Nonlinear equations

Introduction

Non-linear equations or root-finding is a problem of finding a set of n variables {x1, ..., x,} which satisfy
n equations

fi(xl,...,xn)zo,i:l,...,n, (1)

where the functions f; are generally non-linear.

Newton’s method

Newton’s method (also reffered to as Newton-Raphson method, after Isaac Newton and Joseph Raphson)
is a root-finding algorithm that uses the first term of the Taylor series of the functions f; to linearise the
system (1) in the vicinity of a suspected root. It is one of the oldest and best known methods and is a
basis of a number of more refined methods.

Suppose that the point x = {x1,...,x,} is close to the root. The Newton’s algorithm tries to find
the step Ax which would move the point towards the root, such that

filx+Ax)=0,4i=1,...,n. (2)

The first order Taylor expansion of (2) gives a system of linear equations,

— Ofi .
fi(x)—i—;axkAxk:O,z:l,...,n, (3)
or, in the matrix form,

JAx = —f(x), (4)

where f(x) = {f1(x),..., fo(x)} and J is the matrix of partial derivatives?,

Ofi

Ji =,)
i al'k ()

called the Jacobian matriz.

The solution Ax to the linear system (4) gives the approximate direction and the step-size towards
the solution.

The Newton’s method converges quadratically if sufficiently close to the solution. Otherwise the full
Newton’s step Ax might actually diverge from the solution. Therefore in practice a more conservative
step AAx with A < 1 is usually taken. The strategy of finding the optimal) is referred to as line search.

It is typically not worth the effort to find A which minimizes ||f(x + AAx)|| exactly, since Ax is only
an approximate direction towards the root. Instead an inexact but quick minimization strategy is usually
used, like the backtracking line search where one first attempts the full step, A = 1, and then backtracks,
A < A/2, until either the condition

166+ 2830 < (1 3) 1560)

is satisfied, or A becomes too small.

Lin practice if derivatives are not available analytically one uses finite differences

Ofi _ fix1, - Tp—1,% + 02, Tpq1,- -, @n) — fil®1,- -, g, -, Tn)
oxy, dx

with dx < s where s is the typical scale of the problem at hand.

Broyden’s quasi-Newton method

The Newton’s method requires calculation of the Jacobian at every iteration. This is generally an
expensive operation. Quasi-Newton methods avoid calculation of the Jacobian matrix at the new point
x + 0%, instead trying to use certain approximations, typically rank-1 updates.

Broyden algorithm estimates the Jacobian J + dJ at the point x + éx using the finite-difference

approximation,
(J +6.J)6x = of , (7)

where 6f = f(x 4 0x) — f(x) and J is the Jacobian at the point x.

The matrix equation (7) is under-determined in more than one dimension as it contains only n
equations to determine n? matrix elements of §.J. Broyden suggested to choose 6.J as a rank-1 update,
linear in 0x,

§J =cox’ | (8)
where the unknown vector ¢ can be found by substituting (8) into (7), which gives

of — Jox

T
6J = ToxI? 0x" . 9)

Javascript implementation

load (’../linear /qrdec.js’); load (’../linear/qrback.js’);

function newton (fs,x,acc,dx){//Newton’s root—finding method
var norm=function (v)Math.sqrt (v.reduce (function(s,e)s+texe,0));
if (acc==undefined)acc=1e—6
if (dx=—=undefined)dx=1e—3
var J = [[0 for(i in x)] for(j in x
var minusfx=[—fs[i](x) for (i in x)
do{
for (i in x) for(k in x){// calculate Jacobian
x [k]+=dx
Jk][i]=(fs[i](x)+minusfx[i])/dx
x [k]—=dx }
var [Q,R]=qrdec(J), Dx=qrback(Q,R, minusfx)// Newton’s step
var s=2
do{ // simple backtracking linesearch
s=s /2;
var z=[x[i]+s*Dx[i] for(i in x)]
var minusfz=[—fs[i]|(z) for(i in x)]
}while (norm (minusfz)>(1—s/2) *norm (minusfx) && s>1./128)
minusfx=minusfz; x=z; // step done
}while (norm (minusfx)>acc)
return x;

}//end newton

)]
J

Optimization

Optimization is a problem of finding the minimum (or the maximum) of a given real (non-linear) function
F(p) of an n-dimensional argument p = {z1,...,2,}.

Downhill simplex method

The downhill simplex method (also called Nelder-Mead method or amoeba method) is a commonnly used
nonlinear optimization algorithm implemented e.g. in the GNU Scientific Library. The minimum of a
function in an n-dimensional space is found by transforming a simplex (a polytope of n+1 vertexes)
according to the function values at the vertexes, moving it downhill until it converges towards the
minimum.

To discuss the algorithm we need the following definitions:

e Simplex: a figure (polytope) represented by n+1 points, called vertexes, {p1,...,Pn+1} (where
each point py is an n-dimensional vector).

e Highest point: the vertex, ppi, with the largest value of the function: f(pni) = max) f(px)-

e Lowest point: the vertex, pio, with the smallest value of the function: f(pi,) = ming f(p&).

o Z(k;éhi) Pk

The simplex is moved downhill by a combination of the following elementary operations:

e Centroid: the center of gravity of all points, except for the highest: pee =

1. Reflection: the highest point is reflected against the centroid, pni — Pre = Pce + (Pce — Phi)-

2. Expansion: the highest point reflects and then doubles its distance from the centroid, pp; — Pex =
Pce + 2(pce - phi)-

3. Contraction: the highest point halves its distance from the centroid, pn; — Pco = pce—I—%(phi —Pee)-

4. Reduction: all points, except for the lowest, move towards the lowest points halving the distance.
Pk#lo — %(Pk + Plo)-

Finally, here is a possible algorithm for the downhill simplex method:

repeat
find highest , lowest, and centroid points
try reflection
if f(reflected) < f(highest) :
accept reflection
if f(reflected) < f(lowest) :
try expansion
if f(expanded) < f(reflected) :
accept expansion
else:
try contraction
if f(contracted) < f(highest) :
accept contraction
else
do reduction
until converged (e.g. size(simplex)<tolerance)

Javascript implementation

function amoeba(F,s,acc){// s: inital simplex, F: function to minimize
var sum =function (xs)xs.reduce (function(s,x)s+x,0)
var norm=function (xs)Math.sqrt (xs.reduce (function (s,x)s+x*x,0))
var dist=function (as,bs)norm ([(as[k]—bs[k])for(k in as)])
var size=function(s)norm([dist(s[i],s[0])for(i in s)if(i>0)])
var p=s[0], n=p.length, fs=[F(s[i]) for(i in s)] //vertezes
while (size (s)>acc){
var h=0,1=0
for(var i in fs){ //finding high and low points
if (fs[i]>fs [h]) h=i
if(fs[i]<fs[1]) l=i }
var pce=[sum([s[i][k] for(i in s) if(i!=h)])/n for(k in p)]//p-centroid
var pre=|[pce [k]+(pce[k]—s[h][k]) for(k in p)], Fre=F(pre) //p-reflected
var pex=[pce [k]+2x(pce[k]—s[h][k]) for(k in p)] //p-expanded
if (Fre<fs [h]){ // accept reflection
for (var k in p) s[h][k]=pre[k]; fs[h]=Fre
if (Fre<fs[1]){
var Fex=F(pex)
if (Fex<Fre){ // ezpansion
for(var k in p) s[h][k]=pex[k]; fs[h]=Fex }}}
else{
var pco=[pce [k]+.5%(pce[k]—s[h][k]) for(k in p)],Fco=F(pco)//contraction
if (Fco<fs [h]){ // contraction
for (var k in p) s[h][k]=pco[k]; fs[h]=Fco }
else{ // reduction

for(var i in s)if(il=1){
for(var k in p) s[i][k]=.5*(s[i][k]+s[1][k])
ts[i]=F(s[i]) } } }
Y// end while
return s[1]
}Y//end amoeba

