1 Feynman’s path integrals in
quantum mechanics

Path integrals is a formulation of quantum mechan-
ics where particles move simultaneously along all
possible paths with certain probability amplitude.

1.1 Time evolution in Schrodinger’s
wave-mechanics

The time evolution of a quantum system with
Hamiltonian H is described by the time dependent
Schrédinger equation,

ih—r = Hy, (1)

with a formal solution
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is the time-evolution operator which propagates the
system from time zero to time ¢t. The operator can
be explicitly calculated if all eigenvalues and eigen-
vectors of the Hamiltonian H are known.
For example, it can be calculated in the case of
a free particle with mass m in one dimension, with
the free Hamiltonian
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The matrix elements of the free time-evolution op-
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are given in momentum space
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and in coordinate space as
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The latter matrix element is the probability am-
plitude for the particle to propagate (move) from
point x at time zero to x’ at time .
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1.2 Time evolution in path integral
formulation

In path integral formulation a particle can propa-
gate from an initial position x to the final position

2/ simultaneously along all possible paths. The am-
plitude of the probability for the particle to start at
z and end up at z’ is given as the “path integral”,
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where w(p) is a certain weight factor of path p and

S(p) = / Ldt (8)

is the action integral along the path p, and L is the
Lagrangian of the particle.

Apparently, when S > h only the stationary clas-
sical path, 65(p) = 0, gives a non-vanishing contri-
bution to the path integral, which is the obvious
limit of classical physics.

The weight factors w(p) depend upon the class
of the paths and cannot be written in a general
form. The polygonal paths is the usual class of
paths considered in path integral formulations of
quantum mechanics.

1.2.1 Line segment propagator

Any path can be approximated by a sequence of
connected line segments forming a broken line path,
also called piecewise linear path, or polygonal path.
The weight factor for the line segment propagator
can be found e.g. by considering the motion of a
free particle along a straight line and comparing the
result with (6).
A free one-dimensional particle with mass m, co-
ordinate x, and velocity & has the Lagrangian
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Assuming the particle moves from x to 2’ along a
straight line with constant velocity & = (2’ — )/,
the action integral along the path in (7) is given as
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The exponent is identical to that of the Schrédinger
propagator (6). If now the weight factor is chosen

as
m
w frg _—
2miht '

the line segment propagator for the free particle
becomes identical to (6).

Generally, if the particle is not free but moves in
a potential V' with the Lagrangian
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L(z,z) = — = V(x), (12)

the short line propagator can be approximated as
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1.2.2 Polygonal path formulation

In the polygonal path formulation the time is dis-
cretized into N + 1 equidistant points ¢, = nAt
where n = 0...N and At = t/N; and the particle
is assumed to move from z = a to x = b along a
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Using the obvious composition rule
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the path integral along this polygon can be written
as
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where the short time action is defined using the
midpoint rule,
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1.2.3 Space discretization

If the space is also discretized into M equidistant
points , = Zpin + nAx, wheren = 0...M — 1
and Az = (Tmax — Tmin)/(M — 1), the short-time
propagator U(At) becomes a complex matrix with
matrix elements
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and the finite time propagator U(t) becomes a
product of short-time propagators,

(17)

Ut) = AV U Ay (18)

1.2.4 Real time propagation and the spec-
trum of the system

The energy levels can be extracted by a Fourier
transform of the trace of the propagator:
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where E, and |v) are the eigenvalues and eigen-
functions of the system’s Hamiltonian,
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1.2.5 Imaginary time propagation and

eigen-function
Propagation of a random state |¢) in imaginary
time t = —ihT,
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apparently reduces the contributions of excited
states and converges to the ground state |0),
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The trace of the imaginary time propagator is
apparently the partition function, with the temper-
ature T = 1/7,
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For small temperatures the system cools down to
the ground state |0).

trace (U(—ih1)) (23)



