1 Ordinary differential equa-
tions

Many scientific problems can be formulated in
terms of a system of ordinary differential equations
(ODEs),

y'(x) =f(z,y), (1)

with an initial condition

Y(wo) =Yo,

dy

(2)
where ¢ = Z¥, and y and f(z,y) are generally

understood as column-vectors.

1.1 Runge-Kutta methods

Runge-Kutta methods are one-step methods for nu-
merical integration of ODEs (1). The solution y is
advanced from the point zy to 1 = g + h using a
one-step formula

(3)

where y; is the approximation to y(z1), and k is
a cleverly chosen (vector) constant. The Runge-
Kutta methods are distinguished by their order: a
method has order p if it can integrate exactly an
ODE where the solution is a polynomyal of order
p, or, in other words, if the error of the method is
O(hPT1) for small h.

The first order Runge-Kutta method is the Eu-

ler’s method,
k= f(,CCQ,yo) . (4)

Second order Runge-Kutta methods advance the
solution by an auxiliary evaluation of the deriva-
tive, e.g. the mid-point method,

y1 =Yyo + Ik,

kO - f($07}’0) )
k1/2 = f(‘r0+%hay0+%hk0) )
k = k1/2 ’ (5)

or the two-point method,

kO = f(anyO)v
ki = f(xo+ h,yo+ hko),
1
k = 5(1{0 +ki) . (6)

These two methods can be combined into a third
order method,

1 4 1
k= gko + 6k1/2 + gkl . (7)

The most commont is the fourth-order method,
which is called RK/ or simply the Runge-Kutta

method,
kO = f(ZE(),yo),
kl = f(x0+ %haYO'i‘%hkO) ;
ky = f(‘r0+%hay0+%hk1)a
k3 = f($0+h,y0+hk2) )

k = &(ko+2k; +2ks +k3). (8)

Higher order Runge-Kutta methods have been
devised, with the most the most famous being the
Runge-Kutta-Fehlberg fourth/fifth order method,
RKF45, implemented in the renowned rkf45.f

Fortran routine.

1.2 Multistep methods

Multistep methods try to use the information about
the function gathered at the previous steps. They
are generally not self-starting as there are no pre-
vious points at the start of the integration.

1.2.1 A two-step method

Given two points, (xo,yo) and (z1,y1), the sought
function y can be approximated in the vicinity of
the point z; as

(9)

where the coefficient c¢ is found from the condition
Y(wo) = Yo,

y@)=y1+y, - (—x1)+c-(xz—11)°,

_ Yo—Y1 —y/1'($0—361)
(xo —x1)?

c (10)

The value of the function at the next point, zo, can
now be estimated as y(x2) from (9).

1.3 Predictor-corrector methods

Predictor-corrector methods use extra iterations to
improve the solution. For example, the two-point
Runge-Kutta method (6) is as actually a predictor-
corrector method, as it first calculates the predic-
tion y; for y(z1),

(11)

and then uses this prediction in a correction step,

S’l ZYO+f($07YO)7

= 1 -
Y1 =Yoo+ §(f(3607YO)+f(3017y1)) (12)

Similarly, one can use the two-step approxima-
tion (9) as a predictor, and then improve it by one
order with a correction step, namely

y(z) =y(@) +d- (¢ —21)*(z —2).  (13)



The coefﬁ_cient d can be found from the condition
y'(x2) = f2, where f5 = (22, y(22)),

?27}”1720'(1'271'1)

d= 2(xe — x1)(z2 — x0) + (X2 — 1)

(14)

Equation (13) gives a better estimate, yo = y(x2),
of the function at the point xs.

In this context the formula (9) is referred to as
predictor, and (13) as corrector. The difference be-
tween the two gives an estimate of the error.

1.4 Step size control
1.4.1 Error estimate

The error dy of the integration step for a given
method can be estimated e.g. by comparing the so-
lutions for a full-step and two half-steps (the Runge
principle),

—~ Ytwo—half —steps — Yfull—step
by =~ S SENCEY
where p is the order of the algorithm used. It is
better to pick such formulas, where the full-step
and two half-step calculations share the evaluations
of the function f(z,y) — this would increase the
efficiency of the algorithm.

Another possibility is to make the same step with
two methods of different orders, the difference be-
tween the solutions providing an estimate of the
error.

In a predictor-corrector method the correction
can serve as the estimate of the error.

Table 1: Runge-Kutta mid-point stepper with error
estimate.

integration steps from a to b the tolerance, accord-
ing to the central limit theorem, scales as a square
root of the step-size h,

7 = (el + 8y

The step is accepted if the error is smaller than
tolerance. The next step can be estimated accord-
ing to the empirical prescription

(16)

tol Power
hnext = hprevious X (_) X SafetYa (17)

err

where Power ~ 0.25, Safety ~ 0.95.

Table 2: An ODE driver with adaptive step size
control.

function rkstep (f,x,y,h){
// Runge—Kutta midpoint step

var k0O = f(x,y)

var yl12 = [y[i]+k0[i]*h/2 for(i in y)]
var k = f(x+h/2,y12)

var yl = [y[i]+k[i]*h for(i in y)]

var dy = [(k[i]-kO0[i])*h/2 for(i in y)]
return [yl, dy]

}

function rkdrive(f, xlist ,ylist ,b,acc,eps,h)

// ODE driver: integrates y'=f(z,y) with
// absolute accuracy acc and relative
// accuracy eps until z=b with initial
// step h storing the results
// in arrays zlist and ylist
var norm = function (v)
Math. sqrt (v.reduce (function(a,b)a+b*b,0))
var a = xlist [0]
var x = xlist[xlist.length —1];
var y = ylist [ylist.length —1];
if (x>=b) return;
if (x+h>b) h=b—x;
var [yl,dy]=rkstep(f, x, y, h);
var err=norm(dy) ;
var tol=(norm(yl)*epstacc):x
Math. sqrt (h/(b—a));
if (err >0)
var new_h =
else
var new_h = 2xh;
if (tol>err){ // accept step
xlist .push(x+h);
ylist .push(yl);
rkdrive(f, xlist , ylist ,b,acc,eps,new_h);}
else // reject step
rkdrive(f, xlist ,ylist ,b,acc,eps,new_h);
}

hxMath.pow(tol/err ,.25) %.95;

1.4.2 Adaptive step size control

The tolerance T is the maximal accepted error on
the given integration step consistent with the re-
quired absolute, §, and relative, €, accuracies to be
achieved in the integration of an ODEs. Under as-
sumption of random distribution of errors on the




