1 Linear least-squares prob-

lem

Linear least-squares problem is the problem of find-
ing an approximate solution to an overdetermined
system of linear equations. It arises often in appli-
cations where a theoretical model is fitted to exper-
imental data.

Consider a linear system

Ac=b, (1)
where A is an n X m matrix, c is an m-component
vector and b is an n-component vector. If the num-
ber of unknowns n is larger than the number of
equations m, the system is called overdetermined
and generally has no solution. However, it is still
possible to find an approximate solution: the one
which minimizes the Euclidean norm of the differ-
ence between Ac and b,

mcinHAC—bH2 . (2)
The problem (2) is called the linear least-squares
problem and the vector ¢ that minimizes | Ac —b||?
is called the least-squares solution.

The linear least-squares problem can be solved
by QR-decomposition. The matrix A is factorized
as A = QR, where @ is n X m matrix with orthog-
onal columns, QTQ = 1, and R is an m x m upper
triangular matrix. The Euclidean norm

|Ac —b|* = [|QRe—b]f?
= [[Re—@Q"b|* + (1 - QQ")b|*
> [(1-QQ")b|” (3)

can apparently be minimized by solving an m x m
system of linear equations

Rc— Qb =0 (4)

by back-substitution.

1.1 Linear least-squares fit

Linear least-squares fit is a problem of fitting n data
points {z;,y; + 0;}, where o; are experimental er-
rors, by a linear combination of m functions

F(x) =) cxfel(@) . (5)
k=1

The least-squares fit has to minimize the square
deviation, called x?,

(6)
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Minimization of x? with respect to the coeffi-
ciendt ¢ in (5) is apparently equivalent to the least-
squares problem (2) where

A, = Jilz:) b= 4 (7)
g; ag;
The formal solution is
c=R'Q"b, (8)

however in practice it is better to back-substitute
the system Rc = Q7'b.

1.1.1 Errors and correlations

Suppose dy; is a (small) deviation of the measured
value of the physical variable from its exact value.
The corresponding deviation dcg of the fitting co-
efficient is then given as

(9)

In a good experiment the deviations dy; are statis-
tically independent and distributed normally with
the standard deviations o;. The deviations (9) are
then also distributed normally with variances,

(Ferder) = (%“)2 = Z <gcb’:)2 . (10)

%

The standard errors in the fitting coefficients are
then given as

e, = +/ <5Ck60k> . (11)

The variances are diagonal elements of the co-
variance matriz, 3, made of covariances,

Ocy, Ocq

Yiq = (dexdeq) = 5. Db, -

(12)

Covariances (dcxdcq) are measures of how the coef-
ficients c; and ¢, change together if the measured
values y; are varied. The normalized covariances,

(Berdeq) ({Derder) (begdey)) 2

are called correlations.
Using (12) and (8) the covariance matrix can be
calculated as

() (&)

= RYRHT =(RTR)™" = (ATA)"".

Y = (13)

In conclusion, the square roots of the diagonal
elements of the covariance matrix (12) give the es-
timates of the errors of the fitting coefficients; the
normalized off-diagonal elements give their correla-
tions.



1.2

JavaScript implementation

function l1sfit (x,y,dy,funs){

// Linear least squares fit

// uses: qrdec, qrback, inverse

// input: data points {x,y,delta_y};
functions funs

// output: fitting coefficients c¢ and
covariance matrix S

var

dot = function(a,b)

{var s=0;for(i in a)st+=a[i]*b[i];return

var

s}

t_times = function (A,B)

[[do]g(A.[r],B[c]) for(r in A)] for(c in

var A=[[funs [k](x[i])/dy[i] for(i in x)]

var
var
var
var

for(k in funs)|;
b=[y[i]/dy[i] for(i in y)];
[Q,R]=qrdec(A);

c=qrback (Q,R,b) ;

S=inverse (t_times (R,R))

return [c,S]




