integral from 0 to 1 f(x)= function (x) { n++; return Math.log(x); } estimated integral = -0.9999999999979974 exact integral = -1 estimated error = 3.50824136754738e-10 actuall error = 2.0026202918188574e-12 npoints= 9764 integral from 0 to 1 f(x)=: function (x) { n++; return Math.log(x) / Math.sqrt(x); } estimated integral = -3.9999999999999587 exact integral = -4 estimated error = 3.948691811854536e-10 actuall error = 4.1300296516055823e-14 npoints= 64176 integral from 0 to 1 f(x)=sqrt(1-(x-1)^2); acc=eps= 1e-14 estimated integral *4 = 3.141592653589793 pi = 3.141592653589793 estimated error = 7.362213709219048e-14 actuall error = 0 npoints= 123928