
1 Systems of linear equations

A system of linear equations is a set of linear alge-
braic equations,

n
∑

j=1

Aijxj = bi , i = 1 . . . m , (1)

where x1, x2, . . . , xn are the unknown variables,
A11, A12, . . . , Amn are the coefficients of the sys-
tem, and b1, b2, . . . , bm are the constant right-hand
terms. The system can be represented in matrix
form as

Ax = b (2)

where A is the n × m matrix of the coefficients, x

is the size-n column-vector of unknowns, and and
b is a size-m column-vector of right-hand terms.

Computational algorithms for finding the solu-
tions of systems of linear equations are an impor-
tant part of numerical analysis, and such methods
play a prominent role in engineering, physics, chem-
istry, computer science, and economics. A system
of non-linear equations can often be approximated
by a linear system, a helpful technique (called lin-

earization) when making a mathematical model or
a computer simulation of a relatively complex sys-
tem.

If m = n, the matrix A is called square. A square
system has a unique solution if A is nonsingular, i.e.
has a matrix inverse.

1.1 Triangular systems and back-

substitution

An efficient algorithm to solve a square system of
linear equations numerically is to transform the
original system into an equivalent triangular sys-

tem,

Ty = c, (3)

where T is a triangular matrix – a special kind of
square matrix where the matrix elements either be-
low or above the main diagonal are zero.

An upper triangular system can be readily solved
by back-substitution:

yi =
1

Tii

(

ci −

n
∑

k=i+1

Tikyk

)

, i = n, . . . , 1 . (4)

For the lower triangular system the equivalent pro-
cedure is called forward-substitution.

Note that a diagonal matrix, that is a square ma-
trix in which the elements outside the main diago-
nal are all zero, is also a triangular matrix.

1.2 Reduction of a linear system to

triangular form

Popular algorithms for transforming a square sys-
tem to triangular form are LU-decomposition and
QR-decomposition.

LU-decomposition is a factorization of a square
matrix into a product of a lower triangular matrix
L and an upper triangular matrix U ,

A = LU . (5)

The equation Ax = b, i.e. LUx = b, can then be
solved by first solving Ly = b for y and then Ux =
y for x with two runs of forward and backward
substitutions.

QR-decomposition is a factorization of a matrix
into a product of an orthogonal matrix Q, where
QT Q = 1, and a right triangular matrix R,

A = QR . (6)

QR-decomposition can be used to convert the linear
system Ax = b into the triangular form

Rx = QTb, (7)

which can be solved directly by back-substitution.

QR-decomposition can be performed on non-
square matrices, where m < n, and can be used
for linear least-squares problems.

1.3 QR decomposition

A rectangular n×m matrix A can be represented as
a product, A = QR, of an orthogonal n×m matrix
Q, QT Q = 1, and a right-triangular m × m matrix
R.

QR decomposition of a matrix can be computed
by means of modified Gram-Schmidt orthogonaliza-

tion.

1.3.1 Gram-Schmidt orthogonalization

Gram-Schmidt orthogonalization is an algorithm
for orthogonalization of a set of vectors in a given
inner product space. It takes a linearly indepen-
dent set of vectors A = {a1, . . .am} and generates
an orthogonal set Q = {q1, . . .qm} which spans the
same subspace as A. The algorithm is given as

input : s e t A = {a1, . . . , am} ( destroyed )
output : or thogona l s e t Q = {q1, . . . ,qm}
f o r i = 1 to m

qi ← ai/‖ai‖ ( normal i zat i on )
f o r j = m + 1 to m

aj ← aj − 〈aj · qi〉qi ( o r thogona l i z a t i on )
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Here 〈a ·b〉 is the inner product of two vectors, and
‖a‖ =

√

〈a · a〉 is the vector’s norm. This variant
of the algorithm, where all remaining vectors aj are
made orthogonal to qi as soon as the latter is calcu-
lated, the algorithm is considered to be numerically
stable and is referred to as stabilized or modified.

Stabilized Gram-Schmidt orthogonalization can
be used to compute QR decomposition of a ma-
trix A by orthogonalization of its column-vectors
ai with the inner product

〈a · b〉 = aT b ≡

n
∑

k=1

(a)k(b)k , (8)

where superscript T denotes transposition, n is the
length of vectors a and b, and (a)k is the kth ele-
ment of the vector. The algorithm is given as

input : matr ix A = {a1, . . . ,am} ( destroyed )
output : matr i ces R , Q = {q1, . . . ,qm} : A = QR
for i = 1 . . . m

Rii = (aT
i ai)1/2

qi = ai/Rii

for j = i + 1 . . . m
Rij = qT

i aj

aj = aj − qiRij

The factorization is unique under requirement
that the diagonal elements of R are positive. For
a n × m matrix the complexity of the algorithm is
O(mn2).

1.3.2 Determinant of a matrix

QR-decomposition allows an O(n3) calculation of
the absolute value of the determinant of a square
matrix. Indeed,

det(A) = det(QR) = det(Q) det(R) . (9)

Since Q is an orthogonal matrix det(Q)2 = 1 and
therefore

| det(A)| = | det(R)| , (10)

where the determinant det(R) of a triangular ma-
trix R is simply a product of its diagonal elements.

1.4 Matrix inverse

The inverse A−1 of a square n×n matrix A can be
calculated by solving n linear equations Axi = zi,
i = 1 . . . n, where zi is a column where all elements
are equal zero except for the element number i,
which is equal one. The matrix made of columns
xi is apparently the inverse of A.

1.5 JavaScript implementation

1.5.1 QR-decomposition

function qrdec (A) {
// QR−decompos i t ion A=QR of matrix A
// input : matr ix A
// output : matr i ces Q,R

var dot = function ( a , b) {
var s=0; for ( l et i in a ) s+=a [ i ]∗b [ i ] ;
return s ;
}

var R=[[0 for ( i in A) ] for ( j in A) ] ;
var Q=[[A[ i ] [ j ] for ( j in A[ 0 ] ) ] for ( i in

A) ] ;
for ( l et i =0; i<Q. l ength ; i++){

var e=Q[ i ] , r=Math . s q r t ( dot ( e , e ) ) ;
i f ( r==0){print (” s i n gu l a r matrix ”) ;

return undef ined }
R[ i ] [ i ]= r ;
for ( l et k in e ) e [ k]/= r ;
for ( l et j=i +1; j<Q. l ength ; j++){

var q=Q[ j ] , s=dot ( e , q ) ;
for ( l et k in q ) q [ k]−=s∗ e [ k ] ;
R[ j ] [ i ]= s ;
}

}
return [Q,R ] ;

}

1.5.2 QR-backsubstitution

function qrback (Q,R, b) {
// QR−back sub s t i tu t i on
// input : matr i ces Q,R; array b
// output : ar ray x such that QRx=b

var m = Q. l ength ;
var c = new Array (m) ;
var x = new Array (m) ;
for ( l et i in Q) {

c [ i ]=0;
for ( l et k in b) c [ i ]+=Q[ i ] [ k ] ∗b [ k ] ;
}

for ( l et i=m−1; i >=0; i−−){
var s=0;
for ( l et k=i +1;k<m; k++) s+=R[ k ] [ i ]∗ x [ k ] ;
x [ i ]=( c [ i ]− s ) /R[ i ] [ i ] ;
}

return x ;
}

1.5.3 QR-inverse

function i nv e r s e (A) {
// input : matr ix A
// output : i nve r s e matrix Aˆ(−1)
var [Q,R]=qrdec (A) ;
return [ qrback (Q,R, [ ( k==i ?1 : 0 ) for (k in A)

] ) for ( i in A) ] ;
}
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