
Nonlinear equations

Introduction

Non-linear equations or root-finding is a problem of finding a set of n variables {x1, . . . , xn} which satisfy
n equations

fi(x1, ..., xn) = 0 , i = 1, . . . , n , (1)

where the functions fi are generally non-linear.

Newton’s method

Newton’s method (also reffered to as Newton-Raphson method, after Isaac Newton and Joseph Raphson)
is a root-finding algorithm that uses the first term of the Taylor series of the functions fi to linearise the
system (1) in the vicinity of a suspected root. It is one of the oldest and best known methods and is a
basis of a number of more refined methods.

Suppose that the point x ≡ {x1, . . . , xn} is close to the root. The Newton’s algorithm tries to find
the step ∆x which would move the point towards the root, such that

fi(x+∆x) = 0 , i = 1, . . . , n . (2)

The first order Taylor expansion of (2) gives a system of linear equations,

fi(x) +

n
∑

k=1

∂fi
∂xk

∆xk = 0 , i = 1, . . . , n , (3)

or, in the matrix form,
J∆x = −f(x), (4)

where f(x) ≡ {f1(x), . . . , fn(x)} and J is the matrix of partial derivatives1,

Jik ≡
∂fi
∂xk

, (5)

called the Jacobian matrix.
The solution ∆x to the linear system (4) gives the approximate direction and the step-size towards

the solution.
The Newton’s method converges quadratically if sufficiently close to the solution. Otherwise the full

Newton’s step ∆x might actually diverge from the solution. Therefore in practice a more conservative
step λ∆x with λ < 1 is usually taken. The strategy of finding the optimal λ is referred to as line search.

It is typically not worth the effort to find λ which minimizes ‖f(x+ λ∆x)‖ exactly, since ∆x is only
an approximate direction towards the root. Instead an inexact but quick minimization strategy is usually
used, like the backtracking line search where one first attempts the full step, λ = 1, and then backtracks,
λ← λ/2, until either the condition

‖f(x+ λ∆x)‖ <

(

1−
λ

2

)

‖f(x)‖ (6)

is satisfied, or λ becomes too small.

1in practice if derivatives are not available analytically one uses finite differences

∂fi

∂xk

≈
fi(x1, . . . , xk−1, xk + δx, xk+1, . . . , xn)− fi(x1, . . . , xk, . . . , xn)

δx

with δx ≪ s where s is the typical scale of the problem at hand.

1

Broyden’s quasi-Newton method

The Newton’s method requires calculation of the Jacobian at every iteration. This is generally an
expensive operation. Quasi-Newton methods avoid calculation of the Jacobian matrix at the new point
x+ δx, instead trying to use certain approximations, typically rank-1 updates.

Broyden algorithm estimates the Jacobian J + δJ at the point x + δx using the finite-difference
approximation,

(J + δJ)δx = δf , (7)

where δf ≡ f(x+ δx) − f(x) and J is the Jacobian at the point x.
The matrix equation (7) is under-determined in more than one dimension as it contains only n

equations to determine n2 matrix elements of δJ . Broyden suggested to choose δJ as a rank-1 update,
linear in δx,

δJ = c δxT , (8)

where the unknown vector c can be found by substituting (8) into (7), which gives

δJ =
δf − Jδx

‖δx‖2
δxT . (9)

Javascript implementation

l oad (’ . . / l i n e a r / qrdec . j s ’) ; load (’ . . / l i n e a r / qrback . j s ’) ;

function newton (f s , x , acc , dx){//Newton ’ s root−f i nd ing method
var norm=function (v)Math . s q r t (v . reduce (function (s , e) s+e∗e , 0)) ;
i f (acc==undef ined) acc=1e−6
i f (dx==undef ined)dx=1e−3
var J = [[0 for (i i n x)] for (j i n x)]
var minusfx=[− f s [i] (x) for (i i n x)]
do{

for (i i n x) for (k in x) {// c a l c u l a t e Jacobian
x [k]+=dx
J [k] [i]=(f s [i] (x)+minusfx [i]) /dx
x [k]−=dx }

var [Q,R]=qrdec (J) , Dx=qrback (Q,R, minusfx) // Newton ’ s s t ep
var s=2
do{ // simple back t rack ing l i n e s e ar ch

s=s /2 ;
var z=[x [i]+ s ∗Dx[i] for (i i n x)]
var minusfz=[− f s [i] (z) for (i i n x)]

}while (norm(minusfz)>(1−s /2) ∗norm(minusfx) && s>1./128)
minusfx=minusfz ; x=z ; // s t ep done

}while (norm(minusfx)>acc)
return x ;

}//end newton

Optimization

Optimization is a problem of finding the minimum (or the maximum) of a given real (non-linear) function
F (p) of an n-dimensional argument p ≡ {x1, . . . , xn}.

Downhill simplex method

The downhill simplex method (also called Nelder-Mead method or amoeba method) is a commonnly used
nonlinear optimization algorithm implemented e.g. in the GNU Scientific Library. The minimum of a
function in an n-dimensional space is found by transforming a simplex (a polytope of n+1 vertexes)
according to the function values at the vertexes, moving it downhill until it converges towards the
minimum.

To discuss the algorithm we need the following definitions:

2

• Simplex: a figure (polytope) represented by n+1 points, called vertexes, {p1, . . . ,pn+1} (where
each point pk is an n-dimensional vector).

• Highest point: the vertex, phi, with the largest value of the function: f(phi) = max(k) f(pk).

• Lowest point: the vertex, plo, with the smallest value of the function: f(plo) = min(k) f(pk).

• Centroid: the center of gravity of all points, except for the highest: pce =
1
n

∑

(k 6=hi) pk

The simplex is moved downhill by a combination of the following elementary operations:

1. Reflection: the highest point is reflected against the centroid, phi → pre = pce + (pce − phi).

2. Expansion: the highest point reflects and then doubles its distance from the centroid, phi → pex =
pce + 2(pce − phi).

3. Contraction: the highest point halves its distance from the centroid, phi → pco = pce+
1
2 (phi−pce).

4. Reduction: all points, except for the lowest, move towards the lowest points halving the distance.
pk 6=lo →

1
2 (pk + plo).

Finally, here is a possible algorithm for the downhill simplex method:

r epeat :
f i nd highest , lowest , and cen t r o i d po ints
t ry r e f l e c t i o n
i f f(reflected) < f(highest) :

accept r e f l e c t i o n
i f f(reflected) < f(lowest) :

t ry expans ion
i f f(expanded) < f(reflected) :

accept expans ion
else :

t r y con t r a c t i on
i f f(contracted) < f(highest) :

accept con t r a c t i on
else :

do r educt i on
un t i l converged (e . g . s i z e (s implex)<t o l e r ance)

Javascript implementation

function amoeba (F , s , acc) {// s : i n i t a l simplex , F: func t ion to minimize
var sum =function (xs) xs . reduce (function (s , x) s+x , 0)
var norm=function (xs)Math . s q r t (xs . reduce (function (s , x) s+x∗x , 0))
var d i s t=function (as , bs)norm ([(as [k]−bs [k]) for (k in as)])
var s i z e=function (s)norm ([d i s t (s [i] , s [0]) for (i i n s) i f (i >0)])
var p=s [0] , n=p . length , f s =[F(s [i]) for (i i n s)] // v e r t e x e s
while (s i z e (s)>acc) {

var h=0, l=0
for (var i i n f s) { // f i nd ing high and low poin t s

i f (f s [i]> f s [h]) h=i
i f (f s [i]< f s [l]) l=i }

var pce=[sum ([s [i] [k] for (i i n s) i f (i !=h)]) /n for (k in p)] // p c en t ro i d
var pre=[pce [k]+(pce [k]− s [h] [k]) for (k in p)] , Fre=F(pre) // p r e f l e c t e d
var pex=[pce [k]+2∗(pce [k]− s [h] [k]) for (k in p)] // p expanded

i f (Fre<f s [h]) { // accept r e f l e c t i o n
for (var k in p) s [h] [k]=pre [k] ; f s [h]=Fre
i f (Fre<f s [l]) {

var Fex=F(pex)
i f (Fex<Fre){ // expansion

for (var k in p) s [h] [k]=pex [k] ; f s [h]=Fex }}}
else {

var pco=[pce [k]+ .5∗ (pce [k]− s [h] [k]) for (k in p)] , Fco=F(pco)// cont rac t ion
i f (Fco<f s [h]) { // cont rac t ion

for (var k in p) s [h] [k]=pco [k] ; f s [h]=Fco }
else { // reduc t ion

3

for (var i i n s) i f (i != l){
for (var k in p) s [i] [k]= .5∗ (s [i] [k]+ s [l] [k])
f s [i]=F(s [i]) } } }

}// end whi l e
return s [l]

}//end amoeba

4

