1 Nonlinear equations

Nonlinear equations or root-finding is a problem of
finding a set of n variables {z1,...,z,} which sat-
isfy n equations

jy($1,.” (1)

,xn)=0,4i=1...n,

where the functions f; are generally non-linear.

1.1 Newton’s method

The Newton’s method (also reffered to as Newton-
Raphson method, after Isaac Newton and Joseph
Raphson) is a root-finding algorithm that uses the
first term of the Taylor series of the functions f;
to linearise the system (1) in the vicinity of a sus-
pected root. It is one of the oldest and best known
methods and it is a basis of a number of more re-
fined methods.

Suppose that the vector x = {x1,...,z,} is close
to the root. Let us try to find the step Ax which
would bring us to the solution,

filx+Ax) =0. (2)

The first order Taylor expansion of (2) gives a sys-
tem of linear equations

or, in the matrix form,
JAx = —f(x),

where J is the matrix of partial derivatives®,

Ji =)
k ka

called Jacobian matriz, and

f(x) = {fi(x),- -, fu(x)} . (6)

The solution Ax to the linear system (4) gives the
approximate direction and the step-size towards the
solution.

The Newton’s method converges quadratically if
sufficiently close to the solution. Otherwise the full
Newton’s step Ax might actually diverge from the
solution. Therefore in practice a more conservative

Lin practice if derivatives are not available analytically
one uses finite differences
Ofi _ filz1, @k + 07, zn) — filz1,. ..
oxy, ox

with dr < s where s is the typical scale of the problem at
hand.

a$k7"'7$n)

step MAx is usually taken where A < 1 is chosen
(in a process called linesearch) to satisfy certain
conditions. The simplest condition is

[£(x + AAx) | < [[f(x)][- (7)
An algrorithm of the Newton’s method with

backtracking linesearch and condition (7) is shown
in Table 1.

Table 1: Newton’s algorithm with simple back-
tracking linesearch.

repeat
solve JAx = —f(x) for Ax
A=1
while [|f(x + AAx)| > [|f(x)| and A > 135 do
A=)\/2
x =x+ MAx

until converged (e.g. ||f(x)|| < tolerance)

1.2 Broyden’s quasi-Newton method

The Newton’s method requires calculation of the
Jacobian at every iteration. This is generally an
expensive operation. Quasi-Newton methods avoid
calculation of the Jacobian matrix at the new point
x + dx, instead trying to use certain approxima-
tions, typically rank-1 updates.

Broyden suggested to estimate the Jacobian J +
0J at the point x 4+ dx using the finite-difference
approximation

(J +06J)ox = of (8)
where 6f = f(x + 6x) — f(x) and J is the Jacobian
at poin x.

The matrix equation (8) is under-determined in
more than one dimension as it contains only n equa-
tions to determine n? matrix elements of 6.J. Broy-
den suggested to choose ¢J as a rank-1 update, lin-
ear in 0x,

§J =cox’, 9)
where the unknown vector ¢ can be easily found
from (8), giving

of — Jox
§J = ————ox" . (10)
[[ox][*

2 Optimization

Optimization is a problem of finding minimum
(or maximum) of a given real (non-linear) func-
tion f(p) of an n-dimensional argument p =

{.1‘1,. .. ,,CCn}.

2.1 Downbhill simplex method

The downhill simplex method (also called Nelder-
Mead method) is a commonnly used non-linear op-
timization algorithm implemented e.g. in GNU Sci-
entific Library. The minimum of a function in an
n-dimensional space is found by transforming a sim-
plex (a polytope of n+1 vertexes) according to the
function values at the vertexes, moving it downhill
until it converges towards the minimum.

To discuss the algorithm we need the following
definitions:

Simplex: a figure (polytope) represented by n+1
points, called vertexes, {p1,...,Pn+1} (Where
each point py is an n-dimensional vector).

Highest point: the vertex, ppj, with the largest
value of the function: f(pni) = maxy) f(pk)-

Lowest point: the vertex, pjo, with the smallest
value of the function: f(pi,) = ming, f(px)-

Centroid: the center of gravity of all points, ex-
cept for the highest: pee = %Z(k;ﬁhi) Pk

The simplex is moved downhill by a combination
of the following elementary operations:

Reflection: The highest point is reflected against
the centroid, phi — Pre = Pee + (Pce — Phi)-

Expansion: The lowest point doubles its distance
from the centroid, pjo — Pex = Pee + 2(P1o —

Pee)-

Contraction: The highest point halves its dis-
tance from the centroid, pn; — Pco = Pee +

%(Phi — Pce)-

Reduction: All points, except for the lowest,
move towards the lowest points halving the dis-

tance. Prslo — 3(Pk + Plo)-

Finally, Table 2 shows a possible algorithm for
the downhill simplex method.

Table 2: Downhill simplex (Nelder-Mead) algo-
rithm for non-linear multidimensional optimiza-
tion.

repeat
try reflection
if f(Pre) < f(P1o)
accept reflection and do expansion

elseif f(pre) < f(Pni)

accept reflection
else

try contraction

if f(pco) < f(phi)
accept contraction

else

do reduction

until converged (e.g. size(simplex)<tolerance)

