
1 Ordinary differential equations

1.1 Introduction

Ordinary differential equations (ODE) are generally defined as differential equa-
tions in one variable where the highest order derivative enters linearly. Such equa-
tions invariably arise in many different contexts throughout mathematics (and
science generally) as soon as changes in the system at hand are considered, usually
with respect to variations of certain parameters.

Ordinary differential equations can be generally reformulated as (coupled) sys-
tems of first-order ordinary differential equations,

y′(x) = f(x,y) , (1)

where y′
.
= dy/dx, and the variables y and the right-hand side function f(x,y) are

understood as column-vectors. For example, a second order differential equation
in the form

u′′ = g(x, u, u′) (2)

can be rewritten as a system of two first-order equations,{
y′1 = y2
y′2 = g(x, y1, y2)

, (3)

using the variable substitution y1 = u, y2 = u′.
In practice ODEs are usually supplemented with boundary conditions which

pick out a certain class or a unique solution of the ODE. In the following we shall
mostly consider the initial value problem: an ODE with the boundary condition
in the form of an initial condition at a given point a,

y(a) = y0 . (4)

The problem is then to find the value of the solution y at some other point b.
Finding a solution to an ODE is often referred to as integrating the ODE.
An integration algorighm typically advances the solution from the initial point

a to the final point b in a number of discrete steps

{x0
.
= a, x1, . . . , xn−1, xn

.
= b}. (5)

An efficient algorithm tries to integrate an ODE using as few steps as possible
under the constraint of the given accuracy goal. For this purpose the algorthm
should continuously adjust the step-size during the integration, using few larger
steps in the regions where the solution is smooth and perhaps many smaller steps
in more treacherous regions.

Typically, an adaptive step-size ODE integrator is implemented as two routines.
One of them—called driver—monitors the local errors and tolerances and adjusts
the step-sizes. To actually perform a step the driver calls a separate routine—
the stepper—which advances the solution by one step, using one of the many

1

available algorithms, and estimates the local error. The GNU Scientific Library,
GSL, implements about a dozen of different steppers and a tunable adaptive driver.

In the following we shall discuss several of the popular driving algorithms and
stepping methods for solving initial-value ODE problems.

1.2 Error estimate

In an adaptive step-size algorithm the stepping routine must provide an estimate
of the integration error, upon which the driver bases its strategy to determine the
optimal step-size for a user-specified accuracy goal.

A stepping method is generally characterized by its order : a method has order
p if it can integrate exactly an ODE where the solution is a polynomial of order p.
In other words, for small h the error of the order-p method is O(hp+1).

1.2.1 Runge’s principle

For sufficiently small steps the error δy of an integration step for a method of a
given order p can be estimated by comparing the solution yfull step, obtained with
one full-step integration, against a potentially more precise solution, ytwo half steps,
obtained with two consecutive half-step integrations,

δy =
yfull step − ytwo half steps

2p − 1
. (6)

where p is the order of the algorithm used. Indeed, if the step-size h is small, we
can assume

δyfull step = Chp+1 , (7)

δytwo half steps = 2C

(
h

2

)p+1

=
Chp+1

2p
, (8)

where δyfull step and δytwo half steps are the errors of the full-step and two half-steps
integrations, and C is an unknown constant. The two can be combined as

yfull step − ytwo half steps = δyfull step − δytwo half steps

=
Chp+1

2p
(2p − 1) , (9)

from which it follows that

Chp+1

2p
=

yfull step − ytwo half steps

2p − 1
. (10)

One has, of course, to take the potentially more precise ytwo half steps as the
approximation to the solution y. Its error is then given as

δytwo half steps =
Chp+1

2p
=

yfull step − ytwo half steps

2p − 1
, (11)

2

which had to be demonstrated. This prescription is often referred to as the Runge’s
principle.

One drawback of the Runge’s principle is that the full-step and the two half-
step calculations generally do not share evaluations of the right-hand side function
f(x,y), and therefore many extra evaluations are needed to estimate the error.

1.2.2 Different orders

An alternative prescription for error estimation is to make the same step-size inte-
gration using two methods of different orders, with the difference between the two
solutions providing the estimate of the error. If the lower order method mostly
uses the same evaluations of the right-hand side function—in which case it is called
embedded in the higher order method—the error estimate does not need additional
evaluations.

Predictor-corrector methods are naturally of embedded type: the correction—
which generally increases the order of the method—itself can serve as the estimate
of the error.

1.3 Runge-Kutta methods

Runge-Kutta methods are one-step methods which advance the solution over the
current step using only the information gathered from withing the step itself. The
solution y is advanced from the point xi to xi+1 = xi +h, where h is the step-size,
using a one-step formula,

yi+1 = yi + hk, (12)

where yi+1 is the approximation to y(xi+1), and the value k is chosen such that the
method integrates exactly an ODE whose solution is a polynomial of the highest
possible order.

The Runge-Kutta methods are distinguished by their order. Again, a method
has order p if it can integrate exactly an ODE where the solution is a polynomial
of order p (or if for small h the error of the method is O(hp+1)).

The first order Runge-Kutta method is the Euler’s method,

k = f(x0,y0) . (13)

Second order Runge-Kutta methods advance the solution by an auxiliary eval-
uation of the derivative. For example, the mid-point method,

k0 = f(x0,y0) ,

k1/2 = f(x0 + 1
2h,y0 + 1

2hk0) ,

k = k1/2 , (14)

3

or the two-point method, also called the Heun’s method

k0 = f(x0,y0),

k1 = f(x0 + h,y0 + hk0),

k =
1

2
(k0 + k1) . (15)

These two methods can be combined into a third order method,

k =
1

6
k0 +

4

6
k1/2 +

1

6
k1 . (16)

The most commont is the fourth-order method, which is called RK4 or simply
the Runge-Kutta method,

k0 = f(x0,y0) ,

k1 = f(x0 + 1
2h,y0 + 1

2hk0) ,

k2 = f(x0 + 1
2h,y0 + 1

2hk1) ,

k3 = f(x0 + h,y0 + hk2) ,

k = 1
6k0 + 1

3k1 + 1
3k2 + 1

6k3 . (17)

A general Runge-Kutta method can be written as

yn+1 = yn +

s∑
i=1

bihki , (18)

where

k1 = f(xn,yn) ,

k2 = f(xn + c2h,yn + a21hk1) ,

k3 = f(xn + c3h,yn + a31hk1 + a32hk2) , (19)

...

ks = f(xn + csh,yn + as1hk1 + as2hk2 + · · ·+ as,s−1hks−1) .

To specify a particular Runge-Kutta method one needs to provide the coeffi-
cients {aij |1 ≤ j < i ≤ s}, {bi|i = 1..s} and {ci|i = 1..s}. The matrix [aij] is
called the Runge-Kutta matrix, while the coefficients bi and ci are known as the
weights and the nodes. These data are usually arranged in the so called Butcher’s
tableau,

0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 · · · as,s−1
b1 b2 · · · bs−1 bs

. (20)

4

For example, the Butcher’s tableau for the RK4 method is

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

. (21)

1.3.1 Embeded methods with error estimates

The embedded Runge-Kutta methods in addition to advancing the solution by one
step also produce an estimate of the local error of the step. This is done by having
two methods in the tableau, one with a certain order p and another one with order
p− 1. The difference bitween the two methods gives the the estimate of the local
error. The lower order method is embedded in the higher order method, that is, it
uses the same k-values. This allows a very effective estimate of the error.

The embedded lower order method is written as

y∗n+1 = yn +

s∑
i=1

b∗i hki , (22)

where ki are the same as for the higher order method. The error estimate is then
given as

en = yn+1 − y∗n+1 =

s∑
i=1

(bi − b∗i)hki . (23)

The Butcher’s tableau for this kind of method is extended by one row to give
the values of b∗i .

The simplest embedded methods are Heun-Euler method,

0
1 1

1/2 1/2
1 0

, (24)

and midpoint-Euler method,

0
1/2 1/2

0 1
1 0

, (25)

which both combine methods of orders 2 and 1. Table (1) shows a C-language
implementation of the embedded midpoint/Euler method with error estimate.

5

Table 1: Embedded midpoint/Euler method with error estimate

void rks tep12 (void f (int n , double x , double∗yx , double∗dydx) ,
int n , double x , double∗ yx , double h , double∗ yh , double∗ dy){

int i ; double k0 [n] , yt [n] , k12 [n] ; /∗ VLA: gcc −s t d=c99 ∗/
f (n , x , yx , k0) ; for (i =0; i<n ; i++) yt [i]=yx [i]+ k0 [i]∗h/2 ;
f (n , x+h/2 , yt , k12) ; for (i =0; i<n ; i++) yh [i]=yx [i]+k12 [i]∗h ;
for (i =0; i<n ; i++) dy [i]=(k0 [i]−k12 [i]) ∗ h/2 ; /∗ op t im i s t i c ∗/

}

Here is a simple embedded method of orders 2 and 3,

0
1/2 1/2
3/4 0 3/4

2/9 3/9 4/9
0 1 0

, (26)

The Bogacki-Shampine method [1] combines methods of orders 3 and 2,

0
1/2 1/2
3/4 0 3/4
1 2/9 1/3 4/9

2/9 1/3 4/9 0
7/24 1/4 1/3 1/8

. (27)

Bogacki and Shampine argue that their method has better stability properties
and actually outperforms higher order methods at lower accuracy goal calculations.
This method has the FSAL—First Same As Last—property: the value k4 at one
step equals k1 at the next step; thus only three function evaluations are needed
per step. Following is a simple implementation which does not utilise this property
for the sake of presentational clarity.

void rks tep23 (void f (int n , double x , double∗ y , double∗ dydx) ,
int n , double x , double∗ yx , double h , double∗ yh , double∗ dy){

int i ; double k1 [n] , k2 [n] , k3 [n] , k4 [n] , yt [n] ; /∗ VLA: −s t d=c99 ∗/
f (n , x , yx , k1) ; for (i =0; i<n ; i++) yt [i]=yx [i]+1./2∗ k1 [i]∗h ;
f (n , x+1./2∗h , yt , k2) ; for (i =0; i<n ; i++) yt [i]=yx [i]+3./4∗ k2 [i]∗h ;
f (n , x+3./4∗h , yt , k3) ; for (i =0; i<n ; i++)

yh [i]=yx [i]+(2 ./9 ∗k1 [i]+1./3∗ k2 [i]+4./9∗ k3 [i]) ∗ h ;
f (n , x+h ,yh , k4) ; for (i =0; i<n ; i++){

yt [i]=yx [i]+(7 ./24∗ k1 [i]+1./4∗ k2 [i]+1./3∗ k3 [i]+1./8∗ k4 [i]) ∗ h ;
dy [i]=yh [i]−yt [i] ;
}

}

6

The Runge-Kutta-Fehlberg method [3]—called RKF45—implemented in the
renowned rkf45 Fortran routine, has two methods of orders 5 and 4:

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197
1 439/216 −8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40

16/135 0 6656/12825 28561/56430 −9/50 2/55
25/216 0 1408/2565 2197/4104 −1/5 0

1.4 Implicit methods

Instead of the forward Euler method one could employ the backward Euler method
where the derivative is approximated as

y′(x) ≈ y(x)− y(x− h)

h
, (28)

which gives the following (backward Euler) stepper,

yx+h = yx + hf(x+ h, yx+h) . (29)

The backward Euler methods is an implicit method: one has to solve the above
equation to find yx+h. It generally costs time to solve this equation numerically
– a disadvantage as compared to expicit methods. However implicit methods are
usually more stable for stiff (difficult) equations where a larger step h can be used
as compared to explicit methods.

Just like with explicit methods one can devise higher-order implicit methods,
for examle, the trapezoidal rule,

yx+h = yx + h
1

2
(f(x, yx) + f(x+ h, yx+h)) . (30)

1.5 Multistep methods

Multistep methods try to use the information about the function gathered at the
previous steps. They are generally not self-starting as there are no previous steps
at the start of the integration. The first step must be done with a one-step method
like Runge-Kutta.

A number of multistep methods have been devised (and named after different
mathematicians); we shall only consider a few simple ones here to get the idea of
how it works.

1.5.1 Two-step method

Given the previous point, (xi−1,yi−1), in addition to the current point (xi,yi),
the sought function y can be approximated in the vicinity of the point xi as a

7

second order polynomial,

y(x) ≈ p2(x) = yi + y′i · (x− xi) + c · (x− xi)2, (31)

where y′i = f(xi,yi) and the coefficient c can be found from the condition

p2(xi−1) = yi−1 , (32)

which gives

c =
yi−1 − yi + y′i · (xi − xi−1)

(xi − xi−1)2
. (33)

The value yi+1 of the function at the next point, xi+1
.
= xi + h, can now be

estimated as yi+1 = p2(xi+1) from (31).
The error of this second-order two-step stepper can be estimated by a compar-

ison with the first-order Euler’s step, which is given by the linear part of (31). The
correction term ch2 can serve as the error estimate,

δy = ch2 . (34)

1.5.2 Two-step method with extra evaluation

One can further increase the order of the approximation (31) by adding a third
order term,

y(x) ≈ p3(x) = p2(x) + d · (x− xi)2(x− xi−1) . (35)

The coefficient d can be found from the matching condition at a certain point t
inside the inverval,

p′3(t) = f(t,p2(t))
.
= f2 , (36)

where xi < t < xi + h. This gives

d =
f2 − y′i − 2c · (t− xi)

2(t− xi)(t− xi−1) + (t− xi)2
. (37)

The error estimate at the point xi+1
.
= x0 + h is again given as the difference

between the higher and the lower order methods,

δy = p3(xi+1)− p2(xi+1) . (38)

1.6 Predictor-corrector methods

A predictor-corrector method uses extra iterations to improve the solution. It is
an algorithm that proceeds in two steps. First, the predictor step calculates a
rough approximation of y(x + h). Second, the corrector step refines the initial
approximation. Aditionally the corrector step can be repeated in the hope that
this achieves an even better approximation to the true solution.

8

For example, the two-point Runge-Kutta method (15) is as actually a predictor-
corrector method, as it first calculates the prediction ỹi+1 for y(xi+1),

ỹi+1 = yi + hf(xi,yi) , (39)

and then uses this prediction in a correction step,

ˇ̃yi+1 = yi + h
1

2
(f(xi,yi) + f(xi+1, ỹi+1)) . (40)

1.6.1 Two-step method with correction

Similarly, one can use the two-step approximation (31) as a predictor, and then
improve it by one order with a correction step, namely

ˇ̄y(x) = ȳ(x) + ď · (x− xi)2(x− xi−1). (41)

The coefficient ď can be found from the condition ˇ̄y′(xi+1) = f̄i+1, where f̄i+1
.
=

f(xi+1, ȳ(xi+1)),

ď =
f̄i+1 − y′i − 2c · (xi+1 − xi)

2(xi+1 − xi)(xi+1 − xi−1) + (xi+1 − xi)2
. (42)

Equation (41) gives a better estimate, yi+1 = ˇ̄y(xi+1), of the sought function
at the point xi+1. In this context the formula (31) serves as predictor, and (41) as
corrector. The difference between the two gives an estimate of the error.

This method is equivalent to the two-step method with an extra evaluation
where the extra evaluation is done at the full step.

1.7 Adaptive step-size control

Let tolerance τ be the maximal accepted error consistent with the required accu-
racy to be achieved in the integration of an ODE. Suppose the inegration is done in
n steps of size hi such that

∑n
i=1 hi = b− a. Under assumption that the errors at

the integration steps are random and statistically uncorrelated, the local tolerance
τi for the step i has to scale as the square root of the step-size,

τi = τ

√
hi
b− a

. (43)

Indeed, if the local error ei on the step i is less than the local tolerance, ei ≤ τi,
the total error E will be consistent with the total tolerance τ ,

E ≈

√√√√ n∑
i=1

e2i ≤

√√√√ n∑
i=1

τ2i = τ

√√√√ n∑
i=1

hi
b− a

= τ . (44)

9

The current step hi is accepted if the local error ei is smaller than the local
tolerance τi, after which the next step is attempted with the step-size adjusted
according to the following empirical prescription [2],

hi+1 = hi ×
(
τi
ei

)Power

× Safety, (45)

where Power ≈ 0.25 and Safety ≈ 0.95.
If the local error is larger than the local tolerance the step is rejected and a

new step is attempted with the step-size adjusted according to the same prescrip-
tion (45).

One simple prescription for the local tolerance τi and the local error ei to be
used in (45) is

τi = (ε‖yi‖+ δ)

√
hi
b− a

, ei = ‖δyi‖ , (46)

where δ and ε are the required absolute and relative precision and δyi is the
estimate of the integration error at the step i.

A more elaborate prescription considers components of the solution separately,

(τi)k =
(
ε|(yi)k|+ δ

)√ hi
b− a

, (ei)k = |(δyi)k| , (47)

where the index k runs over the components of the solution. In this case the step
acceptence criterion also becomes component-wise: the step is accepted, if

∀k : (ei)k < (τi)k . (48)

The factor τi/ei in the step adjustment formula (45) is then replaced by

τi
ei
→ min

k

(τi)k
(ei)k

. (49)

Yet another refinement is to include the derivatives y′ of the solution into the
local tolerance estimate, either overally,

τi =
(
εα‖yi‖+ εβ‖y′i‖+ δ

)√ hi
b− a

, (50)

or commponent-wise,

(τi)k =
(
εα|(yi)k|+ εβ|(y′i)k|+ δ

)√ hi
b− a

. (51)

The weights α and β are chosen by the user.
Following is a simple C-language implementation of the described algorithm.

10

int ode d r i v e r (void f (int n , f loat x , f loat ∗y , f loat ∗dydx) ,
int n , f loat ∗ x l i s t , f loat ∗∗ y l i s t ,
f loat b , f loat h , f loat acc , f loat eps , int max){

int i , k=0; f loat x ,∗ y , s , err , normy , to l , a=x l i s t [0] , yh [n] , dy [n] ;
while (x l i s t [k]<b){

x=x l i s t [k] , y=y l i s t [k] ; i f (x+h>b) h=b−x ;
ode s t epper (f , n , x , y , h , yh , dy) ;
s=0; for (i =0; i<n ; i++) s+=dy [i]∗ dy [i] ; e r r =sq r t (s) ;
s=0; for (i =0; i<n ; i++) s+=yh [i]∗ yh [i] ; normy=sq r t (s) ;
t o l =(normy∗ eps+acc)∗ s q r t (h/(b−a)) ;
i f (err<t o l){ /∗ accept s t ep and cont inue ∗/

k++; i f (k>max−1) return −k ; /∗ uups ∗/
x l i s t [k]=x+h ; for (i =0; i<n ; i++)y l i s t [k] [i]=yh [i] ;
}

i f (err >0) h∗=pow(t o l / err , 0 . 2 5) ∗ 0 . 9 5 ; else h∗=2;
} /∗ end wh i l e ∗/

return k+1; } /∗ re turn the number o f e n t r i e s in x l i s t / y l i s t ∗/

References

[1] Przemyslaw Bogacki and Lawrence F. Shampine. A 3(2) pair of Runge–Kutta
formulas. Applied Mathematics Letters, 2(4):321–325, 1989.

[2] M. Galassi et al. GNU Scientific Library Reference Manual. Network Theory
Ltd, 3rd edition, 2009.

[3] Erwin Fehlberg. Low-order classical Runge-Kutta formulas with step size con-
trol and their application to some heat transfer problems. NASA Technical
Report, 1969.

11

