
1 Power iteration methods and Krylov subspaces

1.1 Power iteration

Power method is an iterative method to calculate an eigenvalue and the corre-
sponding eigenvector of a (real symmetrix) matrix A using the power iteration

xi+1 = Axi . (1)

The iteration converges to the eigenvector with the largest eigenvalue. Indeed,
according to the spectral theorem the eigenvectors vi,

Avi = λivi, (2)

of a real symmetric matrix A form an orthogonal basis such that any vector x0

can be represented as a linear combination of the eigenvectors,

x0 =
∑
k

ckvk . (3)

Acting on x0 with the matrix A gives

Aix0 =
∑
k

λikckvk . (4)

Thus the contribution from the eigenvector corresponding to the largest eigenvalue
is amplified with the factor (

λlargest
λnext largest

)i

. (5)

The eigenvalue can be estimated using the Rayleigh quotient,

λ[xi] =
xT
i Axi

xT
i xi

=
xT
i+1xi

xT
i xi

. (6)

1.2 Inverse iteration

Alternatively, the inverse power iteration with the inverse matrix,

xi+1 = A−1xi , (7)

converges to the smallest (in the absolute value) eigenvalue of matrix A.
Finally, the shifted inverse power iteration,

xi+1 = (A− s1)−1xi , (8)

where 1 signifies the identity matrix of the same size as A, converges to the
eigenvalue closest to the given number s.
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The inverse iteration method is a refinement of the inverse power method where
the trick is not to invert the matrix in (8) but rather solve the linear system

(A− s1)xi+1 = xi (9)

using e.g. QR-decomposition.
The better approximation s to the sought eigenvalue is chosen, the faster con-

vergence one gets. However, incorrect choice of s can lead to slow convergence or
to the convergence to a different eigenvector. In practice the method is usually
used when good approximation for the eigenvalue is known, and hence one needs
only few (quite often just one) iteration.

One can update the estimate for the eigenvalue using the Rayleigh quotient
λ[xi] after each iteration and get faster convergence for the price of O(n3) opera-
tions per QR-decomposition; or one can instead make more iterations (with O(n2)
operations per iteration) using the same matrix (A− s1). The optimal strategy is
probably an update after several iterations.

1.3 Krylov subspaces

When calculating an eigenvalue of a matrix A using the power method, one
starts with an initial random vector b and then computes iteratively the sequence
Ab,A2b, . . . ,An−1b normalising and storing the result in b on each iteration.
The sequence converges to the eigenvector of the largest eigenvalue of A.

The set of vectors

Kn =
{
b,Ab,A2b, . . . ,An−1b

}
, (10)

where n < rank(A), is called the order-n Krylov matrix, and the subspace spanned
by these vectors is called the order-n Krylov subspace [1]. The vectors are not
orthogonal but can be made so e.g. by Gram-Schmidt orthogonalisation.

For the same reason that An−1b approximates the dominant eigenvector one
can expect that the other orthogonalised vectors approximate the eigenvectors of
the n largest eigenvalues.

Krylov subspaces are the basis of several successful iterative methods in nu-
merical linear algebra, in particular: Arnoldi and Lanczos methods for finding one
(or a few) eigenvalues of a matrix; and GMRES (Generalised Minimum RESidual)
method for solving systems of linear equations.

These methods are particularly suitable for large sparse matrices as they avoid
matrix-matrix operations but rather multiply vectors by matrices and work with
the resulting vectors and matrices in Krylov subspaces of modest sizes.

1.4 Arnoldi iteration

Arnoldi iteration is an algorithm where the order-n orthogonalised Krylov matrix
Qn for a given matrix A is built using stabilised Gram-Schmidt process:
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start with a set Q = {q1} where q1 is a random normalised vector;

repeat for k = 2 to n :

make a new vector qk = Aqk−1
orthogonalise qk to all vectors qi ∈ Q storing qi

†qk → hi,k−1
normalise qk storing ‖qk‖ → hk,k−1
add qk to the set Q

By construction the matrix Hn made of the elements hjk is an upper Hessenberg
matrix,

Hn =


h1,1 h1,2 h1,3 · · · h1,n
h2,1 h2,2 h2,3 · · · h2,n

0 h3,2 h3,3 · · · h3,n
...

. . .
. . .

. . .
...

0 · · · 0 hn,n−1 hn,n

 , (11)

which is a partial orthogonal reduction of A into Hessenberg form,

Hn = Q†nAQn . (12)

The matrix Hn can be viewed as a representation of A in the Krylov subspace
Kn. The eigenvalues and eigenvectors of the matrix Hn approximate the largest
eigenvalues of matrix A.

Since Hn is a Hessenberg matrix of modest size its eigenvalues can be relatively
easily computed with standard algorithms.

In practice if the size n of the Krylov subspace becomes too large the method
is restarted.

1.5 Lanczos iteration

Lanczos iteration is Arnoldi iteration for Hermitian matrices, in which case the
Hessenberg matrix Hn of Arnoldi method becomes a tridiagonal matrix Tn.

The Lanczos algorithm thus reduces the original hermitian N × N matrix A
into a smaller n × n tridiagonal matrix Tn by an orthogonal projection onto the
order-n Krylov subspace. The eigenvalues and eigenvectors of a tridiagonal matrix
of a modest size can be easily found by e.g. the QR-diagonalisation method.

In practice the Lanczos method is not very stable due to round-off errors leading
to quick loss of orthogonality. The eigenvalues of the resulting tridiagonal matrix
may then not be a good approximation to the original matrix. Library imple-
mentations fight the stability issues by trying to prevent the loss of orthogonality
and/or to recover the orthogonality after the basis is generated.

1.6 Generalised minimum residual (GMRES)

GMRES is an iterative method for the numerical solution of a system of linear
equations,

Ax = b , (13)
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where the exact solution x is approximated by the vector xn ∈ Kn that minimises
the residual Axn − b in the Krylov subspace Kn of matrix A,

x ≈ xn ← min
x∈Kn

‖Ax− b‖ . (14)

The vector xn ∈ Kn can be represented as xn = Qnyn where Qn is the
projector on the space Kn and yn is an n-dimensional vector. Substituting xn ∈ Kn

gives an overdetermined system

AQnyn = b , (15)

which can be solved by the ordinary least-squares method.
One can also project equation (15) onto Krylov subspace Kn which gives a

square system
Hnyn = Q†nb , (16)

where Hn = Q†AQn.
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