
Linear least squares

A system of linear equations is considered overdetermined if there are more equations than unknown
variables. If all equations of an overdetermined system are linearly independent, the system has no exact
solution.

A linear least-squares problem is the problem of finding an approximate solution to an overdetermined
system. It often arises in applications where a theoretical model is fitted to experimental data.

Linear least-squares problem

Consider a linear system
Ac = b , (1)

where A is an n × m matrix, c is an m-component vector of unknowns and b is an n-component vector
of the right-hand side terms. If the number of equations n is larger than the number of unknowns m,
the system is overdetermined and generally has no solution.

However, it is still possible to find an approximate solution – the one where Ac is only approximately
equal b, in the sence that the Euclidean norm of the difference between Ac and b is minimized,

min
c

‖Ac− b‖2 . (2)

The problem (2) is called the linear least-squares problem and the vector c that minimizes ‖Ac− b‖2 is
called the least-squares solution.

Solution via QR-decomposition

The linear least-squares problem can be solved by QR-decomposition. The matrix A is factorized as
A = QR, where Q is n × m matrix with orthogonal columns, QT Q = 1, and R is an m × m upper
triangular matrix. The Euclidean norm

‖Ac − b‖2 = ‖QRc− b‖2 = ‖Rc− QTb‖2 + ‖(1 − QQT )b‖2 (3)

The last term is independent of the fitting coeffitients c and therefore can not be reduced. However, the
last but one term can be reduced down to zero by solving an m × m system of linear equations

Rc− QTb = 0 . (4)

This system is right-triangular and can be readily solved by back-substitution.

Ordinary least-squares curve fitting

Ordinary (or linear) least-squares curve fitting is a problem of fitting n (experimental) data points
{xi, yi ± σi}, where σi are experimental errors, by a linear combination of m functions

F (x) =

m
∑

k=1

ckfk(x) . (5)

The objective of the least-squares fit is to minimize the square deviation, called χ2, between the fitting
function and the experimental data,

χ2 =

n
∑

i=1

(

F (xi) − yi

σi

)2

. (6)

Individual deviations from experimental points are weighted with their inverse errors in order to promote
contributions from the more precise measurements.

Minimization of χ2 with respect to the coefficiendt ck in (5) is apparently equivalent to the least-
squares problem (2) where

Aik =
fk(xi)

σi

, bi =
yi

σi

. (7)
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If QR = A is the QR-decomposition of the matrix A, the formal least-squares solution is

c = R−1QTb . (8)

However in practice it is better to back-substitute the system Rc = QTb.

Variances and correlations of fitting parameters

Suppose δyi is a (small) deviation of the measured value of the physical observable from its exact value.
The corresponding deviation δck of the fitting coefficient is then given as

δck =
∑

i

∂ck

∂yi

δyi . (9)

In a good experiment the deviations δyi are statistically independent and distributed normally with the
standard deviations σi. The deviations (9) are then also distributed normally with variances,

〈δckδck〉 =
∑

i

(

∂ck

∂yi

σi

)2

=
∑

i

(

∂ck

∂bi

)2

. (10)

The standard errors in the fitting coefficients are then given as the square roots of variances,

∆ck =
√

〈δckδck〉 =

√

√

√

√

∑

i

(

∂ck

∂bi

)2

. (11)

The variances are diagonal elements of the covariance matrix, Σ, made of covariances,

Σkq ≡ 〈δckδcq〉 =
∑

i

∂ck

∂bi

∂cq

∂bi

. (12)

Covariances 〈δckδcq〉 are measures of to what extent the coefficients ck and cq change together if the
measured values yi are varied. The normalized covariances,

〈δckδcq〉
√

〈δckδck〉〈δcqδcq〉
(13)

are called correlations.
Using (12) and (8) the covariance matrix can be calculated as

Σ =

(

∂c

∂b

) (

∂c

∂b

)T

= R−1(R−1)T = (RT R)−1 = (AT A)−1 . (14)

The square roots of the diagonal elements of this matrix provide the estimates of the errors of the fitting
coefficients and the (normalized) off-diagonal elements are the estimates of their correlations.

JavaScript implementation

function l s f i t ( xs , ys , dys , funs ) { // Linear l e a s t squares f i t
// uses : qrdec , qrback , i n v e r s e
// input : data poin t s {x , y , dy } ; f unc t i on s { funs }
// output : f i t t i n g c o e f f i c i e n t s c and covariance matrix S

var dot = function ( a , b ) // a . b
{ l et s =0; for ( l et i i n a ) s+=a [ i ]∗b [ i ] ; return s}

var t t imes = function (A,B) // AˆT∗B
[ [ dot (A[ r ] ,B[ c ] ) for ( r in A) ] for ( c in B) ] ;

var A=[[ funs [ k ] ( xs [ i ] ) /dys [ i ] for ( i i n xs ) ] for ( k in funs ) ] ;
var b=[ys [ i ] / dys [ i ] for ( i i n ys ) ] ;
var [Q,R]=qrdec (A) ;
var c=qrback (Q,R, b) ;
var S=inve r s e ( t t imes (R,R) ) ;
return [ c , S ] ;

}
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