1 Feynman's path integral method in quantum mechanics

Consider a one-dimentional motion of a particle with mass m, coordinate x and Lagrangian $L(x, \dot{x})$. Suppose $|x_a\rangle$ and $|x_b\rangle$ are the eigenfunctions of the coordinate operator with the eigenvalues x_a and x_b . Suppose $U(t_b, t_a) = e^{-\frac{i}{\hbar}H(t_b-t_a)}$ is the time-evolution operator,

$$\Psi(x, t_b) = U(t_b, t_a)\Psi(x, t_a). \tag{1}$$

Then the propagator

$$K_{x_b x_a}(t_b, t_a) \equiv \langle x_b | U(t_b, t_a) | x_a \rangle$$
 (2)

is intuitively defined as the Feynman's integral over all classical paths x(t) connecting (x_a, t_a) and (x_b, t_b) ,

$$K_{x_b x_a}(t_b, t_a) = \int_{x(t)} D[x(t)] e^{\frac{i}{\hbar} S[x(t)]}$$
 (3)

where D[x(t)] is a certain functional measure, and $S[x(t)] = \int dt L(x, \dot{x})$ is the action calculated along the path x(t).

The stationary phase approach says that when $\hbar \to 0$ only the stationary path, that is where $\frac{\delta S}{\delta x} = 0$, gives nonvanishing contribution to the integral. This is apparently the classical variational principle which defines the classical path.

1.1 Time discretization

Let us discretize time in N equidistant slices $t_0 = t_a, t_1, ..., t_N = t_b$, with $\Delta t = \frac{(t_b - t_a)}{N}$

$$K_{x_b x_a}(t_b, t_a) \approx \left(\frac{m}{2\pi i \hbar \Delta t}\right)^{\frac{N}{2}} \int dx(t_1) ... dx(t_{N-1}) \times \prod_{n} e^{\frac{i}{\hbar} S_n}$$
(4)

where the short time action is defined using the $midpoint\ rule,$

$$S_n = \Delta t L \left[\frac{x_n + x_{n-1}}{2}, \frac{x_n - x_{n-1}}{\Delta t} \right]$$
 (5)

The (broken-line) path x(t) is now defined by the set of values $x(t_1), x(t_2), ..., x(t_{N-1})$

The normalization constant $\left(\frac{m}{2\pi i\hbar\Delta t}\right)^{1/2}$ comes from considering a short-time propagator for a free particle, which can be calculated analytically.

integral 1.2 Space discretization

With the space discretized also, $x = x_0, x_1, ..., x_D$, the short-time propagator becomes a complex matrix

$$K_{ij}(\Delta t) = \sqrt{\frac{m}{2\pi i\hbar \Delta t}} e^{\frac{i\Delta t}{\hbar} L\left[\frac{x_j + x_i}{2}, \frac{x_j - x_i}{\Delta t}\right]}$$
(6)

and consequently the finite time propagator $K_{ij}(t) = \langle x_i | U(t) | x_j \rangle$ becomes a product of short-time propagators, $K(t) = \Delta x^{N-1} K(\Delta t)^N$.

1.3 Real time propagation

The energy levels can be extracted by a Fourier transform of the trace of the propagator:

$$\operatorname{trace}(U(t)) = \sum_{n} \langle n | e^{-\frac{i}{\hbar}Ht} | n \rangle = \sum_{n} e^{-\frac{i}{\hbar}E_{n}t} \quad (7)$$