1 Monte Carlo quadratures

Monte Carlo integration is a numerical quadrature
where the abscissas are chosen randomly and no
assumptions about smoothness of the integrand are
made, not even that the integrand is continuous.

Plain Monte Carlo algorithm distributes points
(in a process called “sampling”) uniformly from the
integration region using either uncorrelated pseudo-
random or correlated quasi-random sequences of
points.

Adaptive algorithms, such as VEGAS and
MISER, distribute points non-uniformly, attempt-
ing to reduce integration error, using “importance”
and “stratified” sampling, correspondingly.

1.1 Multi-dimensional integration

One of the problems in multi-dimensional inte-
gration is that often the integration region € is
quite complicated, with the boundary not easily de-
scribed by simple functions. However it is usually
a lot easier to find out whether a given points lies
within the integration region or not. Therefore a
popular strategy is to create an auxiliary rectangu-
lar volume V" which contains the integration volume
Q) an an auxiliary function F which coincides with
the integrand inside the volume 2 and is equal zero
outside. Then the integral of the auxiliary function
over the (simple rectangular) auxiliary volume is
equal the original integral.

Unfortunately the auxiliary function is non-
continuous at the boundary and thus the ordi-
nary quadratures which assume continuous inte-
grand will fail badly here while the Monte Carlo
quadratures will do just as good (or bad) as with
continuous integrand.

1.2 Plain Monte Carlo sampling

Plain Monte Carlo is a quadrature with equal
weights and non-optimised random abscissas,
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where x a point in the multi-dimensional integra-
tion space. One free parameter, w, allows one
condition to be satisfied: the quadrature has to

integrate exactly a constant function. This gives
w=V/N,
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According to the central limit theorem the error es-
timate € is close to
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where o is the variance of the sample,
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The 1/ VN convergence of the error is quite slow.
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Table 1: Plain Monte Carlo integrator

function plainmc(fun, a, b, N) {
integrates function “fun” over
a rectangular volume defined by
the lower—left point ”a” and
the upper—right point 7b”
using N pseudo—random points;
returns estimates of the integral
and the integration error
var randomx = function(a,b)
[a[i]+Math.random () x(b[i]—a[i])
for (i in a)];
var V=1; for(var i in a) Vsx=b[i]—ali];
var sum=0,sum2=0;
for (var 1i=0;i<N;i++){
var f=fun (randomx(a,b));
sumt=f; sum24=fx*f}
var average =sum/N;
var variance=sum2/N—averagexaverage;
var Q=Vxaverage;
var err=VxMath.sqrt (variance/N);
return [Q,err |;

1.3 Importance sampling

Suppose that the points are distributed not uni-
formly but with some density p(x) : the number
of points An in the volume AV around point x is
given as

N
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where p is normalised as [, pdV =V.
The estimate of the integral is then given as
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where AV; = NL) is the ’volume per point’ at

. plz;
the point z;.

The corresponding variance is now
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Apparently if the ration f/p is close to a con-
stant, the variance is reduced. It is tempting to
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take p = |f| and sample directly from the func-
tion. However in practice it is typically expen-
sive to evaluate the integrand. Therefore a better
strategy is to build an approximate density in the
product form, p(x,y,...,2) = pz(x)py(y) - .. p2(2),
and then sample from this approximate density. A
popular routine of this sort is called VEGAS. The
sampling from a given function can be done using
the Metropolis algorithm which we shall not discuss
here.

1.4 Stratified sampling

Stratified sampling is a generalisation of the re-
cursive adaptive integration algorithm to random
quadratures in multi-dimensional spaces.

The ordinary ‘dividing by two’ strategy does not
work for multi-dimensions as the number of sub-
volumes grows way too fast to keep track of. In-
stead one estimates along which dimension a sub-
division should bring the most dividends and only
subdivides along this dimension. The method is
called recursive stratified sampling. A typical algo-
rithm is listed in Table 2.

Table 2: Recursive stratified sampling

Sample N random points;
Estimate the average and the error;
If the error is acceptable :

Return the average and the error;
Else :
For each dimension :

Subdivide the volume in two along the di-
mension;

Estimate the sub-averages in the two sub-
volumes;

Pick the dimension with the largest sub-
average;

Subdivide the volume in two along this dimen-
sion;

Dispatch two recursive calls to each of the sub-
volumes;

Estimate the grand average and grand error;

Return the grand average and grand error;

In a stratified sample the points are concentrated
in the regions where the variance of the function is
largest, as illustrated on Figure 1.

Figure 1: Stratified sample of a discontinuous func-

tion f(z,y) = (/22 +y2<0.8)71:0



