
Numerical integration

Numerical integration, also called quadrature, is an algorithm to compute an approximation to a definite
integral in the form of a finite sum,

∫ b

a

f(x)dx ≈
n

∑

i=1

wif(xi) , (1)

where the abscissas xi and the weights wi are chosen such that the quadrature is particularly well suited
for a given problem. Different quadratures use different strategies of choosing the abscissas and weights.

Classical quadratures with equally spaced abscissas

Classical quadratures use predefined equally-spaced abscissas. A quadrature is called closed if the abscis-
sas include the end-points of the interval or the mid-point (which becomes end-point after halving the
interval). Otherwise it is called open. If the integrand is diverging at the end-points (or at the mid-point
of the interval) the closed quadratures generally can not be used.

For an n-point classical quadrature the n free parameters wi can be chosen such that the quadrature
integrates exactly a set of n (linearly independent) functions {φ1(x), . . . , φn(x)} where the integrals

Ik ≡
∫ b

a

φk(x)dx (2)

are known. This gives a set of equations, linear in wi,
n

∑

i=1

wiφk(xi) = Ik , k = 1 . . . n . (3)

The weights wi can then be determined by solving the linear system (3).
If the functions to be integrated exactly are chosen as polynomials {1, x, x2, . . . , xn−1}, the quadrature

is called Newton-Cotes quadrature. An n-point Newton-Cotes quadrature can integrate exactly the first
n terms of the function’s Taylor expansion

f(a + t) =

∞
∑

k=0

f (k)(a)

k!
tk . (4)

The nth order term f(n)(a)
n! tn will not be integrated exactly by an n-point quadrature and will then

result1 in the quadrature’s error2

ǫn ≈
∫ h

0

f (n)(a)

n!
tndt =

f (n)(a)

n!(n + 1)
hn+1 . (6)

If the function is smooth and the interval h is small enough the Newton-Cotes quadrature can give a
good approximation.

Here are several examples of closed and open classical quadratures:
∫ h

0

f(x)dx ≈ 1
2h [f(0) + f(h)] , (7)

∫ h

0

f(x)dx ≈ 1
6h

[

f(0) + 4f(1
2h) + f(h)

]

, (8)

∫ h

0

f(x)dx ≈ 1
2h

[

f(1
3h) + f(2

3h)
]

, (9)

∫ h

0

f(x)dx ≈ 1
6h

[

2f(1
6h) + f(2

6h) + f(4
6h) + 2f(5

6h)
]

. (10)

1Assuming that the integral is rescaled as
Z

b

a

f(x)dx =

Z

h=b−a

0

f(a + t)dt . (5)

2Actually the error is often one order in h higher due to symmetry of the the polynomials tk with respect to reflections
against the origin.

1



Quadratures with optimized abscissas

In quadratures with optimal abscissas, called Gaussian quadratures, not only weights wi but also abscissas
xi are chosen optimally. The number of free parameters is thus 2n (n optimal abscissas and n weights)
and one can chose 2n functions {φ1(x), . . . , φ2n(x)} to be integrated exactly. This gives a system of 2n
equations, linear in wi and non-linear in xi,

n
∑

i=1

wifk(xi) = Ik , k = 1, . . . , 2n, (11)

where Ik =
∫ b

a
fk(x)dx. The weights and abcissas can be determined solving this system of equations.

Here is, for example, a two-point Gauss-Legendre quadrature rule 3

∫ 1

−1

f(x)dx ≈ f

(

−
√

1
3

)

+ f

(

+
√

1
3

)

. (13)

The Gaussian quadratures are of order 2n − 1 compared to order n − 1 for non-optimal abscissas.
However, the optimal points generally can not be reused at the next iteration in an adaptive algorithm.

Reducing the error by subdividing the interval

The higher order quadratures, say n > 10, suffer from round-off errors as the weights wi generally have
alternating signs. Again, using high order polynomials is dangerous as they typically oscillate wildly and
may lead to Runge phenomenon. Therefore if the error of the quadrature is yet too big for a sufficiently
large n quadrature, the best strategy is to subdivide the interval in two and then use the quadrature on
the half-intervals. Indeed, if the error is of the order hk, the subdivision would lead to reduced error,

2
(

h
2

)k
< hk, if k > 1.

Adaptive quadratures

Adaptive quadrature is an algorithm where the integration interval is subdivided into adaptively refined
subintervals until the given accuracy goal is reached.

Adaptive algorithms are usually built on pairs of quadrature rules (preferably using the same points),
a higher order rule (e.g. 4-point-open) and a lower order rule (e.g. 2-point-open). The higher order rule
is used to compute the approximation, Q, to the integral. The difference between the higher order rule
and the lower order rule gives an estimate of the error, δQ. The integration result is accepted, if

δQ < δ + ǫ|Q| , (14)

where δ is the absolute accuracy goal and ǫ is the relative accuracy goal of the integration.
Otherwise the interval is subdivided into two half-intervals and the procedure applies recursively to

subintervals with the same relative accuracy goal ǫ and rescaled absolute accuracy goal δ/
√

2.
The reuse of the function evaluations made at the previous step of adaptive integration is very

important for the efficiency of the algorithm. The equally-spaced abscissas naturally provide for such a
reuse.

Gauss-Kronrod quadratures

Gauss-Kronrod quadratures represent a compromise between equally spaced abscissas and optimal ab-
scissas: n points are reused from the previous iteration (n weights as free parameters) and then m
optimal points are added (m abscissas and m weights as free parameters). Thus the accuracy of the
method is n + 2m − 1. There are several special variants of these quadratures fit for particular types of
the integrands.

3assuming that the integral is rescaled as
Z

b

a

f(x)dx =

Z

1

−1

b − a

2
f

„

a + b

2
+

b − a

2
t

«

dt . (12)

2



Table 1: Recursive adaptive integrator based on open-2/4 quadratures.

function adapt ( f , a , b , acc , eps , o l d f s ) {// adapt i ve i n t e g r a t o r

var x=[1/6 , 2/6 , 4/6 , 5/6 ] ; // ab s c i s s a s
var w=[2/6 ,1/6 , 1/6 , 2/6 ] ; // we ight s o f h i gher order quadrature
var v=[1/4 , 1/4 , 1/4 , 1/4 ] ; // we ight s o f lower order quadrature
var p = [ 1 , 0 , 0 , 1 ] ; // shows the new poin t s at each recurs ion
var n=x . length , h=b−a ;

i f ( typeo f ( o l d f s )==”undef ined ”) // f i r s t c a l l ?
f s =[ f ( a+x [ i ]∗h) for ( i i n x ) ] ; // f i r s t c a l l : popu la t e o l d f s

else { // r e cur s i v e c a l l : o l d f s are g i ven
f s = new Array (n ) ;
for (var k=0, i =0; i<n ; i++){

i f (p [ i ] ) f s [ i ]= f ( a+x [ i ]∗h) ; // new poin t s
else f s [ i ]= o l d f s [ k++];}} // reuse o f o ld po in t s

for (var q4=q2=i =0; i<n ; i++){
q4+=w[ i ]∗ f s [ i ]∗h ; // higher order es t imate
q2+=v [ i ]∗ f s [ i ]∗h ;} // lower order es t imate

var t o l=acc+eps ∗Math . abs ( q4 ) // requ i red t o l e r anc e
var e r r=Math . abs ( q4−q2 ) /3 // error es t imate

i f ( er r<t o l ) // are we done?
return [ q4 , e r r ] // yes , re turn i n t e g r a l and error

else { // too b i g error , preparing the recurs ion
acc/=Math . s q r t ( 2 . ) // r e s c a l e the ab so l u t e accuracy goa l
var mid=(a+b) /2
var l e f t =[ f s [ i ] for ( i i n f s ) i f ( i< n/2) ] // s t o r e the l e f t po in t s
var rght=[ f s [ i ] for ( i i n f s ) i f ( i>=n/2) ] // s t o r e the r i g h t po in t s
var [ ql , e l ]=adapt ( f , a , mid , eps , acc , l e f t ) // di spat ch two re cur s i v e c a l l s
var [ qr , e r ]=adapt ( f , mid , b , eps , acc , rght )
return [ q l+qr , Math . s q r t ( e l ∗ e l+er ∗ er ) ] // return the grand es t imate s
}

}
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