
1 Interpolation

In practice one often meets a situation where a
function of interest is only given as a set of tabu-
lated discrete points {xi, yi}, i = 1 . . . n, for exam-
ple as a result of a numerical integration of a differ-
ential equation. Interpolation means constructing
a (smooth) function, called interpolating function,
which passes exactly through the given points and
hopefully approximates the unknown function of in-
terest in between the tabulated points. One can
use the interpolating function for different prac-
tical needs, like estimating the unknown function
between the tabulated points, differentiating, in-
tegrating etc. Interpolation is a specific case of
curve fitting, in which the function must go exactly
through the data points.

1.1 Polynomial interpolation

Polynomial interpolation uses a polynomial as the
interpolating function. Given a table of n points,
{xi, yi}, one can construct a polynomial of the or-
der n − 1 which passes exactly through the points.
This polynomial can be intuitively written in the
Lagrange form,

P (n−1)(x) =

n
∑

i=1

yi

n
∏

k 6=i

x − xk

xi − xk

. (1)

function pinterp (x , y , z ) {
for (var s=0, i =0; i<x . l ength ; i++){

for (var p=1,k=0; k<x . l ength ; k++){
i f ( k!= i ) p∗=(z−x [ k ] ) /( x [ i ]−x [ k ] ) }

s+=y [ i ]∗p}
return s

}

Higher order interpolating polynomials, say
larger than 5, are susceptible to the Runge phe-

nomenon: erratic oscillations close to the end-
points of the interval, as illustrated on Figure 1.
Therefore when interpolating from a large table one
usually uses only the nearest few points instead of
all the points in the table.

1.2 Spline interpolation

Spline interpolation uses a piecewise polynomial

(called spline) as the interpolating function: at each
interval [xi, xi+1] the spline, S(x), is represented by
a polynomial

Si(x) =
k

∑

p=0

cipx
p, i = 1 . . . n − 1 (2)

of a given order k, such that

S(x) = Si(x), if x ∈ [xi, xi+1] . (3)

−6 −4 −2 0 2 4 6
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

x

y

Figure 1: Lagrange interpolating polynomial (solid
line) showing the Runge phenomenon: large os-
cillations at the end-points. Dashed line shows a
quadratic spline.

The spline of the order k ≥ 1 can be made contin-
uous at the tabulated points,

Si(xi) = yi , i = 1 . . . n − 1

Si(xi+1) = yi+1 , i = 1 . . . n − 1 , (4)

together with its k − 1 derivatives,

S′
i(xi+1) = S′

i+1(xi+1) , i = 1 . . . n − 2

S′′
i (xi+1) = S′′

i+1(xi+1) , i = 1 . . . n − 2

. . . (5)

Continuity conditions (4) and (5) make kn+n−
2k linear equations for the kn+n−k−1 coefficients
cik in (2). The missing k−1 equations can be chosen
(reasonably) arbitrary.

The most popular is the cubic spline, where the
polynomials Si(x) are of third order: the cubic
spline is a continuous function together with its first
and second derivatives. The cubic spline has also
a nice feature that it (sort of) minimises the total
curvature of the interpolating function. This makes
the cubic splines look good.

Quadratic splines are not nearly as good as cubic
splines in most respects. Particularly they might
oscillate unpleasantly when a quick change in the
tabulated function is followed by a period where
the function is nearly a constant. The cubic spline
is less susceptible to such oscillations. However
quadratic spline is simpler to program.

1.2.1 Linear interpolation

If the spline polynomials are linear the spline is
called linear interpolation. The continuity condi-
tions (4) can be satisfied by choosing the spline as

Si(x) = yi +
∆yi

∆xi

(x − xi) . (6)

1



where

∆yi ≡ yi+1 − yi , ∆xi ≡ xi+1 − xi . (7)

1.2.2 Quadratic spline

Quadratic splines are made of second order polyno-
mials, conveniently chosen in the form

Si(x) = yi+
∆yi

∆xi

(x−xi)+ai(x−xi)(x−xi+1), (8)

which identically satisfies the continuity conditions
(4).

Substituting (8) into the continuity condition (5)
for the first derivative gives the equations for the
coefficient ai,

∆yi

∆xi

+ ai∆xi =
∆yi+1

∆xi+1
− ai+1∆xi+1 . (9)

For the quadratic spline, k = 2, one coefficient
can be chosen arbitrary, for example a1 = 0. Now
the other coefficients can be calculated recursively,

ai+1 =
1

∆xi+1

(

∆yi+1

∆xi+1
−

∆yi

∆xi

− ai∆xi

)

. (10)

Alternatively, one can choose an−1 = 0 and make
an inverse recursion

ai =
1

∆xi

(

∆yi+1

∆xi+1
−

∆yi

∆xi

− ai+1∆xi+1

)

. (11)

In practice it is better (for symmetry reasons) to
run both recursions and then average the resulting
a’s.

1.2.3 JavaScript implementation

Array . prototype . i t e r a t o r =function ( )
{ for ( l et i =0; i<t h i s . l ength ; i++) y i e l d i ; }

function qsp l i n e (x , y ) {
// c r e a t e s a quadrat i c s p l i n e
var n=x . l ength ;
var h=[(x [ i +1]−x [ i ] ) for ( i in x ) i f ( i<n−1) ] ;
var p=[(y [ i +1]−y [ i ] ) /h [ i ] for ( i in h) ] ;
var a=new Array (n−1) ;

a [ 0 ]=0 ;// r e cu r s i on up
for (var i =0; i<n−2; i++)

a [ i +1]=(p [ i +1]−p [ i ]−a [ i ]∗h [ i ] ) /h [ i +1] ;

a [ n−2]/=2;// r e cu r s i on down
for (var i=n−3; i >=0; i−−)

a [ i ]=(p [ i +1]−p [ i ]−a [ i +1]∗h [ i +1]) /h [ i ] ;

t h i s . x=[x [ i ] for ( i in x ) ] ;
t h i s . y=[y [ i ] for ( i in y ) ] ;
t h i s . p=p ;
t h i s . a=a ;

// eva luat i on o f the s p l i n e at point z :
t h i s . eva l=function ( z ) {

var n=th i s . x . l ength ;
i f ( z<t h i s . x [ 0 ] | | z>t h i s . x [ n−1])

throw ” qsp l i n e . eva l : out o f range ” ;
var i =0, j=n−1;

// l o c a t e the i n t e r v a l for z by b i s e c t i o n :
whi l e ( j−i >1){

var mid=Math . round ( ( i+j ) /2 ) ;
i f ( z>t h i s . x [ mid ] ) i=mid ; e l s e j=mid ; }

// c a l c u l a t e the i n e r p o l a t i n g polynomial :
return (

t h i s . y [ i ]+
( t h i s . p [ i ]+ th i s . a [ i ] ∗ ( z−t h i s . x [ i +1]) ) ∗(

z−t h i s . x [ i ] ) ) ;
}// end eva l

}// end qsp l i n e

1.3 Integration and differentiation of

tabulated functions

Hint: first interpolate the tabulated data and then
integrate or differentiate the interpolating function.

2


