1 Nonlinear equations

A system of nonlinear equations is a problem of finding a n variables $[x_1, \ldots, x_n]$ which satisfy n equations,

$$f_i(x_1, ..., x_n) = 0, i = 1 ... n$$
, (1)

where the functions f_i are generally non-linear.

1.1 Modified Newton method

Suppose that the vector $\mathbf{x} = [x_1, \dots, x_n]$ is close to the solution. Let us try to find the step $\Delta \mathbf{x}$ which would brings us to the solution, $f_i(\mathbf{x} + \Delta \mathbf{x}) = 0$. The first order Taylor expansion gives a system of linear equations

$$f_i(\mathbf{x}) + \sum_k \frac{\partial f_i}{\partial x_k} \Delta x_k = 0$$
 (2)

or in the matrix form

$$J\Delta \mathbf{x} = -\mathbf{f}(\mathbf{x}),\tag{3}$$

where

$$J_{ik} \equiv \frac{\partial f_i}{\partial x_k}, \ \mathbf{f}(\mathbf{x}) \equiv [f_1(\mathbf{x}), \dots, f_n(\mathbf{x})] \ .$$
 (4)

The solution $\Delta \mathbf{x}$ to the linear system (3) gives the approximate direction and the step-size towards the solution. The *modified* Newton's method instead of the full step uses a more conservative approach:

repeat $\Delta \mathbf{x} = -J^{-1}\mathbf{f}(\mathbf{x})$ $\lambda = 1$ repeat $\mathbf{z} = \mathbf{x} + \lambda \Delta \mathbf{x}$ $\lambda = \lambda/2$ until $||f(\mathbf{z})|| \le (1 - \lambda)||f(\mathbf{x})||$ or $\lambda \le 0.01$

until converged

2 Optimization

Optimization is a problem of finding minimum (or maximum) of a given real (non-linear) function $f(\mathbf{p})$ of an *n*-dimensional argument $\mathbf{p} = [x_1, \dots, x_n]$.

2.1 Downhill simplex method

The downhill simplex method (also called Nelder-Mead method) is a commonly used nonlinear optimization algorithm in an n-dimensional space. The minimum is found by transforming a simplex (a polytope of n+1 vertexes) according to the function values at the vertexes, moving it downhill until it converges towards the minimum (maximum).

To discuss the algorithm we need the following definitions:

Simplex: a figure (polytope) represented by n+1 points, called vertexes, $[\mathbf{p}_1, \dots, \mathbf{p}_{n+1}]$, where each point \mathbf{p}_k is an n-dimensional vector.

Highest point: the vertex, \mathbf{p}_{hi} , with the largest value of the function: $f(\mathbf{p}_{hi}) = \max_{(k)} f(\mathbf{p}_k)$.

Lowest point: the vertex, \mathbf{p}_{lo} , with the smallest value of the function: $f(\mathbf{p}_{lo}) = \min_{(k)} f(\mathbf{p}_k)$.

Centroid: the center of gravity of all points, except for the highest: $\mathbf{p}_{ce} = \frac{1}{n} \sum_{(k \neq hi)} \mathbf{p}_k$

The simplex is moved downhill by a combination of the following elementary operations:

Reflection: The highest point is reflected against the centroid, $\mathbf{p}_{\rm hi} \to \mathbf{p}_{\rm re} = \mathbf{p}_{\rm ce} + (\mathbf{p}_{\rm ce} - \mathbf{p}_{\rm hi})$.

Expansion: The lowest point doubles its distance from the centroid, $\mathbf{p}_{lo} \rightarrow \mathbf{p}_{ex} = \mathbf{p}_{ce} + 2(\mathbf{p}_{lo} - \mathbf{p}_{ce})$.

Contraction: The highest point halves its distance from the centroid, $\mathbf{p}_{hi} \rightarrow \mathbf{p}_{co} = \mathbf{p}_{ce} + \frac{1}{2}(\mathbf{p}_{hi} - \mathbf{p}_{ce}).$

Reduction: All points, except for the lowest, move towards the lowest points halving the distance. $\mathbf{p}_{k\neq lo} = \frac{1}{2}(\mathbf{p}_k + \mathbf{p}_{lo})$.

Finally here is a possible algorithm for a downhill simplex method:

```
repeat

try Reflection

if f(\mathbf{p}_{re}) < f(\mathbf{p}_{hi})

accept Reflection

elseif f(\mathbf{p}_{re}) < f(\mathbf{p}_{lo})

do Expansion

else

try Contraction

if f(\mathbf{p}_{co}) < f(\mathbf{p}_{hi})

accept Contraction

else

do Reduction

until converged
```