Nonlinear equations

Introduction

Non-linear equations or root-finding is a problem of finding a set of n variables $\{x_1, \ldots, x_n\}$ which satisfy n equations

$$f_i(x_1, ..., x_n) = 0 , i = 1, ..., n ,$$
 (1)

where the functions f_i are generally non-linear.

Newton's method

Newton's method (also reffered to as Newton-Raphson method, after Isaac Newton and Joseph Raphson) is a root-finding algorithm that uses the first term of the Taylor series of the functions f_i to linearise the system (1) in the vicinity of a suspected root. It is one of the oldest and best known methods and is a basis of a number of more refined methods.

Suppose that the point $\mathbf{x} \equiv \{x_1, \dots, x_n\}$ is close to the root. The Newton's algorithm tries to find the step $\Delta \mathbf{x}$ which would move the point towards the root, such that

$$f_i(\mathbf{x} + \Delta \mathbf{x}) = 0$$
, $i = 1, \dots, n$. (2)

The first order Taylor expansion of (2) gives a system of linear equations,

$$f_i(\mathbf{x}) + \sum_{k=1}^n \frac{\partial f_i}{\partial x_k} \Delta x_k = 0 , i = 1, \dots, n ,$$
 (3)

or, in the matrix form,

$$J\Delta \mathbf{x} = -\mathbf{f}(\mathbf{x}),\tag{4}$$

where $\mathbf{f}(\mathbf{x}) \equiv \{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}\$ and J is the matrix of partial derivatives¹,

$$J_{ik} \equiv \frac{\partial f_i}{\partial x_k} \,, \tag{5}$$

called the Jacobian matrix.

The solution $\Delta \mathbf{x}$ to the linear system (4) gives the approximate direction and the step-size towards the solution.

The Newton's method converges quadratically if sufficiently close to the solution. Otherwise the full Newton's step $\Delta \mathbf{x}$ might actually diverge from the solution. Therefore in practice a more conservative step $\lambda \Delta \mathbf{x}$ with $\lambda < 1$ is usually taken. The strategy of finding the optimal λ is referred to as line search.

It is typically not worth the effort to find λ which minimizes $\|\mathbf{f}(\mathbf{x} + \lambda \Delta \mathbf{x})\|$ exactly, since $\Delta \mathbf{x}$ is only an approximate direction towards the root. Instead an inexact but quick minimization strategy is usually used, like the *backtracking line search* where one first attempts the full step, $\lambda = 1$, and then backtracks, $\lambda \leftarrow \lambda/2$, until either the condition

$$\|\mathbf{f}(\mathbf{x} + \lambda \Delta \mathbf{x})\| < \left(1 - \frac{\lambda}{2}\right) \|\mathbf{f}(\mathbf{x})\|$$
 (6)

is satisfied, or λ becomes too small.

$$\frac{\partial f_i}{\partial x_k} \approx \frac{f_i(x_1, \dots, x_{k-1}, x_k + \delta x, x_{k+1}, \dots, x_n) - f_i(x_1, \dots, x_k, \dots, x_n)}{\delta x}$$

with $\delta x \ll s$ where s is the typical scale of the problem at hand.

¹in practice if derivatives are not available analytically one uses finite differences

Broyden's quasi-Newton method

The Newton's method requires calculation of the Jacobian at every iteration. This is generally an expensive operation. Quasi-Newton methods avoid calculation of the Jacobian matrix at the new point $\mathbf{x} + \delta \mathbf{x}$, instead trying to use certain approximations, typically rank-1 updates.

Broyden algorithm estimates the Jacobian $J + \delta J$ at the point $\mathbf{x} + \delta \mathbf{x}$ using the finite-difference approximation,

$$(J + \delta J)\delta \mathbf{x} = \delta \mathbf{f} , \qquad (7)$$

where $\delta \mathbf{f} \equiv \mathbf{f}(\mathbf{x} + \delta \mathbf{x}) - \mathbf{f}(\mathbf{x})$ and J is the Jacobian at the point \mathbf{x} .

The matrix equation (7) is under-determined in more than one dimension as it contains only n equations to determine n^2 matrix elements of δJ . Broyden suggested to choose δJ as a rank-1 update, linear in $\delta \mathbf{x}$,

$$\delta J = \mathbf{c} \, \delta \mathbf{x}^T \,, \tag{8}$$

where the unknown vector \mathbf{c} can be found by substituting (8) into (7), which gives

$$\delta J = \frac{\delta \mathbf{f} - J \delta \mathbf{x}}{\|\delta \mathbf{x}\|^2} \delta \mathbf{x}^T \,. \tag{9}$$

Javascript implementation

```
load('../linear/qrdec.js'); load('../linear/qrback.js');
\textbf{function} \ \ \text{newton} \ (\, \text{fs} \ , x \, , \text{acc} \ , \text{d}x \, ) \, \{\, / / \textit{Newton's root-finding method} \,
  var norm=function(v)Math.sqrt(v.reduce(function(s,e)s+e*e,0));
  if (acc=undefined) acc=le-6
  if(dx=undefined)dx=1e-3
  var J = [[0 for(i in x)] for(j in x)]
  var minusfx = [-fs[i](x)] for (i in x)
     for (i in x) for (k in x) {// calculate Jacobian
       x[k]+=dx
       J[k][i]=(fs[i](x)+minusfx[i])/dx
       x[k]-=dx
     var [Q,R]=qrdec(J), Dx=qrback(Q,R,minusfx)// Newton's step
     \mathbf{do}\{\ /\!/\ simple\ backtracking\ linesearch
       s=s/2;
       \mathbf{var} \ z = [x[i] + s * Dx[i] \ \mathbf{for}(i \ in \ x)]
       var minusfz=[-fs[i](z) for(i in x)]
     \ while (\text{norm}(\text{minusfz})>(1-s/2)*\text{norm}(\text{minusfx}) \&\& s>1./128)
     minusfx=minusfz; x=z; // step done
  }while(norm(minusfx)>acc)
  return x:
 //end newton
```

Optimization

Optimization is a problem of finding the minimum (or the maximum) of a given real (non-linear) function $F(\mathbf{p})$ of an *n*-dimensional argument $\mathbf{p} \equiv \{x_1, \dots, x_n\}$.

Downhill simplex method

The downhill simplex method (also called Nelder-Mead method or amoeba method) is a commonnly used nonlinear optimization algorithm implemented e.g. in the GNU Scientific Library. The minimum of a function in an n-dimensional space is found by transforming a simplex (a polytope of n+1 vertexes) according to the function values at the vertexes, moving it downhill until it converges towards the minimum.

To discuss the algorithm we need the following definitions:

- Simplex: a figure (polytope) represented by n+1 points, called vertexes, $\{\mathbf{p}_1, \dots, \mathbf{p}_{n+1}\}$ (where each point \mathbf{p}_k is an n-dimensional vector).
- Highest point: the vertex, \mathbf{p}_{hi} , with the largest value of the function: $f(\mathbf{p}_{hi}) = \max_{(k)} f(\mathbf{p}_k)$.
- Lowest point: the vertex, \mathbf{p}_{lo} , with the smallest value of the function: $f(\mathbf{p}_{lo}) = \min_{(k)} f(\mathbf{p}_k)$.
- Centroid: the center of gravity of all points, except for the highest: $\mathbf{p}_{ce} = \frac{1}{n} \sum_{(k \neq hi)} \mathbf{p}_k$

The simplex is moved downhill by a combination of the following elementary operations:

- 1. Reflection: the highest point is reflected against the centroid, $\mathbf{p}_{hi} \to \mathbf{p}_{re} = \mathbf{p}_{ce} + (\mathbf{p}_{ce} \mathbf{p}_{hi})$.
- 2. Expansion: the highest point reflects and then doubles its distance from the centroid, $\mathbf{p}_{hi} \to \mathbf{p}_{ex} = \mathbf{p}_{ce} + 2(\mathbf{p}_{ce} \mathbf{p}_{hi})$.
- 3. Contraction: the highest point halves its distance from the centroid, $\mathbf{p}_{hi} \to \mathbf{p}_{co} = \mathbf{p}_{ce} + \frac{1}{2}(\mathbf{p}_{hi} \mathbf{p}_{ce})$.
- 4. Reduction: all points, except for the lowest, move towards the lowest points halving the distance. $\mathbf{p}_{k\neq lo} \to \frac{1}{2}(\mathbf{p}_k + \mathbf{p}_{lo})$.

Finally, here is a possible algorithm for the downhill simplex method:

```
repeat:
    find highest, lowest, and centroid points
    try reflection
    if f(reflected) < f(highest):
        accept reflection
        if f(reflected) < f(lowest):
            try expansion
            if f(expanded) < f(reflected):
                accept expansion
        else:
        try contraction
        if f(contracted) < f(highest):
            accept contraction
        else:
            do reduction
until converged (e.g. size(simplex)<tolerance)
```

Javascript implementation

```
function amoeba(F,s,acc)\{//\ s:\ inital\ simplex,\ F:\ function\ to\ minimize
var sum = function(xs)xs.reduce(function(s,x)s+x,0)
\mathbf{var} \ \operatorname{norm} = \mathbf{function} \left( \, xs \, \right) \operatorname{Math.} \, s \operatorname{qrt} \left( \, xs \, . \, \operatorname{reduce} \left( \, \mathbf{function} \left( \, s \, , x \, \right) \, s + x * x \, , 0 \, \right) \, \right)
var dist=function(as, bs)norm([(as[k]-bs[k])for(k in as)])
\mathbf{var} \ \ \mathtt{size} = \\ \mathbf{function} \ (\ s\ ) \ \mathrm{norm} \ (\ [\ dist \ (\ s\ [\ i\ ]\ ,\ s\ [\ 0\ ]\ ) \ \\ \mathbf{for} \ (\ i \ \ in \ \ s\ ) \ \\ \mathbf{if} \ (\ i > 0)\ ]\ )
var p=s[0], n=p.length, fs=[F(s[i]) for(i in s)] //vertexes
while (size(s)>acc){
          var h=0.1=0
           for (var i in fs) { //finding high and low points
                    if(fs[i]>fs[h]) h=i
if(fs[i]<fs[l]) l=i }</pre>
\mathbf{var} \ \mathbf{pce} = [\mathbf{sum}([\mathbf{s}[\mathbf{i}][\mathbf{k}] \ \mathbf{for}(\mathbf{i} \ \mathbf{in} \ \mathbf{s}) \ \mathbf{if}(\mathbf{i}! = \mathbf{h})]) / \mathbf{n} \ \mathbf{for}(\mathbf{k} \ \mathbf{in} \ \mathbf{p})] / p\_centroid
\mathbf{var} \ \operatorname{pex} = [\operatorname{pce}[k] + 2 * (\operatorname{pce}[k] - \operatorname{s}[h][k]) \ \mathbf{for}(k \ \operatorname{in} \ p)] \ //p = \exp(\operatorname{anded})
           if(Fre{<}fs[h]) \{ \ /\!/ \ accept \ reflection
                     \mathbf{for} \, (\mathbf{var} \ k \ in \ p) \ s \, [h] \, [k] \! = \! pre \, [k] \, ; \ fs \, [h] \! = \! Fre
                     if(Fre<fs[l]){</pre>
                               var Fex=F(pex)
                               if(Fex<Fre){ // expansion</pre>
                                         for (var k in p) s[h][k]=pex[k]; fs[h]=Fex }}}
          else{
                     \mathbf{var} \ \ \mathsf{pco} = [\mathsf{pce} \ [\ k\ ] + .5 * (\ \mathsf{pce} \ [\ k\ ] - s \ [\ k\ ] \ [\ k\ ]) \ \ \mathbf{for} \ (\ k \ \ \mathsf{in} \ \ \mathsf{p}) \ ] \ , \\ \mathsf{Fco} = F(\ \mathsf{pco}) \ / \ / \ \mathit{contraction} \ ) \ \ \mathsf{for} \ (\ k \ \ \mathsf{in} \ \ \mathsf{p}) \ ] \ , \\ \mathsf{Fco} = F(\ \mathsf{pco}) \ / \ / \ \mathsf{contraction} \ ) \ \ \mathsf{for} \ (\ \mathsf{pco}) \ / \ / \ \mathsf{contraction} \ ) \ \ \mathsf{for} \ (\ \mathsf{pco}) \ / \ / \ \mathsf{contraction} \ ) \ \ \mathsf{for} \ \ \mathsf{pco} \ \mathsf{pco} \ ) \ \ \mathsf{pco} \ \mathsf{
                    if(Fco<fs[h]){ // contraction
for(var k in p) s[h][k]=pco[k]; fs[h]=Fco }</pre>
                     else{ // reduction
```

```
for(var i in s)if(i!=1){
    for(var k in p) s[i][k]=.5*(s[i][k]+s[l][k])
    fs[i]=F(s[i]) } }
}// end while
return s[l]
}//end amoeba
```