
1 Feynman’s path integrals in

quantum mechanics

Path integrals is a formulation of quantum mechan-
ics where particles move simultaneously along all
possible paths with certain probability amplitude.

1.1 Time evolution in Schrödinger’s

wave-mechanics

The time evolution of a quantum system with
Hamiltonian H is described by the time dependent
Schrödinger equation,

i~
∂ψ

∂t
= Hψ , (1)

with a formal solution

ψ = e−
i
~

Htψ0 , (2)

where ψ0 = ψ|t=0 and

e−
i
~

Ht ≡ U (3)

is the time-evolution operator which propagates the
system from time zero to time t. The operator can
be explicitly calculated if all eigenvalues and eigen-
vectors of the Hamiltonian H are known.

For example, it can be calculated in the case of
a free particle with mass m in one dimension, with
the free Hamiltonian

H0 = −
~

2

2m

∂2

∂x2
. (4)

The matrix elements of the free time-evolution op-

erator U0 = e−
i
~

H0t are given in momentum space
as

〈k′|U0|k〉 = δk′ke
−i ~k

2

2m
t , (5)

and in coordinate space as

〈x′|U0|x〉 =

∫

dk

2π
e−i ~k

2

2m
teik(x−x′)

=

√

m

2πi~t
e

i

~

m

2t
(x′

−x)2 . (6)

The latter matrix element is the probability am-
plitude for the particle to propagate (move) from
point x at time zero to x′ at time t.

1.2 Time evolution in path integral

formulation

In path integral formulation a particle can propa-
gate from an initial position x to the final position

x′ simultaneously along all possible paths. The am-
plitude of the probability for the particle to start at
x and end up at x′ is given as the “path integral”,

〈x′|U |x〉 =
∑

p ∈ paths

w(p) e
i

~
S(p) , (7)

where w(p) is a certain weight factor of path p and

S(p) =

∫

p

Ldt (8)

is the action integral along the path p, and L is the
Lagrangian of the particle.

Apparently, when S ≫ ~ only the stationary clas-
sical path, δS(p) = 0, gives a non-vanishing contri-
bution to the path integral, which is the obvious
limit of classical physics.

The weight factors w(p) depend upon the class
of the paths and cannot be written in a general
form. The polygonal paths is the usual class of
paths considered in path integral formulations of
quantum mechanics.

1.2.1 Line segment propagator

Any path can be approximated by a sequence of
connected line segments forming a broken line path,
also called piecewise linear path, or polygonal path.

The weight factor for the line segment propagator
can be found e.g. by considering the motion of a
free particle along a straight line and comparing the
result with (6).

A free one-dimensional particle with mass m, co-
ordinate x, and velocity ẋ has the Lagrangian

L(x, ẋ) =
mẋ2

2
. (9)

Assuming the particle moves from x to x′ along a
straight line with constant velocity ẋ = (x′ − x)/t,
the action integral along the path in (7) is given as

e
i

~
S = e

i

~

m

2

“

x
′
−x

t

”2

t
= e

i

~

m

2t
(x′

−x)2 . (10)

The exponent is identical to that of the Schrödinger
propagator (6). If now the weight factor is chosen
as

w =

√

m

2πi~t
, (11)

the line segment propagator for the free particle
becomes identical to (6).

Generally, if the particle is not free but moves in
a potential V with the Lagrangian

L(x, ẋ) =
mẋ2

2
− V (x) , (12)

the short line propagator can be approximated as

we
i

~
S =

√

m

2πi~t
e

i

~

“

m

2t
(x′

−x)2−V ( x+x
′

2
)t

”

. (13)
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1.2.2 Polygonal path formulation

In the polygonal path formulation the time is dis-
cretized into N + 1 equidistant points tn = n∆t
where n = 0 . . .N and ∆t = t/N ; and the particle
is assumed to move from x = a to x = b along a
polygon {(t0, a), (t1, x1), . . . , (tN , b)}.

Using the obvious composition rule

〈b|U |a〉 =

∫

dx〈b|U |x〉〈x|U |a〉 , (14)

the path integral along this polygon can be written
as

〈b|U |a〉 = (15)
∫

dx1

√

m

2πi~∆t
e

i

~
S1

∫

dx2

√

m

2πi~∆t
e

i

~
S2 . . .

∫

dxN−1

√

m

2πi~∆t
e

i

~
SN−1

√

m

2πi~∆t
e

i

~
SN

where the short time action is defined using the
midpoint rule,

Sn = ∆tL

(

xn + xn−1

2
,
xn − xn−1

∆t

)

(16)

1.2.3 Space discretization

If the space is also discretized into M equidistant
points xn = xmin + n∆x, where n = 0 . . .M − 1
and ∆x = (xmax − xmin)/(M − 1), the short-time
propagator U(∆t) becomes a complex matrix with
matrix elements

〈xn|U(∆t)|xn′〉 ≡ U(∆t)nn′

=

√

m

2πi~∆t
e

i∆t

~
L

“

xn+x
n′

2
,

xn−x
n′

∆t

”

(17)

and the finite time propagator U(t) becomes a
product of short-time propagators,

U(t) = ∆xN−1U(∆t)N . (18)

1.2.4 Real time propagation and the spec-

trum of the system

The energy levels can be extracted by a Fourier
transform of the trace of the propagator:

trace
(

U(t)
)

=
∑

ν

〈ν|e−
i

~
Ht|ν〉 =

∑

ν

e−
i

~
Eνt, (19)

where Eν and |ν〉 are the eigenvalues and eigen-
functions of the system’s Hamiltonian,

H |ν〉 = Eν |ν〉 . (20)

1.2.5 Imaginary time propagation and

eigen-function

Propagation of a random state |ψ〉 in imaginary
time t = −i~τ ,

U(−i~τ) = e−τH . (21)

apparently reduces the contributions of excited
states and converges to the ground state |0〉,

e−τH |ψ〉
τ→∞
−→ |0〉 . (22)

The trace of the imaginary time propagator is
apparently the partition function, with the temper-
ature T = 1/τ ,

trace (U(−i~τ)) =
∑

ν

e−τEν , (23)

For small temperatures the system cools down to
the ground state |0〉.
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