
Monte Carlo quadratures

Monte Carlo integration is a numerical quadrature where the abscissas are chosen randomly and no
assumptions about smoothness of the integrand are made, not even that the integrand is continuous.

Plain Monte Carlo algorithm distributes points (in a process called “sampling”) uniformly from the
integration region using either uncorrelated pseudo-random or correlated quasi-random sequences of
points.

Adaptive algorithms, such as VEGAS and MISER, distribute points non-uniformly, attempting to
reduce integration error, using “importance” and “stratified” sampling, correspondingly.

Multi-dimensional integration

One of the problems in multi-dimensional integration is that the integration region Ω is often quite
complicated, with the boundary not easily described by simple functions. However, it is usually much
easier to find out whether a given point lies within the integration region or not. Therefore a popular
strategy is to create an auxiliary rectangular volume V which contains the integration volume Ω and an
auxiliary function F which coincides with the integrand inside the volume Ω and is equal zero outside.
Then the integral of the auxiliary function over the (simple rectangular) auxiliary volume is equal the
original integral.

Unfortunately, the auxiliary function is generally non-continuous at the boundary and thus the ordi-
nary quadratures which assume continuous integrand will fail badly here while the Monte-Carlo quadra-
tures will do just as good (or as bad) as with continuous integrand.

Plain Monte Carlo sampling

Plain Monte Carlo is a quadrature with random abscissas and equal weights ,

∫

V

f(x)dV ≈ w
N

∑

i=1

f(xi) , (1)

where x a point in the multi-dimensional integration space. One free parameter, w, allows one condition
to be satisfied: the quadrature has to integrate exactly a constant function. This gives w = V/N ,

∫

V

f(x)dV ≈ V

N

N
∑

i=1

f(xi) = V 〈f〉 . (2)

According to the central limit theorem the error estimate ǫ is close to

ǫ = V
σ√
N

, (3)

where σ is the variance of the sample,
σ2 = 〈f2〉 − 〈f〉2. (4)

The 1/
√

N convergence of the error, typical for a random process, is quite slow.

Importance sampling

Suppose that the points are distributed not uniformly but with some density ρ(x) : the number of points
∆n in the volume ∆V around point x is given as

∆n =
N

V
ρ∆V, (5)

where ρ is normalised such that
∫

V
ρdV = V .

The estimate of the integral is then given as

∫

V

f(x)dV ≈
N

∑

i=1

f(xi)∆Vi =

N
∑

i=1

f(xi)
V

Nρ(xi)
= V

〈

f

ρ

〉

, (6)
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Table 1: Plain Monte Carlo integrator

function plainmc ( fun , a , b , N) {
var randomx = function ( a , b) // throws a random poin t i n s i de i ne g ra t i on volume

[ a [ i ]+Math . random() ∗(b [ i ]−a [ i ] ) for ( i i n a ) ] ;
var V=1; for (var i i n a ) V∗=b [ i ]−a [ i ] ; // V = in t e g ra t i on volume
for (var sum=0,sum2=0, i =0; i<N; i++){ //main loop

var f=fun ( randomx (a , b) ) ; // sampling the func t ion
sum+=f ; sum2+=f ∗ f } // accumulat ing s t a t i s t i c s

var average =sum/N;
var var i ance=sum2/N−average ∗ average ;
var i n t e g r a l=V∗ average ; // i n t e g r a l
var e r r o r=V∗Math . s q r t ( var i ance /N) ; // error
return [ i n t eg r a l , e r r o r ] ;
}//end plainmc
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Figure 1: Stratified sample of a discontinuous function,
f(x, y) = (x2 + y2 < 0.82) ? 1 : 0

where

∆Vi =
V

Nρ(xi)
(7)

is the “volume per point” at the point xi.
The corresponding variance is now given by

σ2 =

〈

(

f

ρ

)2
〉

−
〈

f

ρ

〉2

. (8)

Apparently if the ratio f/ρ is close to a constant, the variance is reduced.
It is tempting to take ρ = |f | and sample directly from the function to be integrated. However in

practice it is typically expensive to evaluate the integrand. Therefore a better strategy is to build an
approximate density in the product form, ρ(x, y, . . . , z) = ρx(x)ρy(y) . . . ρz(z), and then sample from
this approximate density. A popular routine of this sort is called VEGAS. The sampling from a given
function can be done using the Metropolis algorithm which we shall not discuss here.

Stratified sampling

Stratified sampling is a generalisation of the recursive adaptive integration algorithm to random quadra-
tures in multi-dimensional spaces.

The ordinary “dividing by two” strategy does not work for multi-dimensions as the number of sub-
volumes grows way too fast to keep track of. Instead one estimates along which dimension a subdivision
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Table 2: Recursive stratified sampling

sample N random points with p l a i n Monte Carlo ;
e s t imate the average and the e r r o r ;
i f the e r r o r i s acceptab l e :

return the average and the e r r o r ;
else :

for each dimension :
subd iv ide the volume in two along the dimension ;
e s t imate the sub−va r i ance s in the two sub−volumes ;

pick the dimension with the l a r g e s t sub−var i ance ;
subd iv ide the volume in two along th i s dimension ;
d i spatch two r e cu r s i v e c a l l s to each o f the sub−volumes ;
e s t imate the grand average and grand e r r o r ;
return the grand average and grand e r r o r ;
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Figure 2: Typical distributions of pseudo-random (left) and quasi-random (right) points in two dimen-
sions.

should bring the most dividends and only subdivides along this dimension. Such strategy is called
recursive stratified sampling. A simple variant of this algorithm is given in table .

In a stratified sample the points are concentrated in the regions where the variance of the function is
largest, as illustrated on figure .

Quasi-random (low-discrepancy) sampling

Pseudo-random sampling has high discrepancy1 – it typically creates regions with hight density of points
and other regions with low density of points, as illustrated on fig. 2. With pseudo-random sampling
there is actually a finite probability that all the N points would fall into one half of the region and none
into the other half.

Quasi-random sequences avoid this phenomenon by distributing points in a highly correlated manner
with a specific requirement of low discrepancy, see fig. 2 for an example. Quasi-random sampling is
like a computation on a grid where the grid constant must not be known in advance as the grid is ever
gradually refined and the points are always distributed uniformly over the region. The computation can
be stopped at any time.

The central limit theorem does not work in this case as the points are not statistically independent.
Thus the variance can not be used as an estimate of the error.

Lattice sampling

Let αi, i = 1, . . . , d, (d is the dimension of the integration space) be a set of cleverly chosen irrational
numbers, like square roots of prime numbers. Then the kth point (in the unit volume) of the sampling

1discrepancy is a measure of how unevenly the points are distributed over the region.
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sequence will be given as
x(k) = {frac(kα1), . . . , frac(kαd)} , (9)

where frac(x) is the fractional part of x.
A problem with this method is that a high accuracy arithmetics (e.g. long double) might be needed

in order to generate a reasonable amount of quasi-random numbers.
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