
1 Numerical integration

Numerical integration, also called quadrature, is an
algorithm to compute an approximation to a defi-
nite integral in the form of a finite sum,

∫ b

a

f(x)dx ≈
n

∑

i=1

wif(xi) , (1)

where the abscissas xi and the weights wi are cho-
sen such that the quadrature is particularly well
suited for a given problem. Different quadratures
use different strategies of choosing the abscissas and
weights.

1.1 Classical quadratures with

equally spaced abscissas

Classical quadratures use predefined, often equally-
spaced, abscissas, e.g.

xi =
i − 1

n − 1
(b − a) , i = 1, . . . , n . (2)

A quadrature is called closed if the abscissas in-
clude the end-points of the interval or the mid-point
(which becomes end-point after halving the inter-
val). Otherwise it is called open. If the integrand
is diverging at the end-points (or at the mid-point
of the interval) the close quadratures generally can
not be used.

For an n-point classical quadrature the n free pa-
rameters wi can be chosen such that the quadrature
integrates exactly a set of n (linearly independent)
functions {f1(x), . . . , fn(x)} where the integrals

Ik ≡
∫ b

a

fk(x)dx (3)

are known. This gives a set of equations, linear in
wi,

n
∑

i=1

wifk(xi) = Ik , (4)

where k = 1, . . . , n. The weights wi can be easily
determined by solving the linear system (4).

If the functions to be integrated exactly are cho-
sen as polynomials {1, x, x2, . . . , xn−1}, the quadra-
ture is called Newton-Cotes quadrature. The n-
point Newton-Cotes quadrature can integrate ex-
actly the first n terms of the function’s Taylor ex-
pansion1

f(a + t) =

∞
∑

k=0

f (k)(a)

k!
tk . (6)

1assuming that the integral is rescaled as
Z

b

a

f(x)dx =

Z

h=b−a

0

f(a + t)dt . (5)

The nth order term f(n)(a)
n! tn will not be integrated

exactly by an n-point quadrature and will then re-
sult in the quadrature’s error2

ǫn ≈
∫ h

0

f (n)(a)

n!
tndt =

f (n)(a)

n!(n + 1)
hn+1 . (7)

If the function is smooth and the interval h is
small enough the Newton-Cotes quadrature can
give a good approximation.

Here are a few examples of classical quadratures:
one-point closed,

∫ h

0

f(x)dx ≈ hf(1
2h) , (8)

three-point closed,

∫ h

0

f(x)dx ≈ 1
6h

(

f(0) + 4f(1
2h) + f(h)

)

, (9)

two-point open,

∫ h

0

f(x)dx ≈ 1
2h

(

f(1
3h) + f(2

3h)
)

, (10)

four-point open,

∫ h

0

f(x)dx ≈ 1
6h

(

2f(1
6h) + f(2

6h)
+f(4

6h) + 2f(5
6h)

)

. (11)

1.2 Quadratures with optimal ab-

scissas

In quadratures with optimal abscissas, called Gaus-

sian quadratures, not only weights wi but also ab-
scissas xi are chosen optimally. The number of free
parameters is thus 2n (n abscissas and n weights)
and one can chose 2n functions {f1(x), . . . , f2n(x)}
to be integrated exactly. This gives a system of 2n
equations, linear in wi and non-linear in xi,

n
∑

i=1

wifk(xi) = Ik , (12)

where k = 1, . . . , 2n, and Ik =
∫ b

a
fk(x)dx, from

which the weights and abcissas can be determined.

The Gaussian quadratures are of order 2n − 1
compared to only order n − 1 for non-optimal ab-
scissas. However, the optimal points generally can
not be reused at the next iteration in an adaptive
algorithm.

2Actually the error is often one order in h higher due to
symmetry of the the polynomials tk .
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Here is, for example, a two-point Gauss-Legendre
quadrature rule 3

∫ 1

−1

f(x)dx ≈ f

(

−
√

1
3

)

+ f

(

+
√

1
3

)

. (14)

1.3 Subdivision of the interval vs

higher order quadrature

The higher order quadratures, say n > 10, suffer
from round-off errors as the weights wi generally
have alternating signs. Again, using high order
polynomials is dangerous as they typically oscillate
wildly and may lead to Runge phenomenon. There-
fore if the error of the quadrature is yet too big for
a sufficiently large n quadrature, the best strategy
is to subdivide the interval in two and then use the
quadrature on the half-intervals. Indeed, if the er-
ror is of the order hk, the subdivision would lead to

reduced error, 2
(

h
2

)k
< hk, if k > 1.

1.4 Adaptive quadratures

Adaptive quadrature is an algorithm where the in-
tegration interval is subdivided into adaptively re-
fined subintervals until the given accuracy goal is
reached.

Adaptive algorithms are usually built on pairs of
quadrature rules, a higher order rule (eg open-4)
and a lower order rule (eg open-2). The higher or-
der rule is used to compute the approximation, Q,
to the integral. The difference between the higher
order rule and the lower order rule gives an esti-
mate of the error, δQ. If the integration result is
accepted, if

δQ < δ + ǫ|Q| . (15)

where δ is the absolute accuracy goal and ǫ is the
relative accuracy goal.

Otherwise the interval is subdivided into two
half- intervals and the procedure applies recursively
to the subintervals with the same relative accuracy
goal ǫ and rescaled absolute accuracy goal δ/

√
2.

The reuse of the function evaluations made at the
previous step is very important for the efficiency of
the algorithm. The equally-spaced abscissas natu-
rally provide such a reuse.

1.5 Gauss-Kronrod quadratures

Gauss-Kronrod quadratures represent a compro-
mise between equally spaced abscissas and optimal

3assuming that the integral is rescaled as

Z

b

a

f(x)dx =

Z

1

−1

b − a

2
f

„

a + b

2
+

b − a

2
t

«

dt . (13)

Table 1: Recursive adaptive integrator based on
open-2/4 quadratures.

function adapt24 ( f , a , b , acc , eps , o l d f s ) {
var x=[1/6 , 2/6 , 4/6 , 5/6 ] ; // ab s c i s s a s
var w=[2/6 ,1/6 , 1/6 , 2/6 ] ; // high order
var p = [ 1 , 0 , 0 , 1 ] ; // which poin t s are new
var v=[1/4 , 1/4 , 1/4 , 1/4 ] ; // low order
var n=x . length , h=b−a ;
i f ( typeo f ( o l d f s )==”undef ined ”) // f i r s t c a l l

f s =[ f ( a+x [ i ]∗h) for ( i in x ) ] ;
else for ( l et k=0, i =0; i<n ; i++){

i f (p [ i ] ) f s [ i ]= f ( a+x [ i ]∗h) ;
else f s [ i ]= o l d f s [ k++];}

for (var q4=q2=i =0; i<n ; i++){
q4+=w[ i ]∗ f s [ i ]∗h ;
q2+=v [ i ]∗ f s [ i ]∗h ;}

var t o l=acc+eps ∗Math . abs ( q4 )
var e r r=Math . abs ( q4−q2 ) /7
i f ( er r<t o l )

return [ q4 , e r r ]
else {

acc/=Math . s q r t ( 2 . )
var mid=(a+b) /2
var l e f t =[ f s [ i ] for ( i in f s ) i f ( i< n/2) ]
var rght=[ f s [ i ] for ( i in f s ) i f ( i>=n/2) ]
var [ ql , e l ]=adapt24 ( f , a , mid , eps , acc , l e f t )
var [ qr , e r ]=adapt24 ( f , mid , b , eps , acc , rght )
return [ q l+qr , Math . s q r t ( e l ∗ e l+er ∗ er ) ]
}

}

abscissas: n points are reused from the previous
iteration (n weights as free parameters) and then
m optimal points are added (m abscissas and m
weights as free parameters). Thus the accuracy of
the method is n + 2m − 1. There are several spe-
cial variants of these quadratures fit for particular
types of the integrands.
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