
1 Linear least-squares prob-

lem

Linear least-squares problem is the problem of find-
ing an approximate solution to an overdetermined
system of linear equations. It arises often in appli-
cations where a theoretical model is fitted to exper-
imental data.

Consider a linear system

Ac = b , (1)

where A is an n × m matrix, c is an m-component
vector and b is an n-component vector. If the num-
ber of unknowns n is larger than the number of
equations m, the system is called overdetermined

and generally has no solution. However, it is still
possible to find an approximate solution: the one
which minimizes the Euclidean norm of the differ-
ence between Ac and b,

min
c

‖Ac− b‖2 . (2)

The problem (2) is called the linear least-squares
problem and the vector c that minimizes ‖Ac−b‖2

is called the least-squares solution.
The linear least-squares problem can be solved

by QR-decomposition. The matrix A is factorized
as A = QR, where Q is n× m matrix with orthog-
onal columns, QT Q = 1, and R is an m×m upper
triangular matrix. The Euclidean norm

‖Ac − b‖2 = ‖QRc− b‖2

= ‖Rc− QT
b‖2 + ‖(1 − QQT )b‖2

≥ ‖(1 − QQT )b‖2 (3)

can apparently be minimized by solving an m × m

system of linear equations

Rc − QT
b = 0 (4)

by back-substitution.

1.1 Linear least-squares fit

Linear least-squares fit is a problem of fitting n data
points {xi, yi ± σi}, where σi are experimental er-
rors, by a linear combination of m functions

F (x) =

m
∑

k=1

ckfk(x) . (5)

The least-squares fit has to minimize the square
deviation, called χ2,

χ2 =

n
∑

i=1

(

yi − F (xi)

σi

)2

. (6)

Minimization of χ2 with respect to the coeffi-
ciendt ck in (5) is apparently equivalent to the least-
squares problem (2) where

Aik =
fk(xi)

σi
, bi =

yi

σi
. (7)

The formal solution is

c = R−1QT
b , (8)

however in practice it is better to back-substitute
the system Rc = QT

b.

1.1.1 Errors and correlations

Suppose δyi is a (small) deviation of the measured
value of the physical variable from its exact value.
The corresponding deviation δck of the fitting co-
efficient is then given as

δck =
∑

i

∂ck

∂yi
δyi . (9)

In a good experiment the deviations δyi are statis-
tically independent and distributed normally with
the standard deviations σi. The deviations (9) are
then also distributed normally with variances,

〈δckδck〉 =
∑

i

(

∂ck

∂yi
σi

)2

=
∑

i

(

∂ck

∂bi

)2

. (10)

The standard errors in the fitting coefficients are
then given as

δck =
√

〈δckδck〉 . (11)

The variances are diagonal elements of the co-

variance matrix, Σ, made of covariances,

Σkq ≡ 〈δckδcq〉 =
∑

i

∂ck

∂bi

∂cq

∂bi
. (12)

Covariances 〈δckδcq〉 are measures of how the coef-
ficients ck and cq change together if the measured
values yi are varied. The normalized covariances,

〈δckδcq〉
(

〈δckδck〉〈δcqδcq〉
)

−1/2

are called correlations.
Using (12) and (8) the covariance matrix can be

calculated as

Σ =

(

∂c

∂b

) (

∂c

∂b

)T

(13)

= R−1(R−1)T = (RT R)−1 = (AT A)−1 .

In conclusion, the square roots of the diagonal
elements of the covariance matrix (12) give the es-
timates of the errors of the fitting coefficients; the
normalized off-diagonal elements give their correla-
tions.
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1.2 JavaScript implementation

function l s f i t ( x , y , dy , funs ) {
// Linear l e a s t squar es f i t
// uses : qrdec , qrback , i nve r s e
// input : data po ints {x , y , d e l t a y } ;

f unc t i on s funs
// output : f i t t i n g c o e f f i c i e n t s c and

covar i ance matrix S
var dot = function ( a , b )

{var s =0; for ( i in a ) s+=a [ i ]∗b [ i ] ; return

s }
var t t ime s = function (A,B)

[ [ dot (A[ r ] ,B[ c ] ) for ( r in A) ] for ( c in

B) ] ;
var A=[[ funs [ k ] ( x [ i ] ) /dy [ i ] for ( i in x ) ]

for ( k in funs ) ] ;
var b=[y [ i ] / dy [ i ] for ( i in y ) ] ;
var [Q,R]=qrdec (A) ;
var c=qrback (Q,R, b) ;
var S=inve r s e ( t t ime s (R,R) )

return [ c , S ]
}
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