x− B∆f

∆xTB∆f
∆xTB . (17)

2. “Bad Broyden’s method”,

∆B = c∆fT ⇒ ∆B =
∆x− B∆f

∆fT∆f
∆fT . (18)

3. Yet another method,

∆B = c∆xT ⇒ ∆B =
∆x− B∆f

∆xT∆f
∆xT . (19)

In practice if one wanders too far from the point where J was first calculated
the accuracy of the updates may decrease significantly. In such case one might
need to recalculate J anew. For example, two successive steps with λmin might be
interpreted as a sign of accuracy loss in J and subsequently trigger its recalculation.

Again, if the denominator in the update formula becomes too small one has to
discard the update as it is obviously wrong. If this happens two steps in a row,
one has to recalculate one’s B-matrix.

Here is a typical quasi-Newton algorithm,

calculate the inverse Jacobian matrix B = J−1

repeat
∆x = −Bf(x)
λ = 1
while ∥f(x+ λ∆x)∥ >

(
1− λ

2

)
∥f(x)∥ and λ ≥ 1

64 do λ = λ/2
x = x+ λ∆x
if λ ≥ 1

64 update B = B+∆B else recalculate B = J−1

until converged (e.g. ∥f(x)∥ < tolerance)

The matrix B is updated if the linesearch succeeds, that is, the step-parameter λ
is not too small; in case the step-parameter becomes small the step is accepted
unconditionally and the B-matrix is recalculated.

References
[1] C.G. Broyden. A class of methods for solving nonlinear simultaneous equations.

JSTOR, 19(92):577–593, 1965.

4

