
Eigenvalues and eigenvectors

Introduction

A (non-zero) column-vector v is called an eigenvector of a matrix A with an eigenvalue λ, if

Av = λv . (1)

If an n × n matrix A is real and symmetric, AT = A, then it has n real eigenvalues λ1, . . . , λn, and
its (orthogonalized) eigenvectors V = {v1, . . . ,vn} form a full basis,

V V T = V T V = 1 , (2)

in which the matrix A is diagonal,

V T AV =













λ1 0 · · · 0

0 λ2

...
...

. . .

0 · · · λn













. (3)

Matrix diagonalization means finding all eigenvalues and (optionally) eigenvectors of a matrix.
Eigenvalues and eigenvectors enjoy a maltitude of applications in different branches of science and

technology.

Similarity transformations

Orthogonal transformations,
A→ QT AQ , (4)

where QT Q = 1, and, generally, similarity transformations,

A→ S−1AS , (5)

preserve eigenvalues and eigenvectors. Therefore one of the strategies to diagonalize a matrix is to apply
a sequence of similarity transformations (also called rotations) which (iteratively) turn the matrix into
diagonal form.

Jacobi eigenvalue algorithm

Jacobi eigenvalue algorithm is an iterative method to calculate the eigenvalues and eigenvectors of a real
symmetric matrix by a sequence of Jacobi rotations.

Jacobi rotation is an orthogonal transformation which zeroes a pair of the off-diagonal elements of a
(real symmetric) matrix A,

A→ A′ = J(p, q)T AJ(p, q) : A′

pq = A′

qp = 0 . (6)

The orthogonal matrix J(p, q) which eliminates the element Apq is called the Jacobi rotation matrix. It
is equal identity matrix except for the four elements with indices pp, pq, qp, and qq,

J(p, q) =



























1
. . . 0

cosφ · · · sinφ
...

. . .
...

− sinφ · · · cosφ

0
. . .

1



























← row p

← row q
. (7)

1

Or explicitly,

J(p, q)ij = δij ∀ ij /∈ {pq, qp, pp, qq} ;

J(p, q)pp = cosφ = J(p, q)qq ;

J(p, q)pq = sin φ = −J(p, q)qp . (8)

After a Jacobi rotation, A→ A′ = JT AJ , the matrix elements of A′ become

A′

ij = Aij ∀ i 6= p, q ∧ j 6= p, q

A′

pi = A′

ip = cApi − sAqi ∀ i 6= p, q ;

A′

qi = A′

iq = sApi + cAqi ∀ i 6= p, q ;

A′

pp = c2App − 2scApq + s2Aqq ;

A′

qq = s2App + 2scApq + c2Aqq ;

A′

pq = A′

qp = sc(App −Aqq) + (c2 − s2)Apq , (9)

where c ≡ cosφ, s ≡ sin φ. The angle φ is chosen such that after rotation the matrix element A′

pq is
zeroed,

cot(2φ) =
Aqq −App

2Apq

⇒ A′

pq = 0 . (10)

A side effect of zeroing a given off-diagonal element Apq by a Jacobi rotation is that other off-
diagonal elements are changed. Namely the elements of the rows and columns with indices equal to p
and q. However, after the Jacobi rotation the sum of squares of all off-diagonal elemens is reduced. The
algorithm repeatedly performs rotations until the off-diagonal elements become sufficiently small.

The convergence of the Jacobi method can be proved for two strategies for choosing the order in
which the elements are zeroed:

1. Classical method: with each rotation the largest of the remaining off-diagonal elements is zeroed.

2. Cyclic method: the off-diagonal elements are zeroed in strict order, e.g. row after row.

Although the classical method allows the least number of rotations, it is typically slower than the
cyclic method since searching for the largest element is an O(n2) operation. The count can be reduced
by keeping an additional array with indexes of the largest elements in each row. Updating this array
after each rotation is only an O(n) operation.

A sweep is a sequence of Jacobi rotations applied to all non-diagonal elements. Typically the method
converges after a small number of sweeps. The operation count is O(n) for a Jacobi rotation and O(n3)
for a sweep.

The typical convergence criterion is that the sum of absolute values of the off-diagonal elements is
small,

∑

i<j |Aij | < ǫ, where ǫ is the required accuracy. Other criteria can also be used, like the largest
off-diagonal element is small, max |Ai<j | < ǫ, or the diagonal elements have not changed after a sweep.

The eigenvectors can be calculated as V = 1J1J2..., where Ji are the successive Jacobi matrices. At
each stage the transformation is

Vij → Vij , j 6= p, q

Vip → cVip − sViq (11)

Viq → sVip + cViq

Alternatively, if only one (or few) eigenvector vk is needed, one can instead solve the (singular) system
(A− λk)v = 0.

Power iteration methods

Power method

Power method is an iterative method to calculate an eigenvalue and the corresponding eigenvector using
the iteration

xi+1 = Axi . (12)

2

The iteration converges to the eigenvector of the largest eigenvalue. The eigenvalue can be estimated
using the Rayleigh quotient

λ[xi] =
xT

i Axi

xT
i xi

=
xT

i+1xi

xT
i xi

. (13)

Inverse power method

The iteration with the inverse matrix
xi+1 = A−1xi (14)

converges to the smallest eigenvalue of matrix A. Alternatively, the iteration

xi+1 = (A− s)−1xi (15)

converges to an eigenvalue closest to the given number s.

Inverse iteration method

Inverse iteration method is the refinement of the inverse power method where the trick is not to invert
the matrix in (15) but rather solve the linear system

(A− λ)xi+1 = xi (16)

using e.g. QR decomposition.
One can update the estimate for the eigenvalue using the Rayleigh quotient λ[xi] after each iteration

and get faster convergence for the price of O(n3) operations per QR-decomposition; or one can instead
make more iterations (with O(n2) operations per iteration) using the same matrix (A−λ). The optimal
strategy is probably an update after several iterations.

JavaScript implementation

function j a cob i (M) { // Jacobi d i agona l i z a t i on
// input : matrix M[] [] ; output : egenva lues E[] , e i g env e c t or s V [] [] ;

var V=[[(i==j ?1 : 0) for (i i n M)] for (j i n M)]
var A=M // in−p lace d i agona l i z a t i on , r i g h t t r i a n g l e o f M i s des t royed
var eps = 1e−12, rotated , sweeps =0;
do{ r otated =0;

for (var r=0; r<M. l ength ; r++)for (var c=r +1;c<M. l ength ; c++){//sweep
i f (Math . abs (A[c] [r])>eps ∗(Math . abs (A[c] [c])+Math . abs (A[r] [r]))) {

r otated =1; r o ta t e (r , c ,A,V) ; }
} sweeps++;//end sweep

}while (r otated==1) ; //end do
var E = [A[i] [i] for (i i n A)] ;
return [E,V, sweeps] ;

} // end j acob i

function r o ta t e (p , q ,A,V) { // Jacobi r o t a t i on e l im ina t i n g A pq .
// Only upper t r i a n g l e o f A i s updated .
// The matrix o f e i g env e c t o r s V i s a l s o updated .

i f (q<p) [p , q]=[q , p]
var n=A. length , app = A[p] [p] , aqq = A[q] [q] , apq = A[q] [p] ;
var phi =0.5∗Math . atan2 (2∗ apq , aqq−app) ; // could be done b e t t e r
var c=Math . cos (phi) , s=Math . s i n (phi) ;
A[p] [p] = c ∗ c ∗ app + s ∗ s ∗ aqq − 2 ∗ s ∗ c ∗ apq ;
A[q] [q] = s ∗ s ∗ app + c ∗ c ∗ aqq + 2 ∗ s ∗ c ∗ apq ;
A[q] [p]=0;
for (var i =0; i<p ; i++){

var aip=A[p] [i] , a i q=A[q] [i] ;
A[p] [i] = c∗aip−s ∗ a iq ; A[q] [i] = c∗ a iq+s ∗ aip ; }

for (var i=p+1; i<q ; i++){
var api=A[i] [p] , a i q=A[q] [i] ;
A[i] [p] = c∗api−s ∗ a iq ; A[q] [i] = c∗ a iq+s ∗ api ; }

for (var i=q+1; i<n ; i++){
var api=A[i] [p] , aq i=A[i] [q] ;

3

A[i] [p] = c∗api−s ∗ aq i ; A[i] [q] = c∗ aq i+s ∗ api ; }
i f (V!= undef ined) // update e i g env e c t o r s
for (var i =0; i<n ; i++){

var vip=V[p] [i] , v iq=V[q] [i] ;
V[p] [i] = c∗vip−s ∗ viq ; V[q] [i] = c∗ viq+s ∗vip ; }

}//end ro t a t e

4

