
1 Nonlinear equations

Nonlinear equations or root-finding is a problem of
finding a set of n variables {x1, . . . , xn} which sat-
isfy n equations

fi(x1, ..., xn) = 0 , i = 1 . . . n , (1)

where the functions fi are generally non-linear.

1.1 Newton’s method

The Newton’s method (also reffered to as Newton-
Raphson method, after Isaac Newton and Joseph
Raphson) is a root-finding algorithm that uses the
first term of the Taylor series of the functions fi

to linearise the system (1) in the vicinity of a sus-
pected root. It is one of the oldest and best known
methods and it is a basis of a number of more re-
fined methods.

Suppose that the vector x ≡ {x1, . . . , xn} is close
to the root. Let us try to find the step ∆x which
would bring us to the solution,

fi(x + ∆x) = 0 . (2)

The first order Taylor expansion of (2) gives a sys-
tem of linear equations

fi(x) +

n∑

k=1

∂fi

∂xk

∆xk = 0 (3)

or, in the matrix form,

J∆x = −f(x), (4)

where J is the matrix of partial derivatives1,

Jik ≡
∂fi

∂xk

, (5)

called Jacobian matrix, and

f(x) ≡ {f1(x), . . . , fn(x)} . (6)

The solution ∆x to the linear system (4) gives the
approximate direction and the step-size towards the
solution.

The Newton’s method converges quadratically if
sufficiently close to the solution. Otherwise the full
Newton’s step ∆x might actually diverge from the
solution. Therefore in practice a more conservative

1in practice if derivatives are not available analytically
one uses finite differences

∂fi

∂xk

≈
fi(x1, . . . , xk + δx, . . . , xn) − fi(x1, . . . , xk, . . . , xn)

δx

with δx ≪ s where s is the typical scale of the problem at
hand.

step λ∆x is usually taken where λ < 1 is chosen
(in a process called linesearch) to satisfy certain
conditions. The simplest condition is

‖f(x + λ∆x)‖ ≤ ‖f(x)‖ . (7)

An algrorithm of the Newton’s method with
backtracking linesearch and condition (7) is shown
in Table 1.

Table 1: Newton’s algorithm with simple back-
tracking linesearch.

repeat

solve J∆x = −f(x) for ∆x

λ = 1

while ‖f(x + λ∆x)‖ > ‖f(x)‖ and λ > 1
128 do

λ = λ/2

x = x + λ∆x

until converged (e.g. ‖f(x)‖ < tolerance)

1.2 Broyden’s quasi-Newton method

The Newton’s method requires calculation of the
Jacobian at every iteration. This is generally an
expensive operation. Quasi-Newton methods avoid
calculation of the Jacobian matrix at the new point
x + δx, instead trying to use certain approxima-
tions, typically rank-1 updates.

Broyden suggested to estimate the Jacobian J +
δJ at the point x + δx using the finite-difference
approximation

(J + δJ)δx = δf (8)

where δf ≡ f(x + δx) − f(x) and J is the Jacobian
at poin x.

The matrix equation (8) is under-determined in
more than one dimension as it contains only n equa-
tions to determine n2 matrix elements of δJ . Broy-
den suggested to choose δJ as a rank-1 update, lin-
ear in δx,

δJ = c δxT , (9)

where the unknown vector c can be easily found
from (8), giving

δJ =
δf − Jδx

‖δx‖2
δxT . (10)

1



2 Optimization

Optimization is a problem of finding minimum
(or maximum) of a given real (non-linear) func-
tion f(p) of an n-dimensional argument p =
{x1, . . . , xn}.

2.1 Downhill simplex method

The downhill simplex method (also called Nelder-
Mead method) is a commonnly used non-linear op-
timization algorithm implemented e.g. in GNU Sci-
entific Library. The minimum of a function in an
n-dimensional space is found by transforming a sim-
plex (a polytope of n+1 vertexes) according to the
function values at the vertexes, moving it downhill
until it converges towards the minimum.

To discuss the algorithm we need the following
definitions:

Simplex: a figure (polytope) represented by n+1
points, called vertexes, {p1, . . . ,pn+1} (where
each point pk is an n-dimensional vector).

Highest point: the vertex, phi, with the largest
value of the function: f(phi) = max(k) f(pk).

Lowest point: the vertex, plo, with the smallest
value of the function: f(plo) = min(k) f(pk).

Centroid: the center of gravity of all points, ex-
cept for the highest: pce = 1

n

∑
(k 6=hi) pk

The simplex is moved downhill by a combination
of the following elementary operations:

Reflection: The highest point is reflected against
the centroid, phi → pre = pce + (pce − phi).

Expansion: The lowest point doubles its distance
from the centroid, plo → pex = pce + 2(plo −
pce).

Contraction: The highest point halves its dis-
tance from the centroid, phi → pco = pce +
1
2 (phi − pce).

Reduction: All points, except for the lowest,
move towards the lowest points halving the dis-
tance. pk 6=lo → 1

2 (pk + plo).

Finally, Table 2 shows a possible algorithm for
the downhill simplex method.

Table 2: Downhill simplex (Nelder-Mead) algo-
rithm for non-linear multidimensional optimiza-
tion.

repeat

try reflection

if f(pre) < f(plo)

accept reflection and do expansion

elseif f(pre) < f(phi)

accept reflection

else

try contraction

if f(pco) < f(phi)

accept contraction

else

do reduction

until converged (e.g. size(simplex)<tolerance)

2


