
Nonlinear equations

Introduction

Non-linear equations or root-finding is a problem of finding a set of n variables {x1, . . . , xn} which satisfy
n equations

fi(x1, ..., xn) = 0 , i = 1, . . . , n , (1)

where the functions fi are generally non-linear.

Newton’s method

Newton’s method (also reffered to as Newton-Raphson method, after Isaac Newton and Joseph Raphson)
is a root-finding algorithm that uses the first term of the Taylor series of the functions fi to linearise the
system (1) in the vicinity of a suspected root. It is one of the oldest and best known methods and is a
basis of a number of more refined methods.

Suppose that the point x ≡ {x1, . . . , xn} is close to the root. The Newton’s algorithm tries to find
the step ∆x which would move the point towards the root, such that

fi(x+∆x) = 0 , i = 1, . . . , n . (2)

The first order Taylor expansion of (2) gives a system of linear equations,

fi(x) +

n
∑

k=1

∂fi
∂xk

∆xk = 0 , i = 1, . . . , n , (3)

or, in the matrix form,
J∆x = −f(x), (4)

where f(x) ≡ {f1(x), . . . , fn(x)} and J is the matrix of partial derivatives1,

Jik ≡
∂fi
∂xk

, (5)

called the Jacobian matrix.
The solution ∆x to the linear system (4) gives the approximate direction and the step-size towards

the solution.
The Newton’s method converges quadratically if sufficiently close to the solution. Otherwise the full

Newton’s step ∆x might actually diverge from the solution. Therefore in practice a more conservative
step λ∆x with λ < 1 is usually taken. The strategy of finding the optimal λ is referred to as line search.

It is typically not worth the effort to find λ which minimizes ‖f(x+ λ∆x)‖ exactly, since ∆x is only
an approximate direction towards the root. Instead an inexact but quick minimization strategy is usually
used, like the backtracking line search where one first attempts the full step, λ = 1, and then backtracks,
λ← λ/2, until either the condition

‖f(x+ λ∆x)‖ <

(

1−
λ

2

)

‖f(x)‖ (6)

is satisfied, or λ becomes too small.

1in practice if derivatives are not available analytically one uses finite differences

∂fi

∂xk

≈
fi(x1, . . . , xk−1, xk + δx, xk+1, . . . , xn)− fi(x1, . . . , xk, . . . , xn)

δx

with δx ≪ s where s is the typical scale of the problem at hand.
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Broyden’s quasi-Newton method

The Newton’s method requires calculation of the Jacobian at every iteration. This is generally an
expensive operation. Quasi-Newton methods avoid calculation of the Jacobian matrix at the new point
x+ δx, instead trying to use certain approximations, typically rank-1 updates.

Broyden algorithm estimates the Jacobian J + δJ at the point x + δx using the finite-difference
approximation,

(J + δJ)δx = δf , (7)

where δf ≡ f(x+ δx) − f(x) and J is the Jacobian at the point x.
The matrix equation (7) is under-determined in more than one dimension as it contains only n

equations to determine n2 matrix elements of δJ . Broyden suggested to choose δJ as a rank-1 update,
linear in δx,

δJ = c δxT , (8)

where the unknown vector c can be found by substituting (8) into (7), which gives

δJ =
δf − Jδx

‖δx‖2
δxT . (9)

Javascript implementation

l oad ( ’ . . / l i n e a r / qrdec . j s ’ ) ; load ( ’ . . / l i n e a r / qrback . j s ’ ) ;

function newton ( f s , x , acc , dx ){//Newton ’ s root−f i nd ing method
var norm=function (v )Math . s q r t (v . reduce ( function ( s , e ) s+e∗e , 0 ) ) ;
i f ( acc==undef ined ) acc=1e−6
i f (dx==undef ined )dx=1e−3
var J = [ [ 0 for ( i i n x ) ] for ( j i n x ) ]
var minusfx=[− f s [ i ] ( x ) for ( i i n x ) ]
do{

for ( i i n x ) for (k in x ) {// c a l c u l a t e Jacobian
x [ k]+=dx
J [ k ] [ i ]=( f s [ i ] ( x )+minusfx [ i ] ) /dx
x [ k]−=dx }

var [Q,R]=qrdec ( J ) , Dx=qrback (Q,R, minusfx ) // Newton ’ s s t ep
var s=2
do{ // simple back t rack ing l i n e s e ar ch

s=s /2 ;
var z=[x [ i ]+ s ∗Dx[ i ] for ( i i n x ) ]
var minusfz=[− f s [ i ] ( z ) for ( i i n x ) ]

}while (norm( minusfz )>(1−s /2) ∗norm( minusfx ) && s>1./128)
minusfx=minusfz ; x=z ; // s t ep done

}while (norm(minusfx )>acc )
return x ;

}//end newton

Optimization

Optimization is a problem of finding the minimum (or the maximum) of a given real (non-linear) function
F (p) of an n-dimensional argument p ≡ {x1, . . . , xn}.

Downhill simplex method

The downhill simplex method (also called Nelder-Mead method or amoeba method) is a commonnly used
nonlinear optimization algorithm implemented e.g. in the GNU Scientific Library. The minimum of a
function in an n-dimensional space is found by transforming a simplex (a polytope of n+1 vertexes)
according to the function values at the vertexes, moving it downhill until it converges towards the
minimum.

To discuss the algorithm we need the following definitions:
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• Simplex: a figure (polytope) represented by n+1 points, called vertexes, {p1, . . . ,pn+1} (where
each point pk is an n-dimensional vector).

• Highest point: the vertex, phi, with the largest value of the function: f(phi) = max(k) f(pk).

• Lowest point: the vertex, plo, with the smallest value of the function: f(plo) = min(k) f(pk).

• Centroid: the center of gravity of all points, except for the highest: pce =
1
n

∑

(k 6=hi) pk

The simplex is moved downhill by a combination of the following elementary operations:

1. Reflection: the highest point is reflected against the centroid, phi → pre = pce + (pce − phi).

2. Expansion: the highest point reflects and then doubles its distance from the centroid, phi → pex =
pce + 2(pce − phi).

3. Contraction: the highest point halves its distance from the centroid, phi → pco = pce+
1
2 (phi−pce).

4. Reduction: all points, except for the lowest, move towards the lowest points halving the distance.
pk 6=lo →

1
2 (pk + plo).

Finally, here is a possible algorithm for the downhill simplex method:

r epeat :
f i nd highest , lowest , and cen t r o i d po ints
t ry r e f l e c t i o n
i f f(reflected) < f(highest) :

accept r e f l e c t i o n
i f f(reflected) < f(lowest) :

t ry expans ion
i f f(expanded) < f(reflected) :

accept expans ion
else :

t r y con t r a c t i on
i f f(contracted) < f(highest) :

accept con t r a c t i on
else :

do r educt i on
un t i l converged ( e . g . s i z e ( s implex )<t o l e r ance )

Javascript implementation

function amoeba (F , s , acc ) {// s : i n i t a l simplex , F: func t ion to minimize
var sum =function ( xs ) xs . reduce ( function ( s , x ) s+x , 0 )
var norm=function ( xs )Math . s q r t ( xs . reduce ( function ( s , x ) s+x∗x , 0 ) )
var d i s t=function ( as , bs )norm ( [ ( as [ k]−bs [ k ] ) for ( k in as ) ] )
var s i z e=function ( s )norm ( [ d i s t ( s [ i ] , s [ 0 ] ) for ( i i n s ) i f ( i >0) ] )
var p=s [ 0 ] , n=p . length , f s =[F( s [ i ] ) for ( i i n s ) ] // v e r t e x e s
while ( s i z e ( s )>acc ) {

var h=0, l=0
for (var i i n f s ) { // f i nd ing high and low poin t s

i f ( f s [ i ]> f s [ h ] ) h=i
i f ( f s [ i ]< f s [ l ] ) l=i }

var pce=[sum ( [ s [ i ] [ k ] for ( i i n s ) i f ( i !=h) ] ) /n for (k in p) ] // p c en t ro i d
var pre=[pce [ k ]+( pce [ k]− s [ h ] [ k ] ) for (k in p) ] , Fre=F( pre ) // p r e f l e c t e d
var pex=[pce [ k ]+2∗( pce [ k]− s [ h ] [ k ] ) for ( k in p) ] // p expanded

i f ( Fre<f s [ h ] ) { // accept r e f l e c t i o n
for (var k in p ) s [ h ] [ k]=pre [ k ] ; f s [ h]=Fre
i f ( Fre<f s [ l ] ) {

var Fex=F( pex )
i f (Fex<Fre ){ // expansion

for (var k in p) s [ h ] [ k]=pex [ k ] ; f s [ h]=Fex }}}
else {

var pco=[pce [ k ]+ .5∗ ( pce [ k]− s [ h ] [ k ] ) for ( k in p ) ] , Fco=F( pco )// cont rac t ion
i f (Fco<f s [ h ] ) { // cont rac t ion

for (var k in p) s [ h ] [ k]=pco [ k ] ; f s [ h]=Fco }
else { // reduc t ion
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for (var i i n s ) i f ( i != l ){
for (var k in p) s [ i ] [ k ]= .5∗ ( s [ i ] [ k]+ s [ l ] [ k ] )
f s [ i ]=F( s [ i ] ) } } }

}// end whi l e
return s [ l ]

}//end amoeba
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