1 Nonlinear equations

Nonlinear equations or root-finding is a problem of finding a set of n variables $\{x_1, \ldots, x_n\}$ which satisfy n equations

$$f_i(x_1, ..., x_n) = 0, i = 1...n,$$
 (1)

where the functions f_i are generally non-linear.

1.1 Newton's method

The Newton's method (also reffered to as Newton-Raphson method, after Isaac Newton and Joseph Raphson) is a root-finding algorithm that uses the first term of the Taylor series of the functions f_i to linearise the system (1) in the vicinity of a suspected root. It is one of the oldest and best known methods and it is a basis of a number of more refined methods.

Suppose that the vector $\mathbf{x} \equiv \{x_1, \dots, x_n\}$ is close to the root. Let us try to find the step $\Delta \mathbf{x}$ which would bring us to the solution,

$$f_i(\mathbf{x} + \Delta \mathbf{x}) = 0. (2)$$

The first order Taylor expansion of (2) gives a system of linear equations

$$f_i(\mathbf{x}) + \sum_{k=1}^n \frac{\partial f_i}{\partial x_k} \Delta x_k = 0$$
 (3)

or, in the matrix form,

$$J\Delta \mathbf{x} = -\mathbf{f}(\mathbf{x}),\tag{4}$$

where J is the matrix of partial derivatives¹,

$$J_{ik} \equiv \frac{\partial f_i}{\partial x_k} \,, \tag{5}$$

called Jacobian matrix, and

$$\mathbf{f}(\mathbf{x}) \equiv \{ f_1(\mathbf{x}), \dots, f_n(\mathbf{x}) \}. \tag{6}$$

The solution $\Delta \mathbf{x}$ to the linear system (4) gives the approximate direction and the step-size towards the solution.

The Newton's method converges quadratically if sufficiently close to the solution. Otherwise the full Newton's step $\Delta \mathbf{x}$ might actually diverge from the solution. Therefore in practice a more conservative

$$\frac{\partial f_i}{\partial x_k} \approx \frac{f_i(x_1, \dots, x_k + \delta x, \dots, x_n) - f_i(x_1, \dots, x_k, \dots, x_n)}{\delta x}$$

with $\delta x \ll s$ where s is the typical scale of the problem at hand.

step $\lambda \Delta \mathbf{x}$ is usually taken where $\lambda < 1$ is chosen (in a process called *linesearch*) to satisfy certain conditions. The simplest condition is

$$\|\mathbf{f}(\mathbf{x} + \lambda \Delta \mathbf{x})\| \le \|\mathbf{f}(\mathbf{x})\|$$
. (7)

An algorithm of the Newton's method with backtracking linesearch and condition (7) is shown in Table 1.

Table 1: Newton's algorithm with simple back-tracking linesearch.

repeat solve $J\Delta \mathbf{x} = -\mathbf{f}(\mathbf{x})$ for $\Delta \mathbf{x}$ $\lambda = 1$ while $\|\mathbf{f}(\mathbf{x} + \lambda \Delta \mathbf{x})\| > \|\mathbf{f}(\mathbf{x})\|$ and $\lambda > \frac{1}{128}$ do $\lambda = \lambda/2$ $\mathbf{x} = \mathbf{x} + \lambda \Delta \mathbf{x}$ until converged (e.g. $\|\mathbf{f}(\mathbf{x})\| < \text{tolerance}$)

1.2 Broyden's quasi-Newton method

The Newton's method requires calculation of the Jacobian at every iteration. This is generally an expensive operation. Quasi-Newton methods avoid calculation of the Jacobian matrix at the new point $\mathbf{x} + \delta \mathbf{x}$, instead trying to use certain approximations, typically rank-1 updates.

Broyden suggested to estimate the Jacobian $J+\delta J$ at the point $\mathbf{x}+\delta \mathbf{x}$ using the finite-difference approximation

$$(J + \delta J)\delta \mathbf{x} = \delta \mathbf{f} \tag{8}$$

where $\delta \mathbf{f} \equiv \mathbf{f}(\mathbf{x} + \delta \mathbf{x}) - \mathbf{f}(\mathbf{x})$ and J is the Jacobian at poin \mathbf{x} .

The matrix equation (8) is under-determined in more than one dimension as it contains only n equations to determine n^2 matrix elements of δJ . Broyden suggested to choose δJ as a rank-1 update, linear in $\delta \mathbf{x}$,

$$\delta J = \mathbf{c} \, \delta \mathbf{x}^T \,, \tag{9}$$

where the unknown vector \mathbf{c} can be easily found from (8), giving

$$\delta J = \frac{\delta \mathbf{f} - J \delta \mathbf{x}}{\|\delta \mathbf{x}\|^2} \delta \mathbf{x}^T . \tag{10}$$

¹in practice if derivatives are not available analytically one uses finite differences

2 Optimization

Optimization is a problem of finding minimum (or maximum) of a given real (non-linear) function $f(\mathbf{p})$ of an *n*-dimensional argument $\mathbf{p} = \{x_1, \ldots, x_n\}$.

2.1 Downhill simplex method

The downhill simplex method (also called Nelder-Mead method) is a commonnly used non-linear optimization algorithm implemented e.g. in GNU Scientific Library. The minimum of a function in an n-dimensional space is found by transforming a simplex (a polytope of n+1 vertexes) according to the function values at the vertexes, moving it downhill until it converges towards the minimum.

To discuss the algorithm we need the following definitions:

Simplex: a figure (polytope) represented by n+1 points, called vertexes, $\{\mathbf{p}_1, \dots, \mathbf{p}_{n+1}\}$ (where each point \mathbf{p}_k is an n-dimensional vector).

Highest point: the vertex, \mathbf{p}_{hi} , with the largest value of the function: $f(\mathbf{p}_{hi}) = \max_{(k)} f(\mathbf{p}_k)$.

Lowest point: the vertex, \mathbf{p}_{lo} , with the smallest value of the function: $f(\mathbf{p}_{lo}) = \min_{(k)} f(\mathbf{p}_k)$.

Centroid: the center of gravity of all points, except for the highest: $\mathbf{p}_{ce} = \frac{1}{n} \sum_{(k \neq hi)} \mathbf{p}_k$

The simplex is moved downhill by a combination of the following elementary operations:

Reflection: The highest point is reflected against the centroid, $\mathbf{p}_{\rm hi} \to \mathbf{p}_{\rm re} = \mathbf{p}_{\rm ce} + (\mathbf{p}_{\rm ce} - \mathbf{p}_{\rm hi})$.

Expansion: The lowest point doubles its distance from the centroid, $\mathbf{p}_{lo} \rightarrow \mathbf{p}_{ex} = \mathbf{p}_{ce} + 2(\mathbf{p}_{lo} - \mathbf{p}_{ce})$.

Contraction: The highest point halves its distance from the centroid, $\mathbf{p}_{hi} \rightarrow \mathbf{p}_{co} = \mathbf{p}_{ce} + \frac{1}{2}(\mathbf{p}_{hi} - \mathbf{p}_{ce})$.

Reduction: All points, except for the lowest, move towards the lowest points halving the distance. $\mathbf{p}_{k\neq lo} \to \frac{1}{2}(\mathbf{p}_k + \mathbf{p}_{lo})$.

Finally, Table 2 shows a possible algorithm for the downhill simplex method.

Table 2: Downhill simplex (Nelder-Mead) algorithm for non-linear multidimensional optimization.

```
repeat  \begin{array}{c} \text{try reflection} \\ \text{if } f(\mathbf{p}_{re}) < f(\mathbf{p}_{lo}) \\ \text{accept reflection and do expansion} \\ \text{elseif } f(\mathbf{p}_{re}) < f(\mathbf{p}_{hi}) \\ \text{accept reflection} \\ \text{else} \\ \text{try contraction} \\ \text{if } f(\mathbf{p}_{co}) < f(\mathbf{p}_{hi}) \\ \text{accept contraction} \\ \text{else} \\ \text{do reduction} \\ \\ \text{until converged (e.g. size(simplex) < tolerance)} \\ \end{array}
```