1 Feynman’s path integral
method in quantum me-
chanics

Consider a one-dimentional motion of a particle
with mass m, coordinate x and Lagrangian L(z, ).
Suppose |z,) and |zp) are the eigenfunctions of the
coordinate operator with the eigenvalues z, and
xy,. Suppose Ul(ty,t,) = e~ #H(t=ta) ig the time-
evolution operator,

\I/(ac, ty) = U(tb,fa)\l/(x, ta).

(1)
Then the propagator

Koz (to; ta) = (20]U (to, ta)|2a) (2)
is intuitively defined as the Feynman’s integral
over all classical paths z(t) connecting (x,,t,) and

(zp,tp),
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Kxbma (tb; ta) = (3)
where D[z(t)] is a certain functional meausure, and
Slz(t)] = [dtL(z, &) is the action calculated along
the path z(t).

The stationary phase approach says that when
h — 0 only the stationary path, that is where % =
0, gives nonvanishing contribution to the integral.
This is apparently the classical variational principle
which defines the classical path.

1.1 Time discretization

Let us discretize time in NV equidistant slices tg =
tastiy oyt = ty, with Af = Uete)
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where the short time action is defined using the
midpoint rule,

Tpn + Tp—1 Tp — Tp—1
S, = AtL , 5
2 At ] 5)

The (broken-line) path x(¢) is now defined by the
set of values z(t1), z(t2), ...,x(tN—1)
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The normalization constant (27”72 At) / comes

from considering a short-time propogator for a free
particle, which can be calculated analytically.

1.2 Space discretization

With the space discretized also, x = xg, z1, ..., XD,
the short-time propagator becomes a complex ma-
trix
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and consequently the finite time propagator
K;;(t) = (x;|U(t)|z;) becomes a product of short-
time propagators, K (t) = AzN 1K (At)V.

1.3 Real time propagation

The energy levels can be extracted by a Fourier
transform of the trace of the propagator:

trace(U(t)) = Z(n|€7%m|n> — Z et Ent (7)
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