1 Numerical integration

Numerical integration, also called quadrature, is an
algorithm to compute an approximation to a defi-
nite integral in the form of a finite sum,
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where the abscissas x; and the weights w; are cho-
sen such that the quadrature is particularly well
suited for a given problem. Different quadratures
use different strategies of choosing the abscissas and
weights.
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1.1 Classical quadratures with

equally spaced abscissas
Classical quadratures use predefined, often equally-
spaced, abscissas, e.g.
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b—a),i=1,...,n. (2)

A quadrature is called closed if the abscissas in-
clude the end-points of the interval or the mid-point
(which becomes end-point after halving the inter-
val). Otherwise it is called open. If the integrand
is diverging at the end-points (or at the mid-point
of the interval) the close quadratures generally can
not be used.

For an n-point classical quadrature the n free pa-
rameters w; can be chosen such that the quadrature
integrates exactly a set of n (linearly independent)
functions {f1(x),..., fn(x)} where the integrals
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are known. This gives a set of equations, linear in
ws,

n
Zwifk(xi) = I, (4)
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where kK = 1,...,n. The weights w; can be easily
determined by solving the linear system (4).

If the functions to be integrated exactly are cho-
sen as polynomials {1, z,z2,..., 2" "1}, the quadra-
ture is called Newton-Cotes quadrature. The n-
point Newton-Cotes quadrature can integrate ex-
actly the first n terms of the function’s Taylor ex-
pansion’
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lassuming that the integral is rescaled as
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The nth order term fn—!(“)t” will not be integrated
exactly by an n-point quadrature and will then re-
sult in the quadrature’s error?
hp(n) (n)
o [ L2 gy - SO
0 n! nl(n+1)

n+1

(7)

If the function is smooth and the interval h is
small enough the Newton-Cotes quadrature can
give a good approximation.

Here are a few examples of classical quadratures:
one-point closed,

h
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three-point closed,
h
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two-point open,
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four-point open,
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1.2 Quadratures with optimal ab-
scissas
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In quadratures with optimal abscissas, called Gaus-
sian quadratures, not only weights w; but also ab-
scissas x; are chosen optimally. The number of free
parameters is thus 2n (n abscissas and n weights)
and one can chose 2n functions {fi(x),..., fon(z)}
to be integrated exactly. This gives a system of 2n
equations, linear in w; and non-linear in x;,

Zwifk(xi) = I, (12)

where k = 1,...,2n, and I}, = f; fr(x)dx, from
which the weights and abcissas can be determined.

The Gaussian quadratures are of order 2n — 1
compared to only order n — 1 for non-optimal ab-
scissas. However, the optimal points generally can
not be reused at the next iteration in an adaptive
algorithm.

2 Actually the error is often one order in h higher due to
symmetry of the the polynomials t.



Here is, for example, a two-point Gauss-Legendre
quadrature rule 3
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1.3 Subdivision of the interval vs
higher order quadrature

The higher order quadratures, say n > 10, suffer
from round-off errors as the weights w; generally
have alternating signs. Again, using high order
polynomials is dangerous as they typically oscillate
wildly and may lead to Runge phenomenon. There-
fore if the error of the quadrature is yet too big for
a sufficiently large n quadrature, the best strategy
is to subdivide the interval in two and then use the
quadrature on the half-intervals. Indeed, if the er-
ror is of the order h*, the subdivision would lead to

reduced error, 2 (%)k < hF if k> 1.

1.4 Adaptive quadratures

Adaptive quadrature is an algorithm where the in-
tegration interval is subdivided into adaptively re-
fined subintervals until the given accuracy goal is
reached.

Adaptive algorithms are usually built on pairs of
quadrature rules, a higher order rule (eg open-4)
and a lower order rule (eg open-2). The higher or-
der rule is used to compute the approximation, @,
to the integral. The difference between the higher
order rule and the lower order rule gives an esti-
mate of the error, Q. If the integration result is
accepted, if

0Q <6+ €Q].

where ¢ is the absolute accuracy goal and € is the
relative accuracy goal.

Otherwise the interval is subdivided into two
half- intervals and the procedure applies recursively
to the subintervals with the same relative accuracy
goal € and rescaled absolute accuracy goal §/+/2.

The reuse of the function evaluations made at the
previous step is very important for the efficiency of
the algorithm. The equally-spaced abscissas natu-
rally provide such a reuse.
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1.5 Gauss-Kronrod quadratures

Gauss-Kronrod quadratures represent a compro-
mise between equally spaced abscissas and optimal

Sassuming that the integral is rescaled as
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Table 1: Recursive adaptive integrator based on
open-2/4 quadratures.

function adapt24(f,a,b,acc,eps,oldfs){
var x=[1/6,2/6,4/6,5/6];// abscissas

var w=[2/6,1/6,1/6,2/6];// high order
var p=[1,0,0,1];// which points are new
var v=[1/4,1/4,1/4,1/4);// low order
var n=x.length , h=b—a;

if (typeof(oldfs)=="undefined”)// first
fs=[f(at+x[i]*h) for(i in x)];

else for(let k=0,i=0;i<n;i++){
if(p[i])fs[i]=f(atx[i]*h);
else fs[i]=oldfs [k++];}

for (var q4=q2=i=0;i<n; i++){
qdt+=w[i]*fs[i]xh;
q24=v[i]xfs[i]*h;}

var tol=acc+eps*Math.abs(q4)

var err=Math. abs (q4—q2) /7

if (err<tol)
return [q4,

else
acc/=Math.sqrt (2.)
var mid=(atb) /2
var left=[fs[i]for(i in fs)if(i< n/2)]
var rght=[fs[i]for(i in fs)if(i>=n/2)]
var [ql,el]=adapt24(f,a,mid,eps,acc,left)
var [qr,er]=adapt24 (f,mid,b,eps,acc,rght)
return [ql+qr, Math.sqrt(elxelterxer)]

}

call

err |

}

abscissas: n points are reused from the previous
iteration (n weights as free parameters) and then
m optimal points are added (m abscissas and m
weights as free parameters). Thus the accuracy of
the method is n + 2m — 1. There are several spe-
cial variants of these quadratures fit for particular
types of the integrands.




