1 Linear least-squares problem

Linear least-squares problem is the problem of finding an approximate solution to an overdetermined system of linear equations. It arises often in applications where a theoretical model is fitted to experimental data.

Consider a linear system

$$A\mathbf{c} = \mathbf{b} , \qquad (1)$$

where A is an $n \times m$ matrix, \mathbf{c} is an m-component vector and \mathbf{b} is an n-component vector. If the number of unknowns n is larger than the number of equations m, the system is called *overdetermined* and generally has no solution. However, it is still possible to find an approximate solution: the one which minimizes the Euclidean norm of the difference between $A\mathbf{c}$ and \mathbf{b} ,

$$\min_{\mathbf{c}} \|A\mathbf{c} - \mathbf{b}\|^2 . \tag{2}$$

The problem (2) is called the linear least-squares problem and the vector \mathbf{c} that minimizes $||A\mathbf{c} - \mathbf{b}||^2$ is called the *least-squares solution*.

The linear least-squares problem can be solved by QR-decomposition. The matrix A is factorized as A=QR, where Q is $n\times m$ matrix with orthogonal columns, $Q^TQ=1$, and R is an $m\times m$ upper triangular matrix. The Euclidean norm

$$||A\mathbf{c} - \mathbf{b}||^{2} = ||QR\mathbf{c} - \mathbf{b}||^{2}$$

$$= ||R\mathbf{c} - Q^{T}\mathbf{b}||^{2} + ||(1 - QQ^{T})\mathbf{b}||^{2}$$

$$\geq ||(1 - QQ^{T})\mathbf{b}||^{2}$$
(3)

can apparently be minimized by solving an $m \times m$ system of linear equations

$$R\mathbf{c} - Q^T \mathbf{b} = 0 \tag{4}$$

by back-substitution.

1.1 Linear least-squares fit

Linear least-squares fit is a problem of fitting n data points $\{x_i, y_i \pm \sigma_i\}$, where σ_i are experimental errors, by a linear combination of m functions

$$F(x) = \sum_{k=1}^{m} c_k f_k(x) . {5}$$

The least-squares fit has to minimize the square deviation, called χ^2 ,

$$\chi^2 = \sum_{i=1}^n \left(\frac{y_i - F(x_i)}{\sigma_i} \right)^2 . \tag{6}$$

Minimization of χ^2 with respect to the coefficiend c_k in (5) is apparently equivalent to the least-squares problem (2) where

$$A_{ik} = \frac{f_k(x_i)}{\sigma_i} , b_i = \frac{y_i}{\sigma_i} . \tag{7}$$

The formal solution is

$$\mathbf{c} = R^{-1} Q^T \mathbf{b} , \qquad (8)$$

however in practice it is better to back-substitute the system $R\mathbf{c} = Q^T\mathbf{b}$.

1.1.1 Errors and correlations

Suppose δy_i is a (small) deviation of the measured value of the physical variable from its exact value. The corresponding deviation δc_k of the fitting coefficient is then given as

$$\delta c_k = \sum_i \frac{\partial c_k}{\partial y_i} \delta y_i . \tag{9}$$

In a good experiment the deviations δy_i are statistically independent and distributed normally with the standard deviations σ_i . The deviations (9) are then also distributed normally with *variances*,

$$\langle \delta c_k \delta c_k \rangle = \sum_i \left(\frac{\partial c_k}{\partial y_i} \sigma_i \right)^2 = \sum_i \left(\frac{\partial c_k}{\partial b_i} \right)^2 . \quad (10)$$

The standard errors in the fitting coefficients are then given as

$$\delta c_k = \sqrt{\langle \delta c_k \delta c_k \rangle} \ . \tag{11}$$

The variances are diagonal elements of the *covariance matrix*, Σ , made of *covariances*,

$$\Sigma_{kq} \equiv \langle \delta c_k \delta c_q \rangle = \sum_i \frac{\partial c_k}{\partial b_i} \frac{\partial c_q}{\partial b_i} . \tag{12}$$

Covariances $\langle \delta c_k \delta c_q \rangle$ are measures of how the coefficients c_k and c_q change together if the measured values y_i are varied. The normalized covariances,

$$\langle \delta c_k \delta c_q \rangle \left(\langle \delta c_k \delta c_k \rangle \langle \delta c_q \delta c_q \rangle \right)^{-1/2}$$

are called *correlations*.

Using (12) and (8) the covariance matrix can be calculated as

$$\Sigma = \left(\frac{\partial \mathbf{c}}{\partial \mathbf{b}}\right) \left(\frac{\partial \mathbf{c}}{\partial \mathbf{b}}\right)^{T}$$

$$= R^{-1} (R^{-1})^{T} = (R^{T} R)^{-1} = (A^{T} A)^{-1}.$$
(13)

In conclusion, the square roots of the diagonal elements of the covariance matrix (12) give the estimates of the errors of the fitting coefficients; the normalized off-diagonal elements give their correlations.

1.2 JavaScript implementation

```
\textbf{function} \ lsfit(x,y,dy,funs) \{
// Linear least squares fit
// uses: qrdec, qrback, inverse
// input: data points {x,y,delta_y};
     functions funs
// output: fitting coefficients c and
     covariance matrix S
  var dot = function(a,b)
     {var s=0; for(i in a)s+=a[i]*b[i]; return
          s
  var t_times = function(A,B)
      [[dot(A[r],B[c]) for(r in A)] for(c in
          B) ];
  \operatorname{var} A = [[\operatorname{funs}[k](x[i])/\operatorname{dy}[i]] \operatorname{for}(i \operatorname{in} x)]
  for(k in funs)];
var b=[y[i]/dy[i] for(i in y)];
  var [Q,R] = qrdec(A);
  var c=qrback(Q,R,b);
var S=inverse(t_times(R,R))
  return [c, S]
```