1 Systems of linear equations

A system of linear equations is a set of linear alge-
braic equations,

ZAijZEj:bi,iil...m, (1)
Jj=1

where x1,7s,...,7, are the unknown variables,
Aq1,A19, ..., Ay are the coefficients of the sys-
tem, and by, bo, ..., b,, are the constant right-hand
terms. The system can be represented in matrix
form as

Ax=Db (2)

where A is the n X m matrix of the coefficients, x
is the size-n column-vector of unknowns, and and
b is a size-m column-vector of right-hand terms.

Computational algorithms for finding the solu-
tions of systems of linear equations are an impor-
tant part of numerical analysis, and such methods
play a prominent role in engineering, physics, chem-
istry, computer science, and economics. A system
of non-linear equations can often be approximated
by a linear system, a helpful technique (called lin-
earization) when making a mathematical model or
a computer simulation of a relatively complex sys-
tem.

If m = n, the matrix A is called square. A square
system has a unique solution if A is nonsingular, i.e.
has a matrix inverse.

1.1 Triangular systems and back-
substitution

An efficient algorithm to solve a square system of
linear equations numerically is to transform the
original system into an equivalent triangular sys-
tem,

Ty =c, (3)

where T is a triangular matriz — a special kind of
square matrix where the matrix elements either be-
low or above the main diagonal are zero.

An upper triangular system can be readily solved
by back-substitution:

1 n

k=i+1

For the lower triangular system the equivalent pro-
cedure is called forward-substitution.

Note that a diagonal matrix, that is a square ma-
trix in which the elements outside the main diago-
nal are all zero, is also a triangular matrix.

1.2 Reduction of a linear system to
triangular form

Popular algorithms for transforming a square sys-
tem to triangular form are LU-decomposition and
QR-decomposition.

LU-decomposition is a factorization of a square
matrix into a product of a lower triangular matrix
L and an upper triangular matrix U,

A=LU. (5)
The equation Ax = b, i.e. LUx = b, can then be
solved by first solving Ly = b for y and then Ux =
y for x with two runs of forward and backward
substitutions.

QR-decomposition is a factorization of a matrix
into a product of an orthogonal matrix), where
QTQ =1, and a right triangular matrix R,

A=QR. (6)

QR-decomposition can be used to convert the linear
system Ax = b into the triangular form
Rx = QTb, (7)

which can be solved directly by back-substitution.

QR-decomposition can be performed on non-

square matrices, where m < n, and can be used
for linear least-squares problems.

1.3 QR decomposition

A rectangular n x m matrix A can be represented as
a product, A = QR, of an orthogonal n x m matrix
Q, QTQ =1, and a right-triangular m x m matrix
R.

QR decomposition of a matrix can be computed
by means of modified Gram-Schmidt orthogonaliza-
tion.

1.3.1 Gram-Schmidt orthogonalization

Gram-Schmidt orthogonalization is an algorithm
for orthogonalization of a set of vectors in a given
inner product space. It takes a linearly indepen-
dent set of vectors A = {ay,...a,,} and generates
an orthogonal set @ = {qu, . .. q;, } which spans the
same subspace as A. The algorithm is given as

input: set A={ai,...,am} (destroyed)
output: orthogonal set Q= {qi,...,qam}
for i=1 to m

q; — a;/||a;|| (normalization)
for j=m+1 to m
aj «—a; —(a; -q;)q; (orthogonalization)

Here (a-b) is the inner product of two vectors, and
|lal| = 4/(a-a) is the vector’s norm. This variant
of the algorithm, where all remaining vectors a; are
made orthogonal to q; as soon as the latter is calcu-
lated, the algorithm is considered to be numerically
stable and is referred to as stabilized or modified.

Stabilized Gram-Schmidt orthogonalization can
be used to compute QR decomposition of a ma-
trix A by orthogonalization of its column-vectors
a; with the inner product

(a-b)=a"b=> (a)(b)s, (8)
k=1

where superscript 7 denotes transposition, n is the
length of vectors a and b, and (a)j is the kth ele-
ment of the vector. The algorithm is given as

input: matrix A={ai,...,am} (destroyed)
output: matrices R, Q@ ={qi,...,am}: A=QR
for i=1...m
R;; = (aiTai)l/Q
qi = a;/Ri;
for j=i+1...m
Rij =afa;
aj =aj —q;Ry;

function qrdec(A){
// QR-decomposition A=QR of matrix A
// input: matrix A
// output: matrices Q,R
var dot = function(a,b){
var s=0; for(let i in a) st+=ali]xb[i];
return s;

var R=[[0 for (i in A)] for (j in A)];
var Q=[[A[i][j] for (j in A[0])] for(i in
A) L
for (let i=0;i<Q.length;i++){
var e=Q[i], r=Math.sqrt(dot(e,e));
if (r==0){print(” singular matrix”);
return undefined}
R[i][i)=r;
for(let k in e) e[k]/=r;
for (let j=i+1;j<Q.length;j++){
var q=Q[j], s=dot(e,q);
for(let k in q) q[k]-=sxe[k];
R{j1[i]=s;

return [Q,R];
}

1.5.2 QR-backsubstitution

The factorization is unique under requirement
that the diagonal elements of R are positive. For

a n X m matrix the complexity of the algorithm is
O(mn?).

1.3.2 Determinant of a matrix

QR-decomposition allows an O(n?) calculation of
the absolute value of the determinant of a square
matrix. Indeed,

det(A) = det(QR) = det(Q) det(R) . 9)
Since @ is an orthogonal matrix det(Q)? = 1 and
therefore

|det(A)| = | det(R)|, (10)

where the determinant det(R) of a triangular ma-
trix R is simply a product of its diagonal elements.

1.4 Matrix inverse

The inverse A~! of a square n x n matrix A can be
calculated by solving n linear equations Ax; = z;,
i =1...n, where z; is a column where all elements
are equal zero except for the element number i,
which is equal one. The matrix made of columns
x; is apparently the inverse of A.

1.5 JavaScript implementation

1.5.1 QR-decomposition

function qgrback(Q,R,b){
// QR-backsubstitution

// input: matrices Q,R; array b
// output: array x such that QRx=b
var m = Q.length;
var ¢ = new Array (m) ;
var x = new Array(m) ;
for(let i in Q){
c[i]=0;

for(let k in b) c[i]+=Q[i][k]*b[k];

for (let i=m—1;i>=0;i—){
var s=0;
for (let k=i+1;k<m;k++) s+=R[k][i]*x[k];
T[i]:(C[i}—S)/R[i][i};

return x;

1.5.3 QR-inverse

function inverse (A){

// input: matrix A

// output: inverse matrix A"(—1)

var [Q,R]=qrdec(A);

return [qrback(Q,R,[(k=i71:0)
) for(i in A)];

for (k in A)

