
1 Global optimization

1.1 Introduction

Global optimization is the problem of locating (a good approximation to) the global
minimum of a given objective function in a search space that is large enough to
prohibit exhaustive enumeration. When only a small sub-space of the search space
can be realistically sampled within the allotted time the stochastic methods usually
come to the fore. In the following several popular stochastic global minimization
algorithms are shortly described.

In practice, since a good local minimizer converges to the nearest local miminum
relatively fast, one possible global minimizer can be constructed by simply start-
ing the local miminizer from different random starting points. Alternatively, one
can use the allotted time to (quasi-)randomly sample the chosen volume of the
parameter space of the objective function and then run the local minimizer from
the best sample.

1.2 Simulated annealing

Simulated annealing is a stochastic meta-heuristic algorithm for global minimiza-
tion. The name and inspiration come from annealing—heating up and cooling
slowly—in material science. The slow cooling allows a piece of material to reach a
state with ”lowest energy”.

The objective function in the space of states is interpreted as some sort of
potential energy and the states—the points in the search space—are interpreted
as physical states of a certain physical system. The system attempts to make
transitions from its current state to some randomly sampled nearest states with
the goal to eventually reach the state with minimal energy – the global minimum.

The system is attached to a thermal reservoir with certain temperature. Each
time the energy of the system is measured the reservoir supplies it with a random
amount of thermal energy sampled from the Boltzmann distribution,

P (E) = Te−E/T . (1)

If the temperature equals zero the system can only make transitions to the
neighboring states with lower potential energy. In this case the algorithm turns
merely into a local minimizer with random sampling.

If temperature is finite the system is able to climb up the ridges of the potential
energy—about as high as the current temperature—and thus escape from local
minima and hopefully eventually reach the global minimum.

One typically starts the simulation with some finite temperature on the order
of the height of the typical hills of the potential energy surface, letting the system
to wander almost unhindered around the landscape with a good chance to locate
if not the best then at least a good enough minimum. The temperature is then
slowly reduced following some annealing schedule which may be supplied by the
user but must end with T = 0 towards the end of the allotted time budget.

1

Table 1: Simulated annealing algorithm

s t a t e ← s t a r t s t a t e
T ← s t a r t t empera tu r e
energy ← E(s t a t e)
REPEAT :

new state ← neighbour (s t a t e)
new energy ← E(new state)
IF new energy < energy :

s t a t e ← new state
energy ← new energy

ELSE :

do with p r o b a b i l i t y exp
(
−new energy−energy

T

)
:

s t a t e ← new state
energy ← new energy

r educe t empe ra tu r e a c co rd ing to s chedu l e (T)
UNTIL terminated

Table 1 lists one possible variant of the algorithm. Here the function neigbour

is system-dependent and should return a randomly chosen “neighbour” of the given
state. For a continuous function, where the state is the position of the current
approximation to the minimum, the neghbour could be a random position within
radius R from the current position. The step-radius can be gradually reduced to
zero toward the end of the simulation, like

R(t) = R0 · (1 − t

ta
) , (2)

where R0 is the initial radius, t is the running time, and ta is the allotted time.
The temperature can be also reduced linearly,

T (t) = T0 · (1 − t

ta
) , (3)

where T0 is the initial temperature.

1.3 Quantum annealing

Quantum annealing is a general global minimization algorithm which—like simu-
lated annealing—also allows the search path to escape from local minima. However
instead of the thermal jumps over the potential barriers quantum annealing allows
the system to tunnel through the barriers.

In its simplest incarnation the quantum annealing algorithm allows the system
to attempt transitions not only to the nearest states but also to distant states
within certain ”tunneling distance” from the current state. The transition is ac-
cepted only if it reduces the potential energy of the system.

2

Table 2: Quantum annealing algorithm

s t a t e ← s t a r t s t a t e
energy ← E(s t a t e)
R ← s t a r t r a d i u s
REPEAT :

new state ← random ne ighbour with in rad ius (s ta te ,R)
new energy ← E(new state)
IF new energy < energy :

s t a t e ← new state
energy ← new energy

r e d u c e r a d i u s a c c o r d i n g t o s c h e d u l e (R)
UNTIL terminated

At the beginning of the minimization procedure the tunneling distance is
large—on the order of the size of the region where the global minimum is sus-
pected to be located—allowing the system to explore the region. The tunneling
distance is then slowly reduced according to a schedule such that by the end of
the allotted time the tunneling distance reduces to zero at which point the system
hopefully is in the state with minimal energy.

1.4 Evolutionary algorithms

Unlike annealing algorithms, which follow the motion of only one point in the
search space, the evolutionary algorithms typically follow a set of points called
a population of individuals. Somewhat like the downhill simplex method which
follows the motion of a set of points – the simplex.

The population evolves toward more fit individuals where fitness is understood
in the sense of minimizing the objective function. The parameters of the indi-
viduals (for example, the coordinates of the points in the parameter space of the
objective function) are called genes.

The algorithm proceeds iteratively in discrete steps where the population in
each iteration is called a generation. In each generation the fitness of each individual—
typically, the value of the objective function—is evaluated and the new generation
is generated stochastically from the gene pool of the current generation through
certain operations (like crossovers and mutations) such that the genes of more fit
individuals have a better chance of propagating into the next generation.

Each new individual in the next generation can be produced from a pair of
”parent” individuals of the current generation, as inspired by biology, but more
than two ”parents” can be used as well. The parents for a new individual are
selected from the individuals of the current generation through a fitness based
stochastic process where fitter individuals are more likely to be selected.

Generation of ”children” continues until the population of the new generation
reaches the appropriate size after which the iteration repeats itself.

3

The algorithm is terminated when the fitness level of the population is deemed
sufficient or when the allocated budget is exhausted.

1.4.1 Particle Swarm Optimization

One example of evolutionary optimization algorithms is the particle swarm opti-
mization method [1] where a population of “particles” move (in discrete time-steps)
through the parameter space of the objective function and sample the function at
the particles’ positions at each step. The movement of each particle is stochastic
and is influenced by the particle’s best position as well as the whole swarm’s best
position: at each time-step a particle gets a stochastic kick toward it’s own best
position and toward the swarm’s best position. After a certain amount of steps
the swarm is expected to converge to the best solution.

A particle number i carries three vector-parameters: its position xi in the
parameter space of the objective function; its best position pi so far; and its
velocity, pi. In addition the swarm as a whole remembers its global best position,
g.

At each step the velocities of the particles are updated according to the formula,

vi = wvi + u(pi − xi) + u(g − xi) , (4)

where u is a random number from a unit uniform distribution, and w < 1 us the
damping parameter which ensures that the swarm gradually calms down (hopefully
in the area of global minimum).

Table 3 lists one possible implementation of the algorithm.

References

[1] R. Poli. Analysis of the publications on the applications of particle swarm
optimisation. Journal of Artificial Evolution and Applications, 2008:1–10, 2008.

4

Table 3: Particle swarm optimization algorithm

I n i t i a l i z e uniform uni t random number generato r u ;
Assume the time−s tep i s equal unity , ∆t = 1 ;
I n i t i a l i z e p a r t i c l e p o s i t i o n s randomly with in g iven r e c t angu l a r

volume V [a,b] g iven by the v e c to r s a and b ,
xi = random vecto r with in V [a,b] ;

I n i t i a l i z e p a r t i c l e v e l o c i t i e s randomly ,

vi = random vecto r with in V [a−b
2

, b−a
2

] 1
∆t

;
I n i t i a l i z e l o c a l bes t p o s i t i o n s ,

pi = xi ;
I n i t i a l i z e g l o b a l bes t po s i t i on ,

g = mini(f(pi)) ;
REPEAT:

Update v e l o c i t i e s (the damping parameter w ≈ 0.72) ,
vi = wvi + U · (pi − xi)

1
∆t

+ U · (g − xi)
1

∆t
;

Update p o s i t i o n s ,
xi = xi + vi∆t ;

Update l o c a l bests ,
i f f(xi) < f(pi) pi = xi ;

Update g l o b a l best ,
i f f(xi) < f(g) g = xi ;

UNTIL a l l o t t e d time i s spent or converged

5

