
1 Matrix Diagonalization

A vector v is called an eigenvector of a matrix A

with an eigenvalue λ, if Av = λv. Matrix diago-
nalization means finding all eigenvalues λi and (op-
tionally) eigenvectors vi of the matrix A. If A is
hermitian, A† = A, then its eigenvalues are real
and its eigenvectors V = {v1, . . . ,vn} form a full
basis where the matrix A is diagonal, V T AV = Λ,
where Λ is a diagonal matrix with eigenvalues λi

along the diagonal. In the following we shall only
consider real symmetric matrices which have real
eigenvalues.

1.1 Similarity transformations

Orthogonal transformations, A → QT AQ, where
QT Q = 1, and, generally, similarity transforma-
tions, A → S−1AS, preserve eigenvalues and eigen-
vectors. Therefore one of the strategies to diago-
nalize a matrix is to apply a sequence of similarity
transformations (also called rotations) which (iter-
atively) turn the matrix into diagonal form.

1.1.1 Jacobi rotation

Jacobi rotation is an orthogonal transformation
where the transformation matrix, called Jacobi ro-
tation matrix J(p, q), is equal unity matrix except
for the elements

J(p, q)pp = J(p, q)qq = cosφ, (1)

J(p, q)pq = −J(p, q)qp = sin φ.

After a Jacobi rotation, A → A′ = JT AJ , the
matrix elements of A′ become

A′
pi = A′

ip = cApi − sAqi, i 6= p, q

A′
qi = A′

iq = sApi + cAqi, i 6= p, q

A′
pp = c2App − 2scApq + s2Aqq (2)

A′
qq = s2App + 2scApq + c2Aqq

A′
pq = A′

qp = sc(App − Aqq) + (c2 − s2)Apq,

where c ≡ cosφ, s ≡ sinφ. The angle φ is chosen
such that after rotation the matrix element A′

pq is
zeroed,

cot(2φ) =
Aqq − App

2Apq

. (3)

The convergence of the Jacobi method can be
proved for two strategies for choosing the order in
which the elements are zeroed:

1. Classical method: with each rotation the
largest of the remaining off-diagonal elements
is zeroed.

2. Cyclic method: the off-diagonal elements are
zeroed in strict order, e.g. row after row. (Re-
finement: if the element is “small enough” the
rotation can be skipped.)

Although the classical method allows the least
number of rotations, it is typically slower than the
cyclic method since searching for the largest ele-
ment is an O(n2) operation. The count can be re-
duced by keeping an additional array with indexes
of the largest elements in each row. Updating this
array after each rotation is only an O(n) operation.

A sweep is a sequence of Jacobi rotations ap-
plied to all non-diagonal elements. Typically the
method converges after a small number of sweeps.
The operation count is O(n) for a Jacobi rotation
and O(n3) for a sweep.

The typical convergence criterion is that the sum
of moduli of the off-diagonal elements is small,∑

i<j |Aij | < ǫ, where ǫ is the required accuracy.
Other criteria can also be used, like the largest off-
diagonal element is small, max |Ai<j | < ǫ, or the
diagonal elements have not changed after a sweep,
max |∆Aii| < ǫ.

The eigenvectors can be calculated as V =
1J1J2..., where Ji are the successive Jacobi matri-
ces. At each stage the transformation is

Vij → Vij , j 6= p, q

Vip → cVip − sViq (4)

Viq → sVip + cViq

Alternatively, if only one (or few) eigenvector vk

is needed, one can instead solve the (singular) sys-
tem (A − λk)v = 0.

1.2 Power iteration methods

1.2.1 Power method

Power method is an iterative method to calculate
an eigenvalue and the corresponding eigenvector us-
ing the iteration

xi+1 = Axi . (5)

The iteration converges to the eigenvector of the
largest eigenvalue. The eigenvalue can be estimated
using the Rayleigh quotient

λ[xi] =
xT

i Axi

xT
i xi

=
xT

i+1xi

xT
i xi

. (6)

1.2.2 Inverse power method

The iteration with the inverse matrix

xi+1 = A−1xi (7)
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converges to the smallest eigenvalue of matrix A.
Alternatively, the iteration

xi+1 = (A − s)−1xi (8)

converges to an eigenvalue closest to the given num-
ber s.

1.2.3 Inverse iteration method

Inverse iteration method is the refinement of the in-
verse power method where the trick is not to invert
the matrix in (8) but rather solve the linear system

(A − λ)xi+1 = xi (9)

using eg QR decomposition.

One can update the estimate for the eigenvalue
using the Rayleigh quotient λ[xi] after each iter-
ation and get faster convergence for the price of
O(n3) operations per QR-decomposition; or one
can instead make more iterations (with O(n2) oper-
ations per iteration) using the same matrix (A−λ).
The optimal strategy is probably an update after
several iterations.

1.3 JavaScript implementation

1.3.1 Jacobi diagonalization

function j a cob i (A) {
// Jacobi d i a g on a l i z a t i o n .
// Upper t r i a n g l e o f A i s destroyed .
// V accumulates e i g envec to r s .

var V=[ [ ( i==j ?1 : 0 ) for ( i in A) ] for ( j in

A) ]
var t iny = 1e−12
var max rotat ions =5∗n∗n ;
var rotated , r o t a t i o n s =0;
do{

r otated =0;
for (var row=0;row<n ; row++)
for (var co l=row+1; col<n ; co l++){

i f ( t i ny ∗Math . abs (A[ row ] [ row ] )<Math .
abs (A[ co l ] [ row ] )
| | t iny ∗Math . abs (A[ co l ] [ c o l ] )<

Math . abs (A[ co l ] [ row ] ) ) {
r otated =1;
r o t a t i o n s++;
i f ( r o ta t i on s >max rotat ions ) {

print (” max rotat ions reached : ” ,
r o t a t i o n s ) ;

return undef ined ;}
r o ta t e ( row , col ,A,V) ;

}
}

}whi le ( r otated==1) ;
return [V, r o t a t i o n s ] ;

}

1.3.2 Jacobi rotation

function r o ta t e (p , q ,A,V) {
// Jacobi r o ta t i on e l im ina t i ng A pq .
// Only upper t r i a n g l e o f A i s updated .
// The matrix o f e i g envec to r s V i s a l s o

updated .
i f (q<p) [ p , q ]=[q , p ]
var app = A[ p ] [ p ] ;
var aqq = A[ q ] [ q ] ;
var apq = A[ q ] [ p ] ;
var phi =0.5∗Math . atan2 (2∗A[ q ] [ p ] ,A[ q ] [ q]−

A[ p ] [ p ] ) ;
var c=Math . cos ( phi ) , s=Math . s i n ( phi ) ;
A[ p ] [ p ] = c ∗ c ∗ app + s ∗ s ∗ aqq − 2 ∗

s ∗ c ∗ apq ;
A[ q ] [ q ] = s ∗ s ∗ app + c ∗ c ∗ aqq + 2 ∗

s ∗ c ∗ apq ;
// A[ q ] [ p ] = ( c ∗ c − s ∗ s ) ∗ apq + s ∗

c ∗ ( app − aqq ) ;
A[ q ] [ p ]=0;

for (var i =0; i<p ; i++){
var aip=A[ p ] [ i ] , a i q=A[ q ] [ i ] ;
A[ p ] [ i ] = c∗ aip−s ∗ a iq ;
A[ q ] [ i ] = c∗ a iq+s ∗ aip ;

}

for (var i=p+1; i<q ; i++){
var api=A[ i ] [ p ] , a i q=A[ q ] [ i ] ;
A[ i ] [ p ] = c∗ api−s ∗ a iq ;
A[ q ] [ i ] = c∗ a iq+s ∗ api ;

}

for (var i=q+1; i<n ; i++){
var api=A[ i ] [ p ] , aq i=A[ i ] [ q ] ;
A[ i ] [ p ] = c∗ api−s ∗ aq i ;
A[ i ] [ q ] = c∗ aq i+s ∗ api ;

}

i f ( typeo f (V) !=undef ined ) for (var i =0; i<n ;
i++){

var vip=V[ p ] [ i ] , v iq=V[ q ] [ i ] ;
V[ p ] [ i ] = c∗vip−s ∗ viq ;
V[ q ] [ i ] = c∗ viq+s ∗vip ;

}
return 0 ;

}
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