
Linear equations

A system of linear equations is a set of linear algebraic equations generally written in the form

n
∑

j=1

Aijxj = bi , i = 1 . . .m , (1)

where x1, x2, . . . , xn are the unknown variables, A11, A12, . . . , Amn are the (constant) coefficients of the
system, and b1, b2, . . . , bm are the (constant) right-hand side terms.

The system can be written in matrix form as

Ax = b , (2)

where A is the n× m matrix of the coefficients, x is the size-n column-vector of the unknown variables,
and and b is a size-m column-vector of right-hand side terms.

Systems of linear equations occur regularly in applied mathematics and therefore computational
algorithms for finding solutions of linear systems are an important part of numerical analysis. Such
algorithms play a prominent role in engineering, physics, chemistry, computer science, and economics.

A system of non-linear equations can often be approximated by a linear system, a helpful technique
(called linearization) in creating a mathematical model or a computer simulation of a relatively complex
system.

If m = n, the matrix A is called square. A square system has a unique solution if A is nonsingular,
that is, has a matrix inverse.

Triangular systems and back-substitution

An efficient algorithm to solve a square system of linear equations numerically is to transform the original
system into an equivalent triangular system,

Ty = c , (3)

where T is a triangular matrix: a special kind of square matrix where the matrix elements either below
or above the main diagonal are zero.

An upper triangular system can be readily solved by back substitution:

yi =
1

Tii

(

ci −
n
∑

k=i+1

Tikyk

)

, i = n, . . . , 1 . (4)

For the lower triangular system the equivalent procedure is called forward substitution.
Note that a diagonal matrix, that is a square matrix in which the elements outside the main diagonal

are all zero, is also a triangular matrix.

Reduction to triangular form

Popular algorithms for transforming a square system to triangular form are LU decomposition and QR

decomposition.

LU decomposition

LU decomposition is a factorization of a square matrix into a product of a lower triangular matrix L and
an upper triangular matrix U ,

A = LU . (5)

The linear system Ax = b after LU-decomposition of the matrix A becomes LUx = b and can be
solved by first solving Ly = b for y and then Ux = y for x with two runs of forward and backward
substitutions.
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If A is a n × n matrix, the condition (5) is a set of n2 equations,

n
∑

k=1

LikUkj = Aij , (6)

for n2 +n unknown elements of the triangular matrices L and U . The decomposition is thus not unique.
Usually the decomposition is made unique by providing extra n conditions e.g. by the requirement

that the elements of the main diagonal of the matrix L are equal one, Lii = 1 , i = 1 . . . n. The system
(6) can then be easily solved row after row using e.g. the Doolittle algorithm,

for i = 1 to n :
Lii = 1
for j = 1 to i− 1 :

Lij =
“

Aij −
P

k<j LikUkj

”

/Ujj

for j = i to n :
Uij = Aij −

P

k<i LikUkj

QR decomposition

QR decomposition is a factorization of a matrix into a product of an orthogonal matrix Q, such that
QT Q = 1 (where T denotes transposition), and a right triangular matrix R,

A = QR . (7)

QR-decomposition can be used to convert the linear system Ax = b into the triangular form

Rx = QTb, (8)

which can be solved directly by back-substitution.
QR-decomposition can also be performed on non-square matrices with few long columns. Generally

speaking a rectangular n × m matrix A can be represented as a product, A = QR, of an orthogonal
n × m matrix Q, QT Q = 1, and a right-triangular m × m matrix R.

QR decomposition of a matrix can be computed using several methods, such as Gram-Schmidt
orthogonalization, Householder transformations, or Givens rotations.

Gram-Schmidt orthogonalization Gram-Schmidt orthogonalization is an algorithm for orthogonal-
ization of a set of vectors in a given inner product space. It takes a linearly independent set of vectors
A = {a1, . . . ,am} and generates an orthogonal set Q = {q1, . . . ,qm} which spans the same subspace as
A. The algorithm is given as

f o r i = 1 to m
qi ← ai/‖ai‖ ( normal i zat i on )
f o r j = i + 1 to m

aj ← aj − 〈aj ,qi〉qi ( o r thogona l i z a t i on )

where 〈a,b〉 is the inner product of two vectors, and ‖a‖ =
√

〈a,a〉 is the vector’s norm. This variant
of the algorithm, where all remaining vectors aj are made orthogonal to qi as soon as the latter is
calculated, is considered to be numerically stable and is referred to as stabilized or modified.

Stabilized Gram-Schmidt orthogonalization can be used to compute QR decomposition of a matrix
A by orthogonalization of its column-vectors ai with the inner product

〈a,b〉 = aT b ≡

n
∑

k=1

(a)k(b)k , (9)

where n is the length of column-vectors a and b, and (a)k is the kth element of the column-vector.

input : matr ix A = {a1, . . . ,am} ( destroyed )
output : matr i ces R , Q = {q1, . . . ,qm} : A = QR
for i = 1 . . . m

Rii = (aT
i ai)

1/2
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qi = ai/Rii

for j = i + 1 . . . m
Rij = qT

i aj

aj = aj − qiRij

The factorization is unique under requirement that the diagonal elements of R are positive. For a
n × m matrix the complexity of the algorithm is O(mn2).

Determinant of a matrix

LU- and QR-decompositions allow O(n3) calculations of the of the determinant of a square matrix.
Indeed, for the LU-decomposition,

detA = detLU = det L detU = det U =

n
∏

i=1

Uii . (10)

For the QR-decomposition
detA = detQR = detQ detR . (11)

Since Q is an orthogonal matrix (det Q)2 = 1 and therefore

| detA| = | detR| =

∣

∣

∣

∣

∣

n
∏

i=1

Rii

∣

∣

∣

∣

∣

. (12)

Matrix inverse

The inverse A−1 of a square n × n matrix A can be calculated by solving n linear equations Axi = zi,
i = 1 . . . n, where zi is a column where all elements are equal zero except for the element number i, which
is equal one. The matrix made of columns xi is apparently the inverse of A.

JavaScript implementations

function qrdec (A) { // QR−decomposi t ion A=QR of matrix A
var m=A. length , dot = function ( a , b) {

var s=0; for (var i i n a ) s+=a [ i ]∗b [ i ] ; return s ;}
var R=[[0 for ( i i n A) ] for ( j i n A) ] ;
var Q=[[A[ i ] [ j ] for ( j i n A[ 0 ] ) ] for ( i i n A) ] ; //Q i s a copy of A
for (var i =0; i<m; i++){

var e=Q[ i ] , r=Math . s q r t ( dot ( e , e ) ) ;
i f ( r==0) throw ”qrdec : s i n gu l a r matrix”
R[ i ] [ i ]= r ;
for (var k in e ) e [ k]/= r ; // normal i za t ion
for (var j=i +1; j<m; j++){

var q=Q[ j ] , s=dot ( e , q ) ;
for (var k in q ) q [ k]−=s∗ e [ k ] ; // or t hogona l i z a t i on
R[ j ] [ i ]= s ; } }

return [Q,R ] ; } //end qrdec

function qrback (Q,R, b ) { // QR−b a c k s u b s t i t u t i on
// input : matr ices Q,R, array b ; output : array x such t ha t QRx=b

var m = Q. length , c = new Array (m) , x = new Array (m) ;
for (var i i n Q) { // c = QˆT b

c [ i ]=0; for (var k in b) c [ i ]+=Q[ i ] [ k ] ∗b [ k ] ; }
for (var i=m−1; i >=0; i−−){ // b a c k s u b s t i t u t i on

for (var s=0, k=i +1;k<m; k++) s+=R[ k ] [ i ]∗ x [ k ] ;
x [ i ]=( c [ i ]− s ) /R[ i ] [ i ] ; }

return x ; } // end qrback

function i nv e r s e (A) { // c a l c u l a t e s i n v e r s e o f matrix A
var [Q,R]=qrdec (A) ;
return [ qrback (Q,R, [ ( k == i ?1 : 0 ) for ( k in A) ] ) for ( i i n A) ] ; } // end inv e r s e
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